1
|
Tsumura K, Fujimoto M, Tian Y, Kawahara T, Fujimoto H, Maeshima AM, Nakagawa T, Kume H, Yoshida T, Kanai Y, Arai E. Aberrant cell adhesiveness due to DNA hypermethylation of KLF11 in papillary urothelial carcinomas. Exp Mol Pathol 2024; 137:104908. [PMID: 38824688 DOI: 10.1016/j.yexmp.2024.104908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE The aim of this study was to clarify DNA methylation profiles determining the clinicopathological diversity of urothelial carcinomas. METHODS Genome-wide DNA methylation analysis was performed using the Infinium HumanMethylation450 BeadChip in 46 paired samples of non-cancerous urothelium (N) and corresponding cancerous tissue (T), and 26 samples of normal control urothelium obtained from patients without urothelial carcinomas (C). For genes of interest, correlation between DNA methylation and mRNA expression was examined using the Cancer Genome Atlas database. In addition, the role of a selected target for cancer-relevant endpoints was further examined in urothelial carcinoma cell lines. RESULTS The genes showing significant differences in DNA methylation levels between papillary carcinomas and more aggressive non-papillary (nodular) carcinomas were accumulated in signaling pathways participating in cell adhesion and cytoskeletal remodeling. Five hundred ninety-six methylation sites showed differences in DNA methylation levels between papillary and nodular carcinomas. Of those sites, that were located in CpG-islands around transcription start site, 5'-untranslated region or 1st exon, 16 genes exhibited inverse correlations between DNA methylation and mRNA expression levels. Among the latter, only the KLF11 gene showed papillary T sample-specific DNA hypermethylation in comparison to C and N samples. The DNA methylation levels of KLF11 were not significantly different between T samples and N samples or T samples and C samples for patients with papillo-nodular or nodular carcinomas. Knockdown experiments using the urothelial carcinoma cell lines HT1376 and 5637, which are considered models for papillary carcinoma, revealed that KLF11 participates in altering the adhesiveness of cells to laminin-coated dishes, although cell growth was not affected. CONCLUSION These data indicate that DNA hypermethylation of KLF11 may participate in the generation of papillary urothelial carcinomas through induction of aberrant cancer cell adhesion to the basement membrane.
Collapse
Affiliation(s)
- Koji Tsumura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toru Kawahara
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Akiko Miyagi Maeshima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tohru Nakagawa
- Department of Urology, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
2
|
Matsuda S, Hoshino S, Goto T, Kawakubo H, Takeuchi M, Kobayashi R, Nakamura K, Takeuchi H, Nishihara H, Kitagawa Y. Identifying intense inflammatory subtype of esophageal squamous cell carcinoma using clustering approach. Gen Thorac Cardiovasc Surg 2024; 72:417-425. [PMID: 38294659 DOI: 10.1007/s11748-023-02006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To establish a risk-stratification system for predicting the postoperative recurrence of esophageal squamous cell carcinoma, this study aimed to evaluate the prognostic value of clusters based on blood inflammation and coagulation markers and investigate their correlation with serum cytokines and genetic alteration. METHOD This single-center, retrospective cohort study enrolled 491 patients with esophageal cancer who underwent subtotal esophagectomy between 2004 and 2012. For cluster exploration, nonhierarchical cluster analysis and k-means were applied using serum C-reactive protein, albumin, fibrinogen, and platelet-lymphocyte ratio as variables. Then, multivariate survival analysis was conducted to investigate the association of clusters with recurrence-free survival. To characterize the clusters, serum interleukin-6, interleukin-8, and genetic alteration in primary tumors, the PleSSision-Rapid panel, which can evaluate 160 representative driver genes, was used. RESULTS Patients were classified into clusters 1, 2, and 3, which included 24 (5%), 161 (33%), and 306 (62%) patients, respectively. Compared with cluster 3, cluster 1 or 2 had significantly worse recurrence-free survival. Based on the multivariable analysis using cluster, pStage, and age as covariates, cluster was an independent prognostic factor for recurrence-free survival (hazard ratio, 1.55; 95% confidence interval, 1.08-2.21; P = 0.02). The percentage of serum interleukin-6 and interleukin-8 levels was the highest in cluster 1, followed by clusters 2 and 3. In 23 patients with available genomic profiles, no significant difference in representative genomic alterations was observed. CONCLUSIONS Non-biased clustering using inflammation and coagulation markers identified the intense inflammatory subtype, which had an independent prognostic effect on recurrence-free survival.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Shota Hoshino
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tadahiro Goto
- Department of Clinical Epidemiology and Health Economics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masashi Takeuchi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Kobayashi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
3
|
Kanai Y. Molecular pathological approach to cancer epigenomics and its clinical application. Pathol Int 2024; 74:167-186. [PMID: 38482965 PMCID: PMC11551818 DOI: 10.1111/pin.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024]
Abstract
Careful microscopic observation of histopathological specimens, accumulation of large numbers of high-quality tissue specimens, and analysis of molecular pathology in relation to morphological features are considered to yield realistic data on the nature of multistage carcinogenesis. Since the morphological hallmark of cancer is disruption of the normal histological structure maintained through cell-cell adhesiveness and cellular polarity, attempts have been made to investigate abnormalities of the cadherin-catenin cell adhesion system in human cancer cells. It has been shown that the CDH1 tumor suppressor gene encoding E-cadherin is silenced by DNA methylation, suggesting that a "double hit" involving DNA methylation and loss of heterozygosity leads to carcinogenesis. Therefore, in the 1990s, we focused on epigenomic mechanisms, which until then had not received much attention. In chronic hepatitis and liver cirrhosis associated with hepatitis virus infection, DNA methylation abnormalities were found to occur frequently, being one of the earliest indications that such abnormalities are present even in precancerous tissue. Aberrant expression and splicing of DNA methyltransferases, such as DNMT1 and DNMT3B, was found to underlie the mechanism of DNA methylation alterations in various organs. The CpG island methylator phenotype in renal cell carcinoma was identified for the first time, and its therapeutic targets were identified by multilayer omics analysis. Furthermore, the DNA methylation profile of nonalcoholic steatohepatitis (NASH)-related hepatocellular carcinoma was clarified in groundbreaking studies. Since then, we have developed diagnostic markers for carcinogenesis risk in NASH patients and noninvasive diagnostic markers for upper urinary tract cancer, as well as developing a new high-performance liquid chromatography-based diagnostic system for DNA methylation diagnosis. Research on the cancer epigenome has revealed that DNA methylation alterations occur from the precancerous stage as a result of exposure to carcinogenic factors such as inflammation, smoking, and viral infections, and continuously contribute to multistage carcinogenesis through aberrant expression of cancer-related genes and genomic instability. DNA methylation alterations at the precancerous stages are inherited by or strengthened in cancers themselves and determine the clinicopathological aggressiveness of cancers as well as patient outcome. DNA methylation alterations have applications as biomarkers, and are expected to contribute to diagnosis, as well as preventive and preemptive medicine.
Collapse
Affiliation(s)
- Yae Kanai
- Department of PathologyKeio University School of MedicineTokyoJapan
| |
Collapse
|
4
|
Makiuchi S, Tian Y, Fujimoto M, Kuramoto J, Tsuda N, Ojima H, Gotoh M, Hiraoka N, Yoshida T, Kanai Y, Arai E. DNA methylation alterations of ADCY5, MICAL2, and PLEKHG2 during the developmental stage of cryptogenic hepatocellular carcinoma. Hepatol Res 2024; 54:284-299. [PMID: 37906571 DOI: 10.1111/hepr.13984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
AIM The aim of this study was to clarify the significance of DNA methylation alterations of cryptogenic hepatocellular carcinomas (HCCs). METHODS Using the Infinium assay, we performed genome-wide DNA methylation analysis of 250 liver tissue samples, including noncancerous liver tissue (U-N) and corresponding cancerous tissue (U-T) from patients with cryptogenic HCC without a history of excessive alcohol use and hepatitis virus infection, and whose U-N samples showed no remarkable histological features (no microscopic evidence of simple steatosis, any form of hepatitis including nonalcoholic steatohepatitis, or liver cirrhosis). RESULTS We identified 3272 probes that showed significant differences of DNA methylation levels between U-N and normal liver tissue samples from patients without HCC, indicating that a distinct DNA methylation profile had already been established at the precancerous U-N stage. U-Ns have a DNA methylation profile differing from that of noncancerous liver tissue of patients with nonalcoholic steatohepatitis-related, viral hepatitis-related, and alcoholic liver disease-related HCCs. Such DNA methylation alterations in U-Ns were inherited by U-Ts. The U-Ns showed DNA methylation alteration of ADCY5, resulting in alteration of its mRNA expression, whereas noncancerous liver tissue of patients with nonalcoholic steatohepatitis-, viral hepatitis-, or alcoholic liver disease-related HCCs did not. DNA methylation levels of MICAL2 and PLEKHG2 in U-Ts were correlated with larger tumor diameter and portal vein involvement, respectively. CONCLUSIONS U-N-specific DNA hypermethylation of ADCY5 may have significance, even from the precancerous stage in liver showing no remarkable histological features. DNA hypomethylation of MICAL2 and PLEKHG2 may determine the clinicopathological features of cryptogenic HCC.
Collapse
Affiliation(s)
- Satomi Makiuchi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Zohar Y, Sivan B, Mintz I, Hefer B, Rouvinov K, Shani Shrem N, Mabjeesh NJ. Management of Upper Tract Urothelial Carcinoma in a Double Collecting System Kidney. J Pers Med 2024; 14:158. [PMID: 38392591 PMCID: PMC10890684 DOI: 10.3390/jpm14020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Upper tract urothelial carcinoma (UTUC) in a duplex collecting system (DCS) is a relatively uncommon presentation with unclear management guidelines. Herein, we retrospectively reviewed all published cases of DCS with UTUC aiming to suggest personalized clinical care options for future cases. We conducted a systematic search for all cases of UTUC in DCS from published literature using the following keywords: UTUC, urothelial carcinoma (UC), collecting duct carcinoma, and DCS. The cases were summarized based on demographics, clinical presentation, predisposing risk factors, tumor location, management, and follow-up. We present an additional case based on our experience with a 69-year-old female with high-grade (HG) UTUC of the upper moiety in complete DCS. The patient underwent a robotic upper pole hemi-nephroureterectomy (hemi-NU) with a common sheath distal ureterectomy and a bladder cuff, followed by lower pole ureteral reimplantation. Overall, 34 patients with 35 renal units of UTUC in DCS were included and analyzed. To conclude, UTUC of DCS is rare and underreported. Hence, it is difficult to define a standard treatment. Although hemi-NU has been previously described, to the best of our knowledge, this is the first case report of robot-assisted hemi-NU for complete DCS with single-moiety UC.
Collapse
Affiliation(s)
- Yarden Zohar
- Department of Urology, Soroka University Medical Center, Faculty of Health Science, Ben-Gurion University of Negev, P.O. Box 151, Be'er Sheva 84101, Israel
| | - Bezalel Sivan
- Department of Urology, Soroka University Medical Center, Faculty of Health Science, Ben-Gurion University of Negev, P.O. Box 151, Be'er Sheva 84101, Israel
| | - Ishai Mintz
- Department of Urology, Soroka University Medical Center, Faculty of Health Science, Ben-Gurion University of Negev, P.O. Box 151, Be'er Sheva 84101, Israel
| | - Ben Hefer
- Department of Urology, Soroka University Medical Center, Faculty of Health Science, Ben-Gurion University of Negev, P.O. Box 151, Be'er Sheva 84101, Israel
| | - Keren Rouvinov
- The Legacy Heritage Oncology Center, Dr. Larry Norton Institute, Soroka University Medical Center, Faculty of Health Science, Ben-Gurion University of the Negev, P.O. Box 151, Be'er Sheva 84101, Israel
| | - Noa Shani Shrem
- The Legacy Heritage Oncology Center, Dr. Larry Norton Institute, Soroka University Medical Center, Faculty of Health Science, Ben-Gurion University of the Negev, P.O. Box 151, Be'er Sheva 84101, Israel
| | - Nicola J Mabjeesh
- Department of Urology, Soroka University Medical Center, Faculty of Health Science, Ben-Gurion University of Negev, P.O. Box 151, Be'er Sheva 84101, Israel
| |
Collapse
|
6
|
Nakamura Y, Mizukami H, Tanese K, Fusumae T, Hirai I, Amagai M, Takamatsu R, Nakamura K, Nishihara H, Takimoto T, Ueno M, Saya H, Funakoshi T. Role of androgen signaling in androgen receptor-positive extramammary Paget's disease: Establishment of organoids and their biological analysis as a novel therapeutic target. J Dermatol Sci 2023; 112:23-30. [PMID: 37661472 DOI: 10.1016/j.jdermsci.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Extramammary Paget's disease (EMPD) is a rare intraepithelial adenocarcinoma that mainly affects the anogenital and axillary regions. Although its etiology has not been fully elucidated, there is evidence that androgen receptors (AR) are expressed in most cases of EMPD. However, the role of androgen signaling in the pathogenesis of EMPD remains unclear. OBJECTIVE To evaluate the role of androgen signaling in tumor growth of AR-positive EMPD. METHODS Patient-derived organoids were established and cultured from two AR-positive EMPD patients: one man and one woman. Cultured organoids were treated with androgen agonists and/or antagonists, then subjected to analysis of changes in organoid proliferation, as well as changes in androgen signaling pathway-specific genes. RESULTS Organoid cultures were established from each EMPD sample. These organoids were immunohistologically and genetically identical to the original tumor. For each organoid sample, viable cell number increased in response to androgen exposure. The mRNA level of Fkbp5, a known AR target gene, increased in a concentration-dependent manner in organoids exposed to the synthetic androgen R1881. Conversely, the AR inhibitor darolutamide suppressed the viable cell number in a concentration-dependent manner. The mRNA expression levels of MKI67 and Fkbp5 were also suppressed by darolutamide. CONCLUSION Our results indicate that androgen signaling is a key pathway involved in the growth of AR-positive EMPD. Therefore, androgen signaling inhibition may be a novel treatment option for EMPD patients who require systemic therapy.
Collapse
Affiliation(s)
- Yoshio Nakamura
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | - Hayase Mizukami
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Keiji Tanese
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takayuki Fusumae
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ikuko Hirai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Reika Takamatsu
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Tetsuya Takimoto
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Masaru Ueno
- JSR-Keio University Medical and Chemical Innovation Center (JKiC), JSR Corporation, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan; Fujita Cancer Center, Fujita Health University, Aichi, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Nukaya T, Sumitomo M, Sugihara E, Takeda M, Nohara S, Tanishima S, Takenaka M, Zennami K, Takahara K, Shiroki R, Saya H. Estimating copy number to determine BRCA2 deletion status and to expect prognosis in localized prostate cancer. Cancer Med 2023; 12:8154-8165. [PMID: 36645189 PMCID: PMC10134377 DOI: 10.1002/cam4.5617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The significance of BRCA alterations has been implicated in the development of metastatic castration-resistant prostate cancer (PC). The details of the frequency and significance of BRCA alterations in localized PC remain unknown. In this study, we investigated the frequency and clinical significance of BRCA alterations in localized PCs using an in-house next-generation sequencer (NGS) system. METHODS DNA was extracted from formalin-fixed paraffin-embedded tissues of surgical specimens from 126 patients with clinically localized PC who underwent radical prostatectomy. The mutation information of 164 cancer genes was analyzed using the PleSSision-Rapid test. Both copy number (CN) variation and loss of heterozygosity of various genes, such as BRCA1 and BRCA2, were estimated and reported. RESULTS Next-generation sequencer analyses revealed that the BRCA2 CN was decreased in 17 patients (13.5%) and the BRCA1 CN in six (4.8%) patients. NGS-based CN values were shown to be highly correlated with droplet digital PCR-based CN values. Tissue-specific BRCA expression investigated using the Human Protein Atlas showed that the decreased CN of BRCA2, but not BRCA1, is responsible for the decreased BRCA activity in PC. Ten of the 22 patients with decreased BRCA2 CN were presumed to have somatic heterozygous deletion. There were no observed associations between the heterozygous deletion of BRCA2 and various clinicopathological parameters. Furthermore, three of 10 patients developed biochemical recurrence within 3 months after surgery. Multivariate analyses revealed that the initial prostate-specific antigen levels and BRCA2 CN were independent factors for biochemical recurrence. CONCLUSION Our results suggest that a decrease in BRCA2 CN may be used as a biomarker for predicting recurrence after surgery in localized PC. Early screening for somatic alterations in BRCA2 using NGS may help to broadly predict the risk of PC progression.
Collapse
Affiliation(s)
- Takuhisa Nukaya
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Makoto Sumitomo
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan.,Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan
| | - Eiji Sugihara
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Research Promotion Headquarters, Open Facility Center, Fujita Health University, Toyoake, Japan
| | - Mayu Takeda
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan.,Department of Medical Research for Intractable Disease, Fujita Health University, Toyoake, Japan
| | - Sachio Nohara
- Department of Bio Informatics, Communication Engineering Center, Electronic System Business Group, Mitsubishi Electric Software Corp, Tokyo, Japan
| | - Shigeki Tanishima
- Department of Bio Informatics, Communication Engineering Center, Electronic System Business Group, Mitsubishi Electric Software Corp, Tokyo, Japan
| | - Masashi Takenaka
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kenji Zennami
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kiyoshi Takahara
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Ryoichi Shiroki
- Department of Urology School of Medicine, Fujita Health University, Toyoake, Japan
| | - Hideyuki Saya
- Fujita Cancer Center, Fujita Health University, Toyoake, Japan
| |
Collapse
|
8
|
Kuramoto J, Arai E, Fujimoto M, Tian Y, Yamada Y, Yotani T, Makiuchi S, Tsuda N, Ojima H, Fukai M, Seki Y, Kasama K, Funahashi N, Udagawa H, Nammo T, Yasuda K, Taketomi A, Kanto T, Kanai Y. Quantification of DNA methylation for carcinogenic risk estimation in patients with non-alcoholic steatohepatitis. Clin Epigenetics 2022; 14:168. [PMID: 36471401 PMCID: PMC9724255 DOI: 10.1186/s13148-022-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, non-alcoholic steatohepatitis (NASH) has become the main cause of hepatocellular carcinoma (HCC). As a means of improving the treatment of NASH-related HCCs based on early detection, this study investigated the feasibility of carcinogenic risk estimation in patients with NASH. RESULTS Normal liver tissue (NLT), non-cancerous liver tissue showing histological findings compatible with non-alcoholic fatty liver from patients without HCC (NAFL-O), non-cancerous liver tissue showing NASH from patients without HCC (NASH-O), non-cancerous liver tissue showing non-alcoholic fatty liver from patients with HCC (NAFL-W), non-cancerous liver tissue showing NASH from patients with HCC (NASH-W) and NASH-related HCC were analyzed. An initial cohort of 171 tissue samples and a validation cohort of 55 tissue samples were used. Genome-wide DNA methylation screening using the Infinium HumanMethylation450 BeadChip and DNA methylation quantification using high-performance liquid chromatography (HPLC) with a newly developed anion-exchange column were performed. Based on the Infinium assay, 4050 CpG sites showed alterations of DNA methylation in NASH-W samples relative to NLT samples. Such alterations at the precancerous NASH stage were inherited by or strengthened in HCC samples. Receiver operating characteristic curve analysis identified 415 CpG sites discriminating NASH-W from NLT samples with area under the curve values of more than 0.95. Among them, we focused on 21 CpG sites showing more than 85% specificity, even for discrimination of NASH-W from NASH-O samples. The DNA methylation status of these 21 CpG sites was able to predict the coincidence of HCC independently from histopathological findings such as ballooning and fibrosis stage. The methylation status of 5 candidate marker CpG sites was assessed using a HPLC-based system, and for 3 of them sufficient sensitivity and specificity were successfully validated in the validation cohort. By combining these 3 CpG sites including the ZC3H3 gene, NAFL-W and NASH-W samples from which HCCs had already arisen were confirmed to show carcinogenic risk with 95% sensitivity in the validation cohort. CONCLUSIONS After a further prospective validation study using a larger cohort, carcinogenic risk estimation in liver biopsy specimens of patients with NASH may become clinically applicable using this HPLC-based system for quantification of DNA methylation.
Collapse
Affiliation(s)
- Junko Kuramoto
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Eri Arai
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Mao Fujimoto
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Ying Tian
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Yuriko Yamada
- grid.471315.50000 0004 1770 184XTsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd., Ryugasaki, 301-0852 Japan
| | - Takuya Yotani
- grid.471315.50000 0004 1770 184XTsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd., Ryugasaki, 301-0852 Japan
| | - Satomi Makiuchi
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Noboru Tsuda
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Hidenori Ojima
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| | - Moto Fukai
- grid.39158.360000 0001 2173 7691Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Yosuke Seki
- grid.505804.c0000 0004 1775 1986Weight Loss and Metabolic Surgery Center, Yotsuya Medical Cube, Tokyo, 102-0084 Japan
| | - Kazunori Kasama
- grid.505804.c0000 0004 1775 1986Weight Loss and Metabolic Surgery Center, Yotsuya Medical Cube, Tokyo, 102-0084 Japan
| | - Nobuaki Funahashi
- grid.32197.3e0000 0001 2179 2105Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501 Japan
| | - Haruhide Udagawa
- grid.411205.30000 0000 9340 2869Department of Biochemistry, Kyorin University School of Medicine, Tokyo, 181-8611 Japan
| | - Takao Nammo
- grid.136593.b0000 0004 0373 3971Department of Metabolic Medicine and Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, 565-0871 Japan
| | - Kazuki Yasuda
- grid.411205.30000 0000 9340 2869Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, Tokyo, 181-8611 Japan ,grid.45203.300000 0004 0489 0290Diabetes Research Center, National Center for Global Health and Medicine, Tokyo, 162-8655 Japan
| | - Akinobu Taketomi
- grid.39158.360000 0001 2173 7691Department of Gastroenterological Surgery I, Graduate School of Medicine, Hokkaido University, Sapporo, 060-8638 Japan
| | - Tatsuya Kanto
- grid.45203.300000 0004 0489 0290The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, 272-8516 Japan
| | - Yae Kanai
- grid.26091.3c0000 0004 1936 9959Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582 Japan
| |
Collapse
|
9
|
DNA methylation status of the SPHK1 and LTB genes underlies the clinicopathological diversity of non-alcoholic steatohepatitis-related hepatocellular carcinomas. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04445-9. [DOI: 10.1007/s00432-022-04445-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Abstract
Purpose
This study was performed to identify the DNA methylation profiles underlying the clinicopathological diversity of non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinomas (HCCs).
Methods
Genome-wide DNA methylation analysis of 88 liver tissue samples was performed using the Infinium assay.
Results
Principal component analysis revealed that distinct DNA methylation profiles differing from such profiles in normal control liver tissue had already been established in non-cancerous liver tissue showing NASH, which is considered to be a precancerous condition. Hierarchical clustering separated 26 NASH-related HCCs into Cluster I (n = 8) and Cluster II (n = 18). Such epigenetic clustering was significantly correlated with histopathological diversity, i.e. poorer tumor differentiation, tumor steatosis and development of a scirrhous HCC component. Significant differences in DNA methylation levels between the two clusters were accumulated in molecular pathways participating in cell adhesion and cytoskeletal remodeling, as well as cell proliferation and apoptosis. Among tumor-related genes characterizing Clusters I and II, differences in the levels of DNA methylation and mRNA expression for the SPHK1, INHBA, LTB and PDE3B genes were correlated with poorer tumor differentiation. 5-Aza-2′-deoxycytidine treatment of HCC cells revealed epigenetic regulation of the SPHK1 and LTB genes. Knockdown experiments showed that SPHK1 promotes cell proliferation, represses apoptosis and enhances migration, whereas LTB enhances migration of HCC cells. DNA hypomethylation resulting in increased expression of SPHK1 and LTB in poorly differentiated HCCs may underlie the aggressive phenotype of such HCCs.
Conclusion
These data indicate that DNA methylation profiles may determine the clinicopathological heterogeneity of NASH-related HCCs via alterations of tumor-related gene expression.
Collapse
|
10
|
Hirano T, Arai E, Fujimoto M, Nakayama Y, Tian Y, Ito N, Makabe T, Yamagami W, Susumu N, Aoki D, Kanai Y. Prognostication of early-onset endometrioid endometrial cancer based on genome-wide DNA methylation profiles. J Gynecol Oncol 2022; 33:e74. [PMID: 36047377 DOI: 10.3802/jgo.2022.33.e74] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The aim of this study was to establish criteria that would indicate whether fertility preservation therapy would likely be safe for patients aged 40 years or less with endometrioid endometrial cancer based on their DNA methylation profile. METHODS Forty-nine fresh-frozen tissue samples from patients with endometrial cancer from an initial cohort and 31 formalin-fixed paraffin-embedded tissue samples from a second cohort were subjected to genome-wide DNA methylation analysis using the Infinium MethylationEPIC BeadChip. RESULTS Epigenomic clustering of early-onset endometrial cancer was correlated with the widely used recurrence risk classification. Genes showing differences in DNA methylation levels between the low-recurrence-risk category and intermediate- and high-risk categories were accumulated in pathways related to fibroblast growth factor and nuclear factor-κB signaling. DNA hypomethylation and overexpression of ZBTB38 were frequently observed in the low-risk category. Eight hundred thirty-one marker CpG probes showed area under the curve values of >0.7 on the receiver operating characteristic curve for discrimination of patients belonging to the low-risk category. By combining marker CpG sites, seven panels for placing patients into the low-risk category with 91.3% or more sensitivity and specificity in both the initial and second cohorts were established. CONCLUSIONS DNA methylation diagnostics criteria using up to 6 of 8 CpG sites for LPP, FOXO1, RNF4, EXOC6B, CCPG1, RREB1 and ZBTB38 may be applicable to recurrence risk estimation for patients aged 40 years or less with endometrial cancer, regardless of tumor cell content, even if formalin-fixed paraffin-embedded biopsy or curettage materials are used.
Collapse
Affiliation(s)
- Takuro Hirano
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yuji Nakayama
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Ying Tian
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Makabe
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuyuki Susumu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, International University of Health and Welfare School of Medicine, Chiba, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Ogiri M, Seishima R, Nakamura K, Aimono E, Matsui S, Shigeta K, Chiyoda T, Tanishima S, Okabayashi K, Nishihara H, Kitagawa Y. Real-world application of next-generation sequencing-based test for surgically resectable colorectal cancer in clinical practice. Future Oncol 2022; 18:2701-2711. [PMID: 35818975 DOI: 10.2217/fon-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To evaluate the significance of next-generation sequencing-based gene panel testing in surgically resectable colorectal cancer by analyzing real-world data. Materials & methods: A total of 107 colorectal cancer patients who underwent curative surgery were included, and correlations between next-generation sequencing data and clinicopathological findings were evaluated. Results: More combination patterns in gene alteration were identified in advanced-stage tumors than in early-stage tumors. The copy number alteration count was significantly lower in right-sided colon tumors and early-stage tumors. Homologous recombination deficiency was more often identified in advanced-stage tumors, and high homologous recombination deficiency status was useful for identifying high-risk stage II tumors. Conclusion: Homologous recombination deficiency was identified as a useful result of gene panel testing with novel utility in clinical practice.
Collapse
Affiliation(s)
- Masayo Ogiri
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Seishima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Shimpei Matsui
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Shigeta
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Tanishima
- Department of Biomedical Informatics, Kansai Division, Mitsubishi Space Software Co., Ltd., Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Hoshino S, Matsuda S, Kawakubo H, Yamaguchi S, Nakamura K, Aimono E, Matsui K, Irino T, Fukuda K, Nakamura R, Okita H, Nishihara H, Takeuchi H, Kitagawa Y. Elevation of the Prognostic Factor Plasma Fibrinogen Reflects the Immunosuppressive Tumor Microenvironment in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2022; 29:6894-6904. [PMID: 35672627 DOI: 10.1245/s10434-022-11974-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Despite previous reports on the clinical significance of plasma fibrinogen (FNG) levels as a prognostic indicator of ESCC, its underlying mechanism remains unclear. This study aimed to validate the prognostic impact of plasma FNG levels and clarify its relationship with primary tumors in patients with esophageal squamous cell carcinoma (ESCC). METHODS The prognostic impact of FNG was evaluated in patients with ESCC who underwent esophagectomy between 2000 and 2019. The RNA sequencing of the primary ESCC site, which was from pre-operative biopsy, was performed, followed by immune profile characterization using an immunogram. Those profiles were assessed via the immunohistochemical staining of tumor-associated macrophages (TAMs) and clinical response to nivolumab. RESULTS Multivariate analysis identified FNG as a significant prognostic factor in ESCC. The immunogram suggested an immunosuppressive tumor environment in the high-FNG group. Immunostaining with the TAM markers CD163 and CD204, revealed that the high-FNG group had significantly higher number of TAMs compared with the low-FNG group. The immunosuppressive characteristics were clinically validated in patients with metastatic ESCC; those who had elevated FNG levels showed poor response to nivolumab. CONCLUSION This study successfully validated the prognostic impact of plasma FNG levels in an expanded cohort with ESCC. Accordingly, our findings showed that increased plasma FNG reflects an immunosuppressive tumor microenvironment that facilitates tumor progression and poor responses to nivolumab.
Collapse
Affiliation(s)
- Shota Hoshino
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Matsuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shigeo Yamaguchi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Kazuaki Matsui
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Irino
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Rieko Nakamura
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hajime Okita
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Takeuchi
- Department of Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Shang X, Shi LE, Taule D, Zhu ZZ. A Novel miRNA-mRNA Axis Involves in Regulating Transcriptional Disorders in Pancreatic Adenocarcinoma. Cancer Manag Res 2021; 13:5989-6004. [PMID: 34377019 PMCID: PMC8349199 DOI: 10.2147/cmar.s316935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Currently, there is still a lack of understanding about the mechanism and therapeutic targets of pancreatic adenocarcinoma (PAAD). The potential of miRNA-mRNA networks for the identification of regulatory mechanisms involved in PAAD development remains unexplored. Methods We compared differentially expressed miRNAs (DEMIs) and differentially expressed genes (DEGs) in PAAD and normal tissues from the Gene Expression Omnibus (GEO) database. Transcription factors (TFs) were obtained from FunRich. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs and DEMIs were implemented using Database for Annotation, Visualization and Integrated Discovery (DAVID). Then, key miRNAs and targeted mRNAs were identified by assessment of their expression and prognosis in UALCAN and Kaplan-Meier plotters. In the last step, the candidate miRNA-mRNA selected was confirmed by real-time quantitative polymerase chain reaction (qRT-PCR). Results We distinguished 62 significant DEMIs, 1314 upregulated DEGs, and 1110 downregulated DEGs. The top 10 TFs were identified. In total, there were 160 hub genes obtained by intersecting the set of 2224 predicted targets with the set of significant DEGs. And we selected 8 key miRNAs. Furthermore, low expression of miR-455-3p in PAAD tissue was closely connected with poor prognosis, and only 5 target mRNAs were predicted to be increased in PAAD tissue with poor prognosis. Therefore, a novel miRNA-hub gene regulatory network in PAAD was constructed. Finally, in vitro experiments indicated that miR-455-3p expression was decreased in PAAD sample. HOXC4, DLG4, DYNLL1 and FBXO45 were validated by qRT-PCR as highly probable targets of miR-455-3p. Conclusion A novel miRNA-mRNA axis has been discovered that may be involved in the regulation of transcriptional disorders and affected the survival of PAAD patients, which would provide a novel strategy for the treatment of PAAD.
Collapse
Affiliation(s)
- Xin Shang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Lan-Er Shi
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Dina Taule
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhang-Zhi Zhu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
14
|
Yang M, Arai E, Takahashi Y, Totsuka H, Chiku S, Taniguchi H, Katai H, Sakamoto H, Yoshida T, Kanai Y. Cooperative participation of epigenomic and genomic alterations in the clinicopathological diversity of gastric adenocarcinomas: significance of cell adhesion and epithelial-mesenchymal transition-related signaling pathways. Carcinogenesis 2021; 41:1473-1484. [PMID: 32710740 PMCID: PMC7665242 DOI: 10.1093/carcin/bgaa079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/27/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The present study was conducted to clarify the cooperative significance of epigenomic and genomic abnormalities during gastric carcinogenesis. Using 21 samples of normal control gastric mucosa (C), 109 samples of non-cancerous gastric mucosa (N) and 105 samples of cancerous tissue (T) from 109 patients with primary gastric adenocarcinomas, genome-wide DNA methylation analysis was performed using Infinium assay. Among these samples, 66 paired N and corresponding T samples were subjected to whole-exome and single nucleotide polymorphism array analyses. As had been shown in our previous study, 109 patients were clustered clinicopathologically into least aggressive Cluster A (n = 20), most aggressive Cluster B1 (n = 20) and Cluster B2 (n = 69). Most DNA methylation alterations in each cluster had already occurred even in N samples compared with C samples, and DNA methylation alterations at the precancerous N stage were inherited by the established cancers themselves. Recurrent single nucleotide variants and insertions/deletions resulting in functional disruption of the proteins encoded by the ABCA10, BNC2, CDH1, CTNNB1, SMAD4 and VAV2 genes were specific to Cluster B1, whereas those of the APC, EGFR, ERBB2, ERBB3, MLH1 and MUC6 genes were specific to Cluster A. MetaCore pathway analysis revealed that the epigenomically affected TWIST1 gene and genomically affected CDH1, CTNNB1, MMP9, TLN2, ROCK1 and SMAD4 genes were accumulated in signaling pathways related to cell adhesion, cytoskeleton remodeling and epithelial–mesenchymal transition in Cluster B1. These data indicate that epigenomic alterations at the precancerous stage are important in gastric carcinogenesis and that epigenomic and genomic alterations cooperatively underlie the aggressiveness of gastric adenocarcinomas.
Collapse
Affiliation(s)
- Menghan Yang
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yoriko Takahashi
- Biomedical Department, Cloud Service Division, IT Infrastructure Services Unit, Mitsui Knowledge Industry Co., Ltd., Tokyo, Japan
| | - Hirohiko Totsuka
- Bioinformatics Group, Research and Development Center, Solution Division 4, Hitachi Government and Public Corporation System Engineering Ltd., Tokyo, Japan
| | - Suenori Chiku
- Information and Communication Research Division, Mizuho Information and Research Institute, Inc., Tokyo, Japan
| | - Hirokazu Taniguchi
- Department of Clinical Laboratories, JR Tokyo General Hospital, Tokyo, Japan
| | - Hitoshi Katai
- Department of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Hiromi Sakamoto
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Endo Y, Fujimoto M, Ito N, Takahashi Y, Kitago M, Gotoh M, Hiraoka N, Yoshida T, Kitagawa Y, Kanai Y, Arai E. Clinicopathological impacts of DNA methylation alterations on pancreatic ductal adenocarcinoma: prediction of early recurrence based on genome-wide DNA methylation profiling. J Cancer Res Clin Oncol 2021; 147:1341-1354. [PMID: 33635431 PMCID: PMC8021514 DOI: 10.1007/s00432-021-03541-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The present study was conducted to clarify the clinicopathological impacts of DNA methylation alterations on pancreatic ductal adenocarcinoma (PDAC). METHODS Genome-wide DNA methylation screening was performed using the Infinium HumanMethylation450 BeadChip, and DNA methylation quantification was verified using pyrosequencing. We analyzed fresh-frozen tissues from an initial cohort (17 samples of normal control pancreatic tissue [C] from 17 patients without PDAC, and 34 samples of non-cancerous pancreatic tissue [N] and 82 samples of cancerous tissue [T] both obtained from 82 PDAC patients) and formalin-fixed paraffin-embedded T samples from 34 patients in a validation cohort. RESULTS The DNA methylation profiles of N samples tended to differ from those of C samples, and 91,907 probes showed significant differences in DNA methylation levels between C and T samples. Epigenetic clustering of T samples was significantly correlated with a larger tumor diameter and early recurrence (ER), defined as relapse within 6 months after surgery. Three marker CpG sites, applicable to formalin-fixed paraffin-embedded surgically resected materials regardless of their tumor cell content, were identified for prediction of ER. The sensitivity and specificity for detection of patients belonging to the ER group using a panel combining these three marker CpG sites, including a CpG site in the CDK14 gene, were 81.8% and 71.7% and 88.9% and 70.4% in the initial and validation cohorts, respectively. CONCLUSION These findings indicate that DNA methylation alterations may have a clinicopathological impact on PDAC. Application of our criteria will ultimately allow prediction of ER after surgery to improve the outcome of PDAC patients.
Collapse
Affiliation(s)
- Yutaka Endo
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mao Fujimoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd., Tokyo, 105-6215, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Nobuyoshi Hiraoka
- Department of Pathology and Clinical Laboratory, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
16
|
Ohnishi I, Iwashita Y, Matsushita Y, Ohtsuka S, Yamashita T, Inaba K, Fukazawa A, Ochiai H, Matsumoto K, Kurono N, Matsushima Y, Mori H, Suzuki S, Suzuki S, Tanioka F, Sugimura H. Mass spectrometric profiling of DNA adducts in the human stomach associated with damage from environmental factors. Genes Environ 2021; 43:12. [PMID: 33836837 PMCID: PMC8034090 DOI: 10.1186/s41021-021-00186-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
Background A comprehensive understanding of DNA adducts, one of the most plausible origins of cancer mutations, is still elusive, especially in human tissues in clinical settings. Recent technological developments have facilitated the identification of multiple DNA adducts in a single experiment. Only a few attempts toward this “DNA adductome approach” in human tissues have been reported. Geospatial information on DNA adducts in human organs has been scarce. Aim Mass spectrometry of human gastric mucosal DNA was performed to identify DNA adducts associated with environmental factors. Materials and methods From 59 subjects who had received gastrectomy for gastric cancer, 306 samples of nontumor tissues and 15 samples of tumors (14 cases) were taken for DNA adductome analysis. Gastric nontumor tissue from autopsies of 7 subjects without gastric cancer (urothelial cancer, hepatocellular carcinoma, lung cancer each; the other four cases were without any cancers) was also investigated. Briefly, DNA was extracted from each sample with antioxidants, digested into nucleosides, separated by liquid chromatography, and then electrospray-ionized. Specific DNA adducts were identified by mass/charge number and column retention time compared to standards. Information on lifestyle factors such as tobacco smoking and alcohol drinking was taken from the clinical records of each subject. Results Seven DNA adducts, including modified bases, C5-methyl-2′-deoxycytidine, 2′-deoxyinosine, C5-hydroxymethyl-2′-deoxycytidine, N6-methyl-2′-deoxyadenosine, 1,N6-etheno-2′-deoxyadenosine, N6-hydroxymethyl-2′-deoxyadenosine, and C8-oxo-2′-deoxyguanosine, were identified in the human stomach and characterized. Intraindividual differences according to the multiple sites of these adducts were noted but were less substantial than interindividual differences. N6-hydroxymethyl-2′-deoxyadenosine was identified in the human stomach for the first time. The amount of C5-hydroxymethyl-2′-deoxycytidine was higher in the stomachs of subjects without gastric cancer than in the nontumor and tumor portions of the stomach in gastric cancer patients. Higher levels of 1,N6-etheno-2′-deoxyadenosine were detected in the subjects who reported both smoking and drinking than in those without these habits. These DNA adducts showed considerable correlations with each other. Conclusions We characterized 7 DNA adducts in the nontumor portion of the human stomach in both gastric cancer subjects and nongastric cancer subjects. A reduction in C5-hydroxymethyl-dC even in the nontumor mucosa of patients with gastric cancer was observed. Smoking and drinking habits significantly influenced the quantity of one of the lipid peroxidation-derived adducts, etheno-dA. A more expansive DNA adductome profile would provide a comprehensive understanding of the origin of human cancer in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00186-2.
Collapse
Affiliation(s)
- Ippei Ohnishi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Pathology Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Yuto Matsushita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Department of Urology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shunsuke Ohtsuka
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,Hamamatsu Medical Center, 328 Tomitsuka-cho, Naka-ku, Hamamatsu, Shizuoka, 432-8580, Japan
| | - Takashi Yamashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.,First Department of Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Keisuke Inaba
- Surgery Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Atsuko Fukazawa
- Surgery Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Hideto Ochiai
- Surgery Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Keigo Matsumoto
- Surgery Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yoshitaka Matsushima
- Department of Agricultural Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hiroki Mori
- Hamamatsu Medical Center, 328 Tomitsuka-cho, Naka-ku, Hamamatsu, Shizuoka, 432-8580, Japan
| | - Shioto Suzuki
- Pathology Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Shohachi Suzuki
- Surgery Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Fumihiko Tanioka
- Pathology Division, Iwata City Hospital, 512-3 Ohkubo, Iwata, Shizuoka, 438-8550, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
17
|
Nakamura K, Aimono E, Oba J, Hayashi H, Tanishima S, Hayashida T, Chiyoda T, Kosaka T, Hishida T, Kawakubo H, Kitago M, Okabayashi K, Funakoshi T, Okita H, Ikeda S, Takaishi H, Nishihara H. Estimating copy number using next-generation sequencing to determine ERBB2 amplification status. Med Oncol 2021; 38:36. [PMID: 33710417 PMCID: PMC7954749 DOI: 10.1007/s12032-021-01482-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/13/2021] [Indexed: 01/23/2023]
Abstract
Assessing Erb-b2 receptor tyrosine kinase 2 (ERBB2) amplification status in breast and gastric cancer is necessary for deciding the best therapeutic strategy. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are currently used for assessing protein levels and gene copy number (CN), respectively. The use of next-generation sequencing (NGS) to measure ERBB2 CN in breast cancer is approved by the United States Federal Drug Administration as a companion diagnostic. However, a CN of less than 8 is evaluated as “equivocal”, which means that some ERBB2 amplification cases diagnosed as “HER2 negative” might be false-negative cases. We reviewed the results of gene profiling targeting 160 cancer-related genes in breast (N = 90) and non-breast (N = 19) cancer tissue, and compared the ERBB2 CN results with the IHC/FISH scores. We obtained an estimated CN from the measured CN by factoring in the histological proportion of tumor cells and found that an ERBB2-estimated CN of 3.2 or higher was concordant with the combined IHC/FISH outcome in 98.4% (88/90) of breast cancer cases, while this was not always evident among non-breast cancer cases. Therefore, NGS-estimated ERBB2 CN could be considered a diagnostic test for anti-HER2 therapy after the completion of adequate prospective clinical trials.
Collapse
Affiliation(s)
- Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Biomedical Informatics, Kansai Division, Mitsubishi Space Software Co., Ltd, Tokyo, Japan. .,Department of Obstetrics and Gynecology, Kumagaya General Hospital, Saitama, 360-8657, Japan.
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Junna Oba
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shigeki Tanishima
- Department of Biomedical Informatics, Kansai Division, Mitsubishi Space Software Co., Ltd, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Tomoyuki Hishida
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hirohumi Kawakubo
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hajime Okita
- Department of Diagnostic Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Sadakatsu Ikeda
- Cancer Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 110-8510, Japan
| | - Hiromasa Takaishi
- Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| |
Collapse
|
18
|
Tian Y, Arai E, Makiuchi S, Tsuda N, Kuramoto J, Ohara K, Takahashi Y, Ito N, Ojima H, Hiraoka N, Gotoh M, Yoshida T, Kanai Y. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas. J Cancer Res Clin Oncol 2020; 146:2461-2477. [PMID: 32685988 PMCID: PMC7467955 DOI: 10.1007/s00432-020-03298-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of this study was to investigate DNA methylation alterations in non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinomas (HCCs). METHODS Genome-wide DNA methylation analysis was performed using the Infinium Human Methylation 450 K BeadChip, and levels of mRNA expression were analyzed by quantitative reverse transcription-PCR. RESULTS Compared to 36 samples of normal control liver tissue (C), DNA methylation alterations were observed on 19,281 probes in 22 samples of cancerous tissue (T) obtained from patients showing histological features compatible with NASH in their non-cancerous liver tissue (N). Among those probes, 1396 were located within CpG islands or their shores and shelves, designed around the transcription start sites of 726 genes. In representative genes, such as DCAF4L2, CKLF, TRIM4, PRC1, UBE2C and TUBA1B, both DNA hypomethylation and mRNA overexpression were observed in T samples relative to C samples, and the levels of DNA methylation and mRNA expression were inversely correlated with each other. DNA hypomethylation occurred even in N samples at the precancerous NASH stage, and this was inherited by or further strengthened in T samples. DNA hypomethylation of DCAF4L2, CKLF and UBE2C was observed in both NASH-related and viral hepatitis-related HCCs, whereas that of TRIM4, PRC1 and TUBA1B occurred in a NASH-related HCC-specific manner. DNA hypomethylation and/or mRNA overexpression of these genes was frequently associated with the necroinflammatory grade of NASH and was correlated with poorer tumor differentiation. CONCLUSION DNA methylation alterations may occur under the necroinflammatory conditions characteristic of NASH and participate in NASH-related hepatocarcinogenesis through aberrant expression of tumor-related genes.
Collapse
Affiliation(s)
- Ying Tian
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Satomi Makiuchi
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd, Tokyo, 105-6215, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyoshi Hiraoka
- Pathology Division, Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
19
|
Saotome K, Chiyoda T, Aimono E, Nakamura K, Tanishima S, Nohara S, Okada C, Hayashi H, Kuroda Y, Nomura H, Susumu N, Iwata T, Yamagami W, Kataoka F, Nishihara H, Aoki D. Clinical implications of next-generation sequencing-based panel tests for malignant ovarian tumors. Cancer Med 2020; 9:7407-7417. [PMID: 32813918 PMCID: PMC7571820 DOI: 10.1002/cam4.3383] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/29/2022] Open
Abstract
Precision medicine based on cancer genomics is being applied in clinical practice. However, patients do not always derive benefits from genomic testing. Here, we performed targeted amplicon exome sequencing‐based panel tests, including 160 cancer‐related genes (PleSSision‐160), on 88 malignant ovarian tumors (high‐grade serous carcinoma, 27; endometrioid carcinoma, 15; clear cell carcinoma, 30; mucinous carcinoma, 6; undifferentiated carcinoma, 4; and others, 6 (immature teratoma, 1; carcinosarcoma, 3; squamous cell carcinoma, 1; and mixed, 1)), to assess treatment strategies and useful biomarkers for malignant ovarian tumors. Overall, actionable gene variants were found in 90.9%, and druggable gene variants were found in 40.9% of the cases. Actionable BRCA1 and BRCA2 variants were found in 4.5% of each of the cases. ERBB2 amplification was found in 33.3% of mucinous carcinoma cases. Druggable hypermutation/ultramutation (tumor mutation burden ≥ 10 SNVs/Mbp) was found in 7.4% of high‐grade serous carcinoma, 46.7% of endometrioid carcinoma, 10% of clear cell carcinoma, 0% of mucinous carcinoma, 25% of undifferentiated carcinoma, and 33.3% of the other cancer cases. Copy number alterations were significantly higher in high‐grade serous carcinoma (P < .005) than in other histologic subtypes; some clear cell carcinoma showed high copy number alterations that were correlated with advanced stage (P < .05) and worse survival (P < .01). A high count of copy number alteration was associated with worse survival in all malignant ovarian tumors (P < .05). Our study shows that targeted agents can be detected in approximately 40% of malignant ovarian tumors via multigene panel testing, and copy number alteration count can be a useful marker to help assess risks in malignant ovarian tumor patients.
Collapse
Affiliation(s)
- Keiko Saotome
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Shigeki Tanishima
- Department of Biomedical Informatics Development, Mitsubishi Space Software Co., Ltd, Amagasaki, Japan
| | - Sachio Nohara
- Department of Biomedical Informatics Development, Mitsubishi Space Software Co., Ltd, Amagasaki, Japan
| | - Chihiro Okada
- Department of Biomedical Informatics Development, Mitsubishi Space Software Co., Ltd, Amagasaki, Japan
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Yuka Kuroda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Nobuyuki Susumu
- Department of Obstetrics and Gynecology, International University of Health and Welfare, School of Medicine, Narita, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Wataru Yamagami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Fumio Kataoka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Paço A, de Bessa Garcia SA, Freitas R. Methylation in HOX Clusters and Its Applications in Cancer Therapy. Cells 2020; 9:cells9071613. [PMID: 32635388 PMCID: PMC7408435 DOI: 10.3390/cells9071613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
HOX genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior–posterior axis. In postembryonic life, HOX gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting HOX gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the HOX gene sequence or in HOX-associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient’s treatment. The methylation of some HOX genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Collapse
Affiliation(s)
- Ana Paço
- Centre Bio: Bioindustries, Biorefineries and Bioproducts, BLC3 Association—Technology and Innovation Campus, 3405-169 Oliveira do Hospital, Portugal;
| | | | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
21
|
Fujimoto M, Arai E, Tsumura K, Yotani T, Yamada Y, Takahashi Y, Maeshima AM, Fujimoto H, Yoshida T, Kanai Y. Establishment of diagnostic criteria for upper urinary tract urothelial carcinoma based on genome-wide DNA methylation analysis. Epigenetics 2020; 15:1289-1301. [PMID: 32498593 PMCID: PMC7678936 DOI: 10.1080/15592294.2020.1767374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to develop a less invasive and accurate diagnostic system for upper urinary tract urothelial carcinoma (UTUC) based on genome-wide DNA methylation profiling. Genome-wide DNA methylation screening was performed using the Infinium HumanMethylation450 BeadChip, and DNA methylation quantification was verified using pyrosequencing. We analysed 26 samples of normal control urothelial tissue (C), an initial cohort of 62 samples (31 samples of non-cancerous urothelium [N] from UTUC patients and 31 samples of the corresponding UTUCs), a validation cohort of 82 samples (41 N and 41 UTUC samples), and 14 samples of urinary bladder urothelial carcinoma (BUC). In the initial cohort, we identified 2,448 CpG sites showing significant differences in DNA methylation levels between both C and UTUC and N and UTUC, but not showing differences between C and N. Among these CpG sites, 10 were located within CpG islands or their shores and shelves included in genomic domains where DNA methylation levels are stably controlled, allowing discrimination of UTUC even from BUC. Receiver operating characteristic curve analysis for discrimination of UTUC from N in these 10 CpG and neighbouring sites (37 diagnostic panels in total) yielded area under the curve values of 0.959-1.000, with a sensitivity and specificity of 86.6-100% and 93.5-100%, respectively. The diagnostic impact was successfully confirmed in the validation cohort. Our criteria were useful for diagnosis of UTUC, regardless of its clinicopathological features. Application of our criteria to voided urine samples will ultimately allow non-invasive DNA methylation diagnosis of UTUC.
Collapse
Affiliation(s)
- Mao Fujimoto
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| | - Koji Tsumura
- Department of Urology, Graduate School of Medicine, the University of Tokyo , Tokyo, Japan
| | - Takuya Yotani
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd ., Ryugasaki, Japan
| | - Yuriko Yamada
- Tsukuba Research Institute, Research and Development Division, Sekisui Medical Co., Ltd ., Ryugasaki, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd ., Tokyo, Japan
| | - Akiko Miyagi Maeshima
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital , Tokyo, Japan
| | - Hiroyuki Fujimoto
- Department of Urology, National Cancer Center Hospital , Tokyo, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute , Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine , Tokyo, Japan
| |
Collapse
|