1
|
Du R, Zhou Z, Huang Y, Li K, Guo K, Han L, Bian H. Chaperonin-containing TCP-1 subunit genes are potential prognostic biomarkers and are correlated with Th2 cell infiltration in lung adenocarcinoma: An observational study. Medicine (Baltimore) 2024; 103:e38387. [PMID: 39259093 PMCID: PMC11142841 DOI: 10.1097/md.0000000000038387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/06/2024] [Accepted: 05/07/2024] [Indexed: 09/12/2024] Open
Abstract
A family of molecular chaperone complexes called chaperonin-containing T-complex protein 1 (TCP-1) subunit genes (CCTs) aids in the folding of numerous proteins. With regard to lung adenocarcinoma (LUAD), this study provided a thorough understanding of the diagnostic and prognostic use of CCTs. The expression of CCTs in LUAD was evaluated by using databases including UALCAN and the Gene Expression Omnibus. Immunohistochemistry (IHC) was conducted to validate the expression of CCTs in LUAD. The mutation in the CCTs was identified through the cBioPortal database, while promoter methylation was measured by the UALCAN database. The prognostic value of CCTs was evaluated using the PrognoScan analysis. The GEPIA2.0 database was used to measure the prognostic value of CCTs and associated Hub genes. Correlation analysis between CCTs expression in LUAD was based on the GEPIA2.0 database. The ROC curves, clinical correlation analysis, gene ontology, Kyoto Encyclopedia of Genes and Genome analysis, and immune cell infiltration analysis were downloaded from The Cancer Genome Atlas database and then analyzed and visualized using the R language. The STRING database was used for protein-protein interaction analysis. Upregulation of CCTs expression in patients with LUAD indicated advanced diseases and a poor prognosis. ROC curve analysis revealed that the CCTs may serve as diagnostic indicators. The functional enrichment analysis showed that CCTs were involved in the mitosis-mediated cell cycle process. Additionally, 10 hub genes associated with CCTs that were linked to LUAD prognosis and tumor progression were identified. Immune cell infiltration analysis showed that CCTs expression in tumor tissues tends to be related to T helper type 2 cell infiltration. This study revealed that CCTs may serve as valuable biomarkers for the diagnosis and targeted therapy of LUAD.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Zijun Zhou
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Yunlong Huang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Kelei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan Province, PR China
| |
Collapse
|
2
|
Yu SK, Yu T, Wang YM, Sun A, Liu J, Lu KH. CCT6A facilitates lung adenocarcinoma progression and glycolysis via STAT1/HK2 axis. J Transl Med 2024; 22:460. [PMID: 38750462 PMCID: PMC11094951 DOI: 10.1186/s12967-024-05284-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Chaperonin Containing TCP1 Subunit 6 A (CCT6A) is a prominent protein involved in the folding and stabilization of newly synthesized proteins. However, its roles and underlying mechanisms in lung adenocarcinoma (LUAD), one of the most aggressive cancers, remain elusive. METHODS Our study utilized in vitro cell phenotype experiments to assess CCT6A's impact on the proliferation and invasion capabilities of LUAD cell lines. To delve into CCT6A's intrinsic mechanisms affecting glycolysis and proliferation in lung adenocarcinoma, we employed transcriptomic sequencing and liquid chromatography-mass spectrometry analysis. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (CHIP) assays were also conducted to substantiate the mechanism. RESULTS CCT6A was found to be significantly overexpressed in LUAD and associated with a poorer prognosis. The silencing of CCT6A inhibited the proliferation and migration of LUAD cells and elevated apoptosis rates. Mechanistically, CCT6A interacted with STAT1 protein, forming a complex that enhances the stability of STAT1 by protecting it from ubiquitin-mediated degradation. This, in turn, facilitated the transcription of hexokinase 2 (HK2), a critical enzyme in aerobic glycolysis, thereby stimulating LUAD's aerobic glycolysis and progression. CONCLUSION Our findings reveal that the CCT6A/STAT1/HK2 axis orchestrated a reprogramming of glucose metabolism and thus promoted LUAD progression. These insights position CCT6A as a promising candidate for therapeutic intervention in LUAD treatment.
Collapse
Affiliation(s)
- Shao-Kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Ming Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Zeng C, Han S, Pan Y, Huang Z, Zhang B, Zhang B. Revisiting the chaperonin T-complex protein-1 ring complex in human health and disease: A proteostasis modulator and beyond. Clin Transl Med 2024; 14:e1592. [PMID: 38363102 PMCID: PMC10870801 DOI: 10.1002/ctm2.1592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Disrupted protein homeostasis (proteostasis) has been demonstrated to facilitate the progression of various diseases. The cytosolic T-complex protein-1 ring complex (TRiC/CCT) was discovered to be a critical player in orchestrating proteostasis by folding eukaryotic proteins, guiding intracellular localisation and suppressing protein aggregation. Intensive investigations of TRiC/CCT in different fields have improved the understanding of its role and molecular mechanism in multiple physiological and pathological processes. MAIN BODY In this review, we embark on a journey through the dynamic protein folding cycle of TRiC/CCT, unraveling the intricate mechanisms of its substrate selection, recognition, and intriguing folding and assembly processes. In addition to discussing the critical role of TRiC/CCT in maintaining proteostasis, we detail its involvement in cell cycle regulation, apoptosis, autophagy, metabolic control, adaptive immunity and signal transduction processes. Furthermore, we meticulously catalogue a compendium of TRiC-associated diseases, such as neuropathies, cardiovascular diseases and various malignancies. Specifically, we report the roles and molecular mechanisms of TRiC/CCT in regulating cancer formation and progression. Finally, we discuss unresolved issues in TRiC/CCT research, highlighting the efforts required for translation to clinical applications, such as diagnosis and treatment. CONCLUSION This review aims to provide a comprehensive view of TRiC/CCT for researchers to inspire further investigations and explorations of potential translational possibilities.
Collapse
Affiliation(s)
- Chenglong Zeng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Binhao Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Clinical Medical Research Center of Hepatic Surgery at Hubei ProvinceWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreatic‐Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Organ Transplantation, Ministry of EducationWuhanChina
- Key Laboratory of Organ Transplantation, National Health CommissionWuhanChina
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhanChina
| |
Collapse
|
4
|
Xia X, Zhao S, Chen W, Xu C, Zhao D. CCT6A promotes esophageal squamous cell carcinoma cell proliferation, invasion and epithelial-mesenchymal transition by activating TGF-β/Smad/c-Myc pathway. Ir J Med Sci 2023; 192:2653-2660. [PMID: 37017854 DOI: 10.1007/s11845-023-03357-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVE Chaperonin-containing TCP1 subunit 6A (CCT6A) facilitates several malignant cancer behaviors, but its regulation of esophageal squamous cell carcinoma (ESCC) has not been reported. This study aimed to investigate the effect of CCT6A on cell proliferation, apoptosis, invasion and epithelial-mesenchymal transition (EMT) and its interaction with the TGF-β/Smad/c-Myc pathway in ESCC. METHODS CCT6A expression was detected in ESCC and normal esophageal epithelial cell lines by RT‒qPCR and western blotting. Furthermore, CCT6A siRNA, negative control (NC) siRNA, CCT6A encoding plasmid and NC encoding plasmid were transfected into OE21 and TE-1 cells. Subsequently, CCT6A siRNA- and NC siRNA-transfected cells were treated with TGF-β for rescue experiments. Cell proliferation, apoptosis, invasion, and E-cadherin/N-cadherin and p-Smad2/p-Smad3/c-Myc expression were detected. RESULTS CCT6A expression was increased in KYSE-180, TE-1, TE-4 and OE21 cells compared with HET-1A cells. In both OE21 and TE-1 cells, CCT6A knockdown inhibited cell proliferation, invasion and N-cadherin expression while promoting cell apoptosis and E-cadherin expression; meanwhile, CCT6A overexpression had the opposite effects. Furthermore, in both OE21 and TE-1 cells, CCT6A knockdown decreased p-Smad2/Smad2, p-Smad3/Smad3 and c-Myc/GAPDH expression; CCT6A overexpression had the opposite effects. Next, TGF-β facilitated cell proliferation, invasion, and N-cadherin, p-Smad2/Smad2, p-Smad3/Smad2 and c-Myc/GAPDH expression while repressing cell apoptosis and E-cadherin expression in OE21 and TE-1 cells; importantly, TGF-β could compensate for the regulation of CCT6A knockdown on these activities. CONCLUSION CCT6A facilitates ESCC malignant activities by activating the TGF-β/Smad/c-Myc pathway, which sheds light on the identification of a possible therapeutic target in the management of ESCC.
Collapse
Affiliation(s)
- Xiuli Xia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
- Department of Gastroenterology, Handan Central Hospital, Handan, 056001, China
| | - Shushan Zhao
- Department of Gastroenterology, Handan Central Hospital, Handan, 056001, China
| | - Wenting Chen
- Department of Endoscopy Center, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, China
| | - Chao Xu
- Department of Gastroenterology, Handan Central Hospital, Handan, 056001, China
| | - Dongqiang Zhao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
5
|
Qiao H, Li H. PLP2 Could Be a Prognostic Biomarker and Potential Treatment Target in Glioblastoma Multiforme. Pharmgenomics Pers Med 2023; 16:991-1009. [PMID: 37964785 PMCID: PMC10642424 DOI: 10.2147/pgpm.s425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Objective This study aimed to discern the association between PLP2 expression, its biological significance, and the extent of immune infiltration in human GBM. Methods Utilizing the GEPIA2 and TCGA databases, we contrasted the expression levels of PLP2 in GBM against normal tissue. We utilized GEPIA2 and LinkedOmics for survival analysis, recognized genes co-expressed with PLP2 via cBioPortal and GEPIA2, and implemented GO and KEGG analyses. The STRING database facilitated the construction of protein-protein interaction networks. We evaluated the relationship of PLP2 with tumor immune infiltrates using ssGSEA and the TIMER 2.0 database. An IHC assay assessed PLP2 and PDL-1 expression in GBM tissue, and the Drugbank database aided in identifying potential PLP2-targeting compounds. Molecular docking was accomplished using Autodock Vina 1.2.2. Results PLP2 expression was markedly higher in GBM tissues in comparison to normal tissues. High PLP2 expression correlated with a decrease in overall survival across two databases. Functional analyses highlighted a focus of PLP2 functions within leukocyte. Discrepancies in PLP2 expression were evident in immune infiltration, impacting CD4+ T cells, neutrophils, myeloid dendritic cells, and macrophages. There was a concomitant increase in PLP2 and PD-L1 expression in GBM tissues, revealing a link between the two. Molecular docking with ethosuximide and praziquantel yielded scores of -7.441 and -4.295 kcal/mol, correspondingly. Conclusion PLP2's upregulation in GBM may adversely influence the lifespan of GBM patients. The involvement of PLP2 in pathways linked to leukocyte function is suggested. The positive correlation between PLP2 and PD-L1 could provide insights into PLP2's role in glioma modulation. Our research hints at PLP2's potential as a therapeutic target for GBM, with ethosuximide and praziquantel emerging as potential treatment candidates, especially emphasizing the potential of these compounds in GBM treatment targeting PLP2.
Collapse
Affiliation(s)
- Hao Qiao
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| | - Huanting Li
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
6
|
Zheng L, Chen X, Zhang L, Qin N, An J, Zhu J, Jin H, Tuo B. A potential tumor marker: Chaperonin containing TCP‑1 controls the development of malignant tumors (Review). Int J Oncol 2023; 63:106. [PMID: 37539774 PMCID: PMC10552740 DOI: 10.3892/ijo.2023.5554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Due to concealment, high invasiveness and a lack of indicators, malignant tumors have emerged as one of the deadliest diseases worldwide and their incidence is rising yearly. Research has revealed that the chaperonin family member, chaperonin containing TCP‑1 (CCT), serves a crucial role in malignant tumors. CCT is involved in the growth of numerous malignant tumors such as lung cancer, breast cancer, hepatocellular carcinoma and colorectal cancer and assists the folding of a number of proteins linked to cancer, such as KRAS, p53 and STAT3. According to clinical data, CCT is highly expressed in a range of tumor cells and is associated with poor patient prognosis. In addition, through controlling the cell cycle or interacting with other proteins (including YAP1, HoXB2 and SMAD2), CCT has an effect on the proliferation, invasion and migration of cancer cells. As a result, it is possible that CCT will become a new tumor marker or therapeutic target, which will provide some guidance for early tumor screening or late tumor prognosis. In the present review, the molecular properties of CCT are introduced, alongside a summary of its interactions with other cancer‑related proteins and a discussion of its function in common malignant tumors. It is expected that the present review will offer fresh approaches to the treatment of cancer.
Collapse
Affiliation(s)
- Liming Zheng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Xingyue Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Nannan Qin
- Department of Critical Care Medicine of the First People's Hospital of Zunyi (The Third Affiliated Hospital), Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003
| |
Collapse
|
7
|
Chaperonin containing TCP1 as a marker for identification of circulating tumor cells in blood. PLoS One 2022; 17:e0264651. [PMID: 35749519 PMCID: PMC9232171 DOI: 10.1371/journal.pone.0264651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Herein we report the use of Chaperonin-Containing TCP-1 (CCT or TRiC) as a marker to detect circulating tumor cells (CTCs) that are shed from tumors during oncogenesis. Most detection methods used in liquid biopsy approaches for enumeration of CTCs from blood, employ epithelial markers like cytokeratin (CK). However, such markers provide little information on the potential of these shed tumor cells, which are normally short-lived, to seed metastatic sites. To identify a marker that could go beyond enumeration and provide actionable data on CTCs, we evaluated CCT. CCT is a protein-folding complex composed of eight subunits. Previously, we found that expression of the second subunit (CCT2 or CCTβ) inversely correlated with cancer patient survival and was essential for tumorigenesis in mice, driving tumor-promoting processes like proliferation and anchorage-independent growth. In this study, we examined CCT2 expression in cancer compared to normal tissues and found statistically significant increases in tumors. Because not all blood samples from cancer patients contain detectable CTCs, we used the approach of spiking a known number of cancer cells into blood from healthy donors to test a liquid biopsy approach using CCT2 to distinguish rare cancer cells from the large number of non-cancer cells in blood. Using a clinically validated method for capturing CTCs, we evaluated detection of intracellular CCT2 staining for visualization of breast cancer and small cell lung (SCLC) cancer cells. We demonstrated that CCT2 staining could be incorporated into a CTC capture and staining protocol, providing biologically relevant information to improve detection of cancer cells shed in blood. These results were confirmed with a pilot study of blood from SCLC patients. Our studies demonstrate that detection of CCT2 could identify rare cancer cells in blood and has application in liquid biopsy approaches to enhance the use of minimally invasive methods for cancer diagnosis.
Collapse
|
8
|
Chen S, Tian Y, Ju A, Li B, Fu Y, Luo Y. Suppression of CCT3 Inhibits Tumor Progression by Impairing ATP Production and Cytoplasmic Translation in Lung Adenocarcinoma. Int J Mol Sci 2022; 23:ijms23073983. [PMID: 35409343 PMCID: PMC9000022 DOI: 10.3390/ijms23073983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins are highly expressed in various cancers and exert critical functions in tumor progression. However, their expression patterns and functions in lung adenocarcinoma (LUAD) remain largely unknown. We identified that chaperonin-containing T-complex protein-1 subunit 3 (CCT3) was highly expressed in LUAD cells and was positively correlated with LUAD malignancy in the clinical samples. Animal studies showed that silencing CCT3 dramatically inhibited tumor growth and metastasis of LUAD. Proliferation and migration were markedly suppressed in CCT3-deficient LUAD cells. Moreover, the knockdown of CCT3 promoted apoptosis and cell cycle arrest. Mechanistically, the function of glycolysis was significantly inhibited and the total intracellular ATP levels were reduced by at least 25% in CCT3-deficient cells. In addition, the knockdown of CCT3 decreased the protein translation and led to a significant reduction in eukaryotic translation initiation factor 3 (EIF3G) protein, which was identified as a protein that interacts with CCT3. Impaired protein synthesis and cell growth in EIF3G-deficient cells were consistent with those caused by CCT3 knockdown in LUAD cells. Taken together, our study demonstrated in multiple ways that CCT3 is a critical factor for supporting growth and metastasis of LUAD, and for the first time, its roles in maintaining intracellular ATP levels and cytoplasmic translation are reported. Our novel findings provide a potential therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shuohua Chen
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yang Tian
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Anji Ju
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Boya Li
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yan Fu
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
| | - Yongzhang Luo
- Cancer Biology Laboratory, School of Life Sciences, Tsinghua University, Beijing 100084, China; (S.C.); (Y.T.); (A.J.); (B.L.); (Y.F.)
- Beijing Key Laboratory for Protein Therapeutics, Tsinghua University, Beijing 100084, China
- The National Engineering Research Center for Protein Technology, Tsinghua University, Beijing 100084, China
- Correspondence:
| |
Collapse
|
9
|
Zhai C, Huff-Lonergan EJ, Lonergan SM, Nair MN. Housekeeping Proteins in Meat Quality Research: Are They Reliable Markers for Internal Controls in Western Blot? A Mini Review. MEAT AND MUSCLE BIOLOGY 2022. [DOI: 10.22175/mmb.11551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Advancements in technology and analytical methods enable researchers to explore the biochemical events that cause variation in meat quality. Among those, western blot techniques have been successfully used in identifying and quantifying the key proteins that have critical functions in the development of meat quality. Housekeeping proteins, like β-actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and tubulins are often used as internal controls in western blots to normalize the abundance of the protein of interest. However, there are increasing concerns about using housekeeping proteins for western blot normalization, as these proteins do not demonstrate any loading differences above the relatively small total protein loading amounts of 10μg. In addition, the interaction between these housekeeping proteins and programmed cell death processes highlights the concerns about using the housekeeping protein as the internal control in meat quality research. Moreover, recent proteomic research has indicated that the abundance of some housekeeping proteins, like β-actin, GAPDH, and tubulin, can be altered by preslaughter stress, dietary supplementation, sex, slaughter method, genotype, breed, aging period, muscle type, and muscle portion. Furthermore, these housekeeping proteins could have differential expression in meat with differing color stability, tenderness, and water holding capacity. Therefore, this review aims to examine the realities of using housekeeping proteins as the loading control in meat quality research and introduce some alternative methods that can be used for western blot normalization.
Collapse
Affiliation(s)
- Chaoyu Zhai
- Colorado State University Department of Animal Sciences
| | | | | | | |
Collapse
|
10
|
Barrón-Gallardo CA, Garcia-Chagollán M, Morán-Mendoza AJ, Delgadillo-Cristerna R, Martínez-Silva MG, Aguilar-Lemarroy A, Jave-Suárez LF. Transcriptomic Analysis of Breast Cancer Patients Sensitive and Resistant to Chemotherapy: Looking for Overall Survival and Drug Resistance Biomarkers. Technol Cancer Res Treat 2022; 21:15330338211068965. [PMID: 34981997 PMCID: PMC8733364 DOI: 10.1177/15330338211068965] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Worldwide breast cancer ranks first in mortality and incidence rates in women over 20 years old. Rather than one disease, breast cancer is a heterogeneous group of diseases that express distinct molecular profiles. Neoadjuvant chemotherapy is an important therapeutic strategy for breast cancer patients independently of their molecular subtype, with the drawback of resistance development. In addition, chemotherapy has adverse effects that combined with resistance could contribute to lower overall survival. Although great efforts have been made to find diagnostic and prognostic biomarkers for breast cancer and for response to targeted and immune therapy for this pathology, little has been explored regarding biomarkers of response to anthracyclines and taxanes based neoadjuvant chemotherapy. This work aimed to evaluate the molecular profile of patients who received neoadjuvant chemotherapy to identify differentially expressed genes (DEGs) that could be used as biomarkers of chemotherapy response and overall survival. Breast cancer patients who were candidates for neoadjuvant chemotherapy were enrolled in this study. After treatment and according to their pathological response, they were assigned as sensitive or resistant. To evaluate DEGs, Gene Ontology, Kyoto Encyclopedia Gene and Genome (KEGG), and protein–protein interactions, RNA-seq information from all patients was obtained by next-generation sequencing. A total of 1985 DEGs were found, and KEGG analysis indicated a great number of DEGs in metabolic pathways, pathways in cancer, cytokine–cytokine receptor interactions, and neuroactive ligand-receptor interactions. A selection of 73 DEGs was used further for an analysis of overall survival using the METABRIC study and the ductal carcinoma dataset of The Cancer Genome Atlas (TCGA) database. Nine DEGs correlated with overall survival, of which the subexpression of C1QTNF3, CTF1, OLFML3, PLA2R1, PODN, KRT15, HLA-A, and the overexpression of TUBB and TCP1 were found in resistant patients and related to patients with lower overall survival.
Collapse
Affiliation(s)
- Carlos A Barrón-Gallardo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Mariel Garcia-Chagollán
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | | | | | | | - Luis F Jave-Suárez
- 37767Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, Mexico
| |
Collapse
|
11
|
Xu WX, Song W, Jiang MP, Yang SJ, Zhang J, Wang DD, Tang JH. Systematic Characterization of Expression Profiles and Prognostic Values of the Eight Subunits of the Chaperonin TRiC in Breast Cancer. Front Genet 2021; 12:637887. [PMID: 33815471 PMCID: PMC8009990 DOI: 10.3389/fgene.2021.637887] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
Abstract
Background Chaperonin-containing TCP-1 (TRiC or CCT) was demonstrated to be involved in oncogenesis of cancers carcinogenesis and development of various malignancies. Increasing experimental evidence indicated that dysregulation of TRiC was implicated in the tumor progression of breast cancer (BCa). However, few definitive studies have addressed the diverse expression patterns and prognostic values of eight TRiC subunits. Thus, we aimed to investigate the clinical significance of TRiC subunit expression and prognostic values for their possible implications in diagnosis and treatment of BCa. Methods Based on updated public resources and comprehensive bioinformatics analysis, we used some online databases (e.g., UALCAN, GEPIA, cBioPortal, TIMER, BC-GenExMiner, metascape, and GeneMANIA) to comprehensively explore the expression levels and the prognostic effects of eight TRiC subunits in patients with BCa. Results The transcriptional levels of most subunits of the Chaperonin TRiC (CCT2, CCT3, CCT4, CCT5, CCT6A, and CCT7) were significantly elevated compared with normal breast tissues, whereas TCP1, CCT4, and CCT6B were lower in BCa tissues than in normal tissues. Besides, copy-number alterations (CNA) of eight TRiC subunits positively regulated their mRNA expressions. Furthermore, high mRNA expression of TCP1/CCT2/CCT4/CCT5/CCT6A/CCT7/CCT8 was significantly associated with poor overall survival (OS) in BCa patients. The eight subunits of the chaperonin TRiC was related to tumor purity and immune infiltration levels of BCa. Co-expression analysis showed CCT6B was negatively associated with other subunits of TRiC and other subunits of TRiC were positively correlated with each other. Additionally, TRiC and their interactive proteins were correlated with positive regulation of biological process, localization, and biological regulation. Conclusion This study systematically illustrated the expression profiles and distinct prognostic values of chaperonin TRiC in BCa, providing insights for further investigation of subunits of the chaperonin TRiC as novel therapeutic targets and potential prognostic biomarkers in BCa.
Collapse
Affiliation(s)
- Wen-Xiu Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Song
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meng-Ping Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Chimento A, De Luca A, Nocito MC, Sculco S, Avena P, La Padula D, Zavaglia L, Sirianni R, Casaburi I, Pezzi V. SIRT1 is involved in adrenocortical cancer growth and motility. J Cell Mol Med 2021; 25:3856-3869. [PMID: 33650791 PMCID: PMC8051751 DOI: 10.1111/jcmm.16317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/26/2022] Open
Abstract
Adrenocortical cancer (ACC) is a rare tumour with unfavourable prognosis, lacking an effective treatment. This tumour is characterized by IGF‐II (insulin‐like growth factor II) overproduction, aromatase and ERα (oestrogen receptor alpha) up‐regulation. Previous reports suggest that ERα expression can be regulated by sirt1 (sirtuin 1), a nicotinamide adenine dinucleotide (NAD+)‐dependent class III histone deacetylases that modulates activity of several substrates involved in cellular stress, metabolism, proliferation, senescence, protein degradation and apoptosis. Nevertheless, sirt1 can act as a tumour suppressor or oncogenic protein. In this study, we found that in H295R and SW13 cell lines, sirt1 expression is inhibited by sirtinol, a potent inhibitor of sirt1 activity. In addition, sirtinol is able to decrease ACC cell proliferation, colony and spheroids formation and to activate the intrinsic apoptotic mechanism. Particularly, we observed that sirtinol interferes with E2/ERα and IGF1R (insulin growth factor 1 receptor) pathways by decreasing receptors expression. Sirt1 involvement was confirmed by using a specific sirt1 siRNA. More importantly, we observed that sirtinol can synergize with mitotane, a selective adrenolitic drug, in inhibiting adrenocortical cancer cell growth. Collectively, our data reveal an oncogenic role for sirt1 in ACC and its targeting could implement treatment options for this type of cancer.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Marta Claudia Nocito
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sara Sculco
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Davide La Padula
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Lucia Zavaglia
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
13
|
Chang YX, Lin YF, Chen CL, Huang MS, Hsiao M, Liang PH. Chaperonin-Containing TCP-1 Promotes Cancer Chemoresistance and Metastasis through the AKT-GSK3β-β-Catenin and XIAP-Survivin Pathways. Cancers (Basel) 2020; 12:cancers12123865. [PMID: 33371405 PMCID: PMC7767469 DOI: 10.3390/cancers12123865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary CCT is a chaperonin that participates in folding intracellular proteins. We found that endogenously high expression of the subunit CCT-β is associated with a poorer chemotherapy response in clinical cancer patients. Using two cancer cell lines with higher CCT-β levels, a triple-negative breast cancer cell line MDA-MB-231 and a highly metastatic non-small-cell lung cancer cell line CL1-5, we demonstrated that upregulation of CCT-β expression correlated with chemoresistance and metastasis of these cancer cells in vitro and in vivo. Mechanistic studies allowed us to identify the AKT-GSK3β-β-catenin and XIAP-Survivin pathways promoted by CCT-β to account for the observations. The results provided by our studies are important for developing diagnostic and therapeutic strategies for combating CCT-β-overexpressed cancers. Abstract Chaperonin-containing TCP-1 (CCT) is a chaperonin composed of eight subunits that participates in intracellular protein folding. Here, we showed that increased levels of subunits of CCT, particularly CCT-β, were significantly correlated with lower survival rates for cancer patients. Endogenously high expression of CCT-β was found in cancer cell lines, such as the triple-negative breast cancer cell line MDA-MB-231 and the highly metastatic non-small-cell lung cancer cell line CL1-5. Knocking down CCT-β in these cancer cells led to decreased levels of anti-apoptotic proteins, such as XIAP, as well as inhibited phosphorylation of Ser473-AKT and GSK3, resulting in decrease of the nucleus-entering form of β-catenin; these changes reduced the chemoresistance and migration/invasion of the cells. Conversely, overexpression of CCT-β recovered the chemoresistance and cell migration/invasion by promoting the AKT-GSK3β-β-catenin and XIAP-Survivin pathways. Coimmunoprecipitation data revealed that the CCT complex might directly bind and stabilize XIAP and β-catenin. This study not only elucidates the roles of CCT in chemoresistance and metastasis, which are two major obstacles for current cancer therapy, but also provides a possible therapeutic strategy against cancers with overexpressed CCT-β.
Collapse
Affiliation(s)
- Yun-Xun Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan;
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chi-Long Chen
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Pathology, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Po-Huang Liang
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan;
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
- Correspondence: ; Tel.: +886-2-3366-4069; Fax: +886-2-2363-5038
| |
Collapse
|
14
|
Associations of TIMP-3 Genetic Polymorphisms with EGFR Statuses and Cancer Clinicopathologic Development in Lung Adenocarcinoma Patients. Int J Mol Sci 2020; 21:ijms21218023. [PMID: 33126605 PMCID: PMC7662501 DOI: 10.3390/ijms21218023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
Lung adenocarcinoma (LADC) is a major subtype of lung cancer, particularly among populations of East Asia. The epidermal growth factor receptor (EGFR) is the most frequently mutated oncogene promoting LADC progression and can serve as a therapeutic target in LADC. The tissue inhibitor of metalloproteinases (TIMP)-3 is a major regulator of extracellular matrix turnover via targeting of matrix metalloproteinases (MMPs), and thus, plays a critical role in tumor development and progression. The purpose of this study was to investigate potential associations among TIMP-3 genetic polymorphisms, EGFR statuses, and cancer clinicopathologic development in patients with LADC. In this study, 277 LADC patients with different EGFR statuses were recruited to dissect the allelic discrimination of TIMP-3 -1296 T>C (rs9619311), TIMP3 249T>C (rs9862), and TIMP3 261C>T (rs11547635) polymorphisms using a TaqMan allelic discrimination assay. Our data showed that compared to those LADC patients with wild-type CC homozygotes of TIMP-3 rs9862, patients harboring TT homozygotes of rs9862 were at a higher risk of developing mutant EGFR (adjusted odds ratio (AOR) = 2.530; 95% confidence interval (CI): 1.230–5.205; p = 0.012), particularly the EGFR L858R point mutation (AOR = 2.975; 95% CI: 1.182–7.488; p = 0.021). Moreover, we observed that TIMP-3 TT homozygotes of rs9862 were correlated with the incidence of EGFR mutations in patients with a smoking habit (p = 0.045). Within male patients harboring a mutant EGFR, TIMP-3 rs9862 T (CT+TT) allele carriers were at higher risk of developing an advanced stage (p = 0.025) and lymph node metastasis (p = 0.043). Further analyses of clinical datasets revealed correlations of TIMP-3 expression with a favorable prognosis in patients with LADC. In conclusion, the data suggest that TIMP-3 rs9862 polymorphisms may contribute to identify subgroups of lung cancer patients at high risk for tumor progression, among carriers of LADC-bearing mutant EGFR.
Collapse
|
15
|
Qu H, Zhu F, Dong H, Hu X, Han M. Upregulation of CCT-3 Induces Breast Cancer Cell Proliferation Through miR-223 Competition and Wnt/β-Catenin Signaling Pathway Activation. Front Oncol 2020; 10:533176. [PMID: 33072568 PMCID: PMC7541898 DOI: 10.3389/fonc.2020.533176] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The clinical significance and the function of chaperonin-containing TCP1 complex 3 (CCT-3) in breast cancer remain unknown. In this study, we found that CCT-3 was markedly overexpressed in breast cancer tissues. Statistical analysis revealed a significant correlation of CCT-3 expression with advanced breast cancer clinical stage and poorer survival. Ablation of CCT-3 knocked down the proliferation and the tumorigenicity of breast cancer cells in vitro and in vivo. CCT-3 may regulate breast cancer cell proliferation through a ceRNA network between miR-223 and β-catenin, thus affecting Wnt/β-catenin signaling pathway activation. We also validated that CCT-3 and β-catenin are novel direct targets of tumor suppressor miR-223. Our results suggest that both mRNA and the protein levels of CCT-3 are potential diagnosis biomarkers and therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Hongbo Qu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Fang Zhu
- Department of Breast Health Center, The First People's Hospital of Chenzhou (South Hospital), Chenzhou, China
| | - Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Xiongqiang Hu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Chenzhou, Chenzhou, China
| | - Mingli Han
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Suppression of CCT3 inhibits the proliferation and migration in breast cancer cells. Cancer Cell Int 2020; 20:218. [PMID: 32518527 PMCID: PMC7275521 DOI: 10.1186/s12935-020-01314-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background CCT3 is a subunit of chaperonin-containing TCP-1 (CCT), which folds many proteins involved in cancer development and plays an important role in many cancers. However, the role of CCT3 in breast cancer is still unclear. Methods CCT3 expression was knocked down by transfecting breast cancer cells with lentiviral shRNA. The proliferation of breast cancer cells (HCC1937 and MDA-MB-231) was detected by Celigo image cytometry and MTT assay, the migration of the cells was measured by Transwell analysis, cell cycle distribution and apoptosis was detected by flow cytometry, and changes in signal transduction proteins were detected by western blot analysis. Results The expression of CCT3 was significantly suppressed by transduction with lentiviral shRNA; CCT3 knockdown significantly reduced the proliferation and metastasis ability of breast cancer cells (HCC 1937 and MDA-MB-231), increased the proportion of cells in S phase, and decreased the proportion of cells in G1 phase compared to those in shControl cells. There was no significant change in the number of cells in the G2/M phase. Apoptosis analysis showed that knockdown of CCT3 induced apoptosis in breast cancer cells. Western blot analysis showed that the expression of many signal transduction proteins was changed after suppression of CCT3. A rescue experiment showed that overexpression of NFκB-p65 rescued the cell proliferation and migration affected by CCT3 in breast cancer cells. Conclusion CCT3 is closely related to the proliferation and migration of breast cancer and may be a novel therapeutic target.
Collapse
|