1
|
Luo S, Li Z, Wang M, Liu Z, Wang D, Bai Y, Ge H, Yu Y, Yu Y, Chen W, Wang Y, Zhang C, Yu J, Song C, Lv C, Zhen Q, Han Y, Sun L. Genome wide association study and meta-analysis identified multiple new risk loci for freckles in 4813 Chinese individuals. Pigment Cell Melanoma Res 2024; 37:808-821. [PMID: 38970458 DOI: 10.1111/pcmr.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Freckle is a prevalent pigmentary dermatosis with an obvious hereditary component. Dozens of freckles risk loci have been discovered through research on multiple traits or other diseases, rather than as an independent trait. To discover novel variants associated with freckles, we performed GWAS and meta-analysis in 4813 Chinese individuals. We conducted GWAS and meta-analysis of two cohorts: 197 patients and 1603 controls (Cohort I), and 336 patients and 2677 controls (Cohort II), both from China. Then we performed linkage disequilibrium (LD) analysis, eQTL study, and enrichment analysis with association results for functional implications. Finally, we discovered 59 new SNPs and 13 novel susceptibility genes associated with freckles (Pmeta <5 × 10-8), which has enriched the genetic research on freckles.
Collapse
Affiliation(s)
- Sihan Luo
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Zhuo Li
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Minhao Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Zhili Liu
- Dalian Dermatosis Hospital, Dalian, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yuanming Bai
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Huiyao Ge
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yafen Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yanxia Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Weiwei Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Yirui Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Chang Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Jing Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | - Can Song
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
| | | | - Qi Zhen
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
| | - Yang Han
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
| | - Liangdan Sun
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China
- North China University of Science and Technology Affiliated Hospital Tangshan, Tangshan, China
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
2
|
Bonfiglio F, Lasorsa VA, Aievola V, Cantalupo S, Morini M, Ardito M, Conte M, Fragola M, Eva A, Corrias MV, Iolascon A, Capasso M. Exploring the role of HLA variants in neuroblastoma susceptibility through whole exome sequencing. HLA 2024; 103:e15515. [PMID: 38747019 DOI: 10.1111/tan.15515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 10/24/2024]
Abstract
Although a number of susceptibility loci for neuroblastoma (NB) have been identified by genome-wide association studies, it is still unclear whether variants in the HLA region contribute to NB susceptibility. In this study, we conducted a comprehensive genetic analysis of variants in the HLA region among 724 NB patients and 2863 matched controls from different cohorts. We exploited whole-exome sequencing data to accurately type HLA alleles with an ensemble approach on the results from three different typing tools, and carried out rigorous sample quality control to ensure a fine-scale ancestry matching. The frequencies of common HLA alleles were compared between cases and controls by logistic regression under additive and non-additive models. Population stratification was taken into account adjusting for ancestry-informative principal components. We detected significant HLA associations with NB. In particular, HLA-DQB1*05:02 (OR = 1.61; padj = 5.4 × 10-3) and HLA-DRB1*16:01 (OR = 1.60; padj = 2.3 × 10-2) alleles were associated to higher risk of developing NB. Conditional analysis highlighted the HLA-DQB1*05:02 allele and its residue Ser57 as key to this association. DQB1*05:02 allele was not associated to clinical features worse outcomes in the NB cohort. Nevertheless, a risk score derived from the allelic combinations of five HLA variants showed a substantial predictive value for patient survival (HR = 1.53; p = 0.032) that was independent from established NB prognostic factors. Our study leveraged powerful computational methods to explore WES data and HLA variants and to reveal complex genetic associations. Further studies are needed to validate the mechanisms of these interactions that contribute to the multifaceted pattern of factors underlying the disease initiation and progression.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | | | - Vincenzo Aievola
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Sueva Cantalupo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Martina Morini
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Ardito
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Massimo Conte
- U.O.C. Oncologia Pediatrica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Fragola
- Servizio di Epidemiologia e Biostatistica, Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandra Eva
- Direzione Scientifica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
- CEINGE Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| |
Collapse
|
3
|
Zhou Y, Tan F, Wang Z, Zhou G, Yuan C. The Pivotal Function of SLC16A1 and SLC16A1-AS1 in Cancer Progress: Molecular Pathogenesis and Prognosis. Mini Rev Med Chem 2024; 24:1685-1700. [PMID: 38616756 DOI: 10.2174/0113895575284780240327103039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
More than 300 membranes make up the SLC family of transporters, utilizing an ion gradient or electrochemical potential difference to move their substrates across biological membranes. The SLC16 gene family contains fourteen members. Proton-linked transportation of monocarboxylates can be promoted by the transporters MCT1, which the SLC16A1 gene family encodes. Glycolysis is constitutively up-regulated in cancer cells, and the amount of lactate produced as a result is correlated with prognosis. Further speaking, SLC16A1 plays an essential role in controlling the growth and spread of tumors, according to mounting evidence. Additionally, LncRNAs are the collective term for all genes that produce RNA transcripts longer than 200 nucleotides but do not convert into proteins. It has steadily developed into a hub for research, offering an innovative approach to tumor study as technology related to molecular biology advances. The growing study has uncovered SLC16A1-AS1, an RNA that acts as an antisense to SLC16A1, which is erroneously expressed in various types of cancers. Therefore, we compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. We compiled the most recent information on the physiological functions and underlying processes of SLC16A1 and the LncRNA SLC16A1-AS1 during tumor development to explore their impact on cancer treatment and prognosis. Relevant studies were retrieved and collected through the PubMed system. After determining SLC16A1 and SLC16A1-AS1 as the research object, we found a close relationship between SLC16A1 and tumorigenesis as well as the influencing factors through the analysis of the research articles. SLC16A1 regulates lactate chemotaxis while uncovering SLC16A1- AS1 as an antisense RNA acting through multiple pathways; they affect the metabolism of tumor cells and have an impact on the prognosis of patients with various cancers.
Collapse
Affiliation(s)
- Yunxi Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Fangshun Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Zhuowei Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Tichang 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Thirdgrade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
4
|
Hu J, Song F, Kang W, Xia F, Song Z, Wang Y, Li J, Zhao Q. Integrative analysis of multi-omics data for discovery of ferroptosis-related gene signature predicting immune activity in neuroblastoma. Front Pharmacol 2023; 14:1162563. [PMID: 37521469 PMCID: PMC10373597 DOI: 10.3389/fphar.2023.1162563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/02/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy for neuroblastoma remains unsatisfactory due to heterogeneity and weak immunogenicity. Exploring powerful signatures for the evaluation of immunotherapy outcomes remain the primary purpose. We constructed a ferroptosis-related gene (FRG) signature by least absolute shrinkage and selection operator and Cox regression, identified 10 independent prognostic FRGs in a training cohort (GSE62564), and then verified them in an external validation cohort (TCGA). Associated with clinical factors, the signature accurately predicts overall survival of 3, 5, and 10 years. An independent prognostic nomogram, which included FRG risk, age, stage of the International Neuroblastoma Staging System, and an MYCN status, was constructed. The area under the curves showed satisfactory prognostic predicting performance. Through bulk RNA-seq and proteomics data, we revealed the relationship between hub genes and the key onco-promoter MYCN gene and then validated the results in MYCN-amplified and MYCN-non-amplified cell lines with qRT-PCR. The FRG signature significantly divided patients into high- and low-risk groups, and the differentially expressed genes between the two groups were enriched in immune actions, autophagy, and carcinogenesis behaviors. The low-risk group embodied higher positive immune component infiltration and a higher expression of immune checkpoints with a more favorable immune cytolytic activity (CYT). We verified the predictive power of this signature with data from melanoma patients undergoing immunotherapy, and the predictive power was satisfactory. Gene mutations were closely related to the signature and prognosis. AURKA and PRKAA2 were revealed to be nodal hub FRGs in the signature, and both were shown to have significantly different expressions between the INSS stage IV and other stages after immunohistochemical validation. With single-cell RNA-seq analysis, we found that genes related to T cells were enriched in TNFA signaling and interferon-γ hallmark. In conclusion, we constructed a ferroptosis-related gene signature that can predict the outcomes and work in evaluating the effects of immunotherapy.
Collapse
Affiliation(s)
- Jiajian Hu
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengju Song
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjuan Kang
- Key Laboratory of Molecular Cancer Epidemiology, Department of Epidemiology and Biostatistics, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fantong Xia
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zi’an Song
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yangyang Wang
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jie Li
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Tianjin Key Laboratory of Cancer Prevention and Therapy, Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
5
|
Wenzel CK, von Montfort C, Ebbert L, Klahm NP, Reichert AS, Stahl W, Brenneisen P. The natural chalcone cardamonin selectively induces apoptosis in human neuroblastoma cells. Toxicol In Vitro 2023:105625. [PMID: 37268255 DOI: 10.1016/j.tiv.2023.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Neuroblastoma is the most common extracranial malignant tumor in childhood. Approximately 60% of all patients are classified as high-risk and require intensive treatment including non-selective chemotherapeutic agents leading to severe side effects. Recently, phytochemicals like the natural chalcone cardamonin (CD) have gained attention in cancer research. For the first time, we investigated the selective anti-cancer effects of CD in SH-SY5Y human neuroblastoma cells compared to healthy (normal) fibroblasts (NHDF). Our study revealed selective and dose-dependent cytotoxicity of CD in SH-SY5Y. The natural chalcone CD specifically altered the mitochondrial membrane potential (ΔΨm), as an early marker of apoptosis, in human neuroblastoma cells. Caspase activity was also selectively induced and the amount of cleaved caspase substrates such as PARP was thus increased in human neuroblastoma cells. CD-mediated apoptotic cell death was rescued by pan caspase inhibitor Z-VAD-FMK. The natural chalcone CD selectively induced apoptosis, the programmed cell death, in SH-SY5Y human neuroblastoma cells whereas NHDF being a model for normal (healthy) cells were unaffected. Our data indicates a clinical potential of CD in the more selective and less harmful treatment of neuroblastoma.
Collapse
Affiliation(s)
- Chantal-Kristin Wenzel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Ebbert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Niklas P Klahm
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Chen L, Li Y, Deng X. Comprehensive analysis of pan-cancer reveals the potential of SLC16A1 as a prognostic and immunological biomarker. Medicine (Baltimore) 2023; 102:e33242. [PMID: 36930112 PMCID: PMC10019278 DOI: 10.1097/md.0000000000033242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
SLC16A1 plays an important role in the development of multiple cancer types. Pan-cancer analysis may have significant impacts on the exploration of the relationship between SLC16A1 gene expression, prognosis and the molecular mechanisms of tumorigenesis. In this study, through the analysis of TCGA and GEO datasets, we explored the expression level and survival prognosis of SLC16A1 in pan-cancer, and further explored the differences in SLC16A1 gene mutation, methylation, and phosphorylation between tumor and normal tissues. In addition, we focused on the biological function of this gene and the relationship between the prognosis and immune infiltration by immune infiltration analysis and enrichment analysis, in order to evaluate the diagnostic and prognostic significance of SLC16A1 in carcinomas. The study found that SLC16A1 was highly expressed in 14 kinds of tumors, and there were statistically significant differences in the prognosis of 9 tumors. The phosphorylation level of S467 increased in OV, RCC, and UCEC. There was a statistically negative correlation between the CD8+ T-cell infiltration level and the SLC16A1 expression in HNSC, LUSC, SARC, TGCT, and KIRC. The cancer-related fibroblasts were positively correlated with SLC16A1 expression in BLCA, BRCA, KIRC, KIRP, PAAD, PCPG, and THCA. The enrichment analysis indicated that the tumorigenesis mechanism of this gene was mainly related to "glycolysis and glucose metabolism synthesis." SLC16A1 was a promising prognostic and immunological biomarker in pan-cancer.
Collapse
Affiliation(s)
- Lingyun Chen
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, China
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Yang Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Xinna Deng
- Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
7
|
Langlois S, St-Pierre ME, Holland SH, Xiang X, Freeman E, Mohamed H, Dural AC, Hammad A, Karami S, van de Panne C, Cowan KN. Inhibition of PANX1 Channels Reduces the Malignant Properties of Human High-Risk Neuroblastoma. J Cancer 2023; 14:689-706. [PMID: 37056395 PMCID: PMC10088893 DOI: 10.7150/jca.79552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/03/2023] [Indexed: 04/15/2023] Open
Abstract
Pannexin 1 (PANX1) is expressed in many tissue types including tissues of neural origin. Neuroblastoma (NB) is a neural crest-derived malignancy mainly occurring in children. The majority of NB patients present with high-risk disease for which current therapies are ineffective. Here, we show that while PANX1 is expressed in NB of all stages, high PANX1 expression in high-risk NB is associated with a reduced survival probability. PANX1 channel inhibition using probenecid (PBN) or carbenoxolone (CBX) reduced the proliferation of our panel of high-risk NB cell lines. We show that expression of the Y10F PANX1 mutant, which cannot be phosphorylated on tyrosine 10 and acts in a dominant-negative manner, curtailed NB cell proliferation. Furthermore, PBN and CBX treatment halted the growth of NB spheroids and in some cases triggered the regression of established NB spheroids. Finally, both drugs reduced the progression of high-risk NB in vivo. Together our data indicate that PANX1 channels regulate human NB malignant properties and that the use of PBN or CBX may provide a new therapeutic approach for high-risk NB.
Collapse
Affiliation(s)
- Stéphanie Langlois
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Eve St-Pierre
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Stephen H. Holland
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Xiao Xiang
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Emily Freeman
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hisham Mohamed
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmet Cem Dural
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmed Hammad
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Sanaz Karami
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Chloé van de Panne
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Kyle N. Cowan
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
- ✉ Corresponding author: Dr. Kyle N. Cowan, Children's Hospital of Eastern Ontario, Pediatric General Surgery, 401 Smyth Rd, Room 3370, Ottawa, Ontario, K1H 8L1, Canada; E-mail: ; Phone: +1 613-737-7600 (ext. 2675); Fax: 613-738-4849
| |
Collapse
|
8
|
Bonfiglio F, Lasorsa VA, Cantalupo S, D'Alterio G, Aievola V, Boccia A, Ardito M, Furini S, Renieri A, Morini M, Stainczyk S, Westermann F, Paolella G, Eva A, Iolascon A, Capasso M. Inherited rare variants in homologous recombination and neurodevelopmental genes are associated with increased risk of neuroblastoma. EBioMedicine 2022; 87:104395. [PMID: 36493725 PMCID: PMC9732128 DOI: 10.1016/j.ebiom.2022.104395] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid extracranial paediatric tumour. Genome-wide association studies have driven the discovery of common risk variants, but no large study has investigated the contribution of rare variants to NB susceptibility. Here, we conducted a whole-exome sequencing (WES) of 664 NB cases and 822 controls and used independent validation datasets to identify genes with rare risk variants and involved pathways. METHODS WES was performed at 50× depth and variants were jointly called in cases and controls. We developed two models to identify mutations with high clinical impact (P/LP model) and to discover less penetrant risk mutations affecting non-canonical cancer pathways (RPV model). We performed a gene-level collapsing test using Firth's logistic regression in 242 selected cancer predisposition genes (CPGs) and a gene-sets burden analysis of biologically-informed pathways. FINDINGS Twelve percent of patients carried P/LP variants in CPGs and showed a significant enrichment (P = 2.3 × 10-4) compared to controls (6%). We identified P/LP variants in 45 CPGs enriched in homologous recombination (HR) pathway. The most P/LP enriched genes in NB were BRCA1, ALK and RAD51C. Additionally, we found higher RPV burden in gene-sets of neuron differentiation, neural tube development and synapse assembly, and in gene-sets associated with neurodevelopmental disorders (NDD). INTERPRETATION The high fraction of NB patients with P/LP variants indicates the need of genetic counselling. Furthermore, inherited rare variants predispose to NB development by affecting mechanisms related to HR and neurodevelopmental processes, and demonstrate that NDD genes are altered in NB at the germline level. FUNDING Associazione Italiana per la Ricerca sul Cancro, Fondazione Italiana per la Lotta al Neuroblastoma, Associazione Oncologia Pediatrica e Neuroblastoma, Regione Campania, Associazione Giulio Adelfio onlus, and Italian Health Ministry.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Vito Alessandro Lasorsa
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Giuseppe D'Alterio
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,European School of Medical Medicine, University of Milan, Milan, Italy
| | - Vincenzo Aievola
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Martina Ardito
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Alessandra Renieri
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Sabine Stainczyk
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Frank Westermann
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Alessandra Eva
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy,Corresponding author. Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Via Gaetano Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
9
|
Jung EM, Johnson RA, Hubbard AK, Spector LG. Exploration of genetic ancestry and socioeconomic status in the incidence of neuroblastoma: An ecological study. Pediatr Blood Cancer 2022; 69:e29571. [PMID: 35107882 DOI: 10.1002/pbc.29571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 11/08/2022]
Abstract
Although global differences in the incidence of neuroblastoma have been examined, the underlying mechanism has yet to be elucidated. Previous studies have suggested genetic ancestry and human development index (HDI) as contributing factors, but few studies have been conducted at the international level. Here, we aimed to examine whether the frequency of common genomic variation associated with neuroblastoma can affect its risk at the ecological level with consideration of the HDI. Minor allele frequencies (MAFs) for 22 single-nucleotide polymorphisms (SNPs) were abstracted from the Geography of Genetic Variants Browser. The number of incident neuroblastomas for each population was obtained from the Cancer Incidence in Five Continents series. Further, population pseudo-polygenic risk scores (pp-PRSs) were calculated as a sum of MAFs at the population level, each of which was weighted by effect sizes from prior studies. Negative binomial regression was used to estimate the incidence rate ratios (IRRs) and the 95% confidence intervals (CIs) to examine whether differences in MAFs across the population influence the risk of neuroblastoma, with and without adjustment for HDI and whether pp-PRSs can be a predictor of the risk of neuroblastoma. Overall, our results indicated that the neuroblastoma risk associated with variation in SNP frequency could not be differentiated from that of HDI at the ecological level. Additionally, pp-PRSs were not significantly associated with the risk of neuroblastoma (IRR: 0.99, 95% CI: 0.62-1.60). Further study using individual-level data is warranted to minimize the bias related to the use of population-level data in this study.
Collapse
Affiliation(s)
- Eun Mi Jung
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rebecca A Johnson
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aubrey K Hubbard
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
10
|
Cimmino F, Montella A, Tirelli M, Avitabile M, Lasorsa VA, Visconte F, Cantalupo S, Maiorino T, De Angelis B, Morini M, Castellano A, Locatelli F, Capasso M, Iolascon A. FGFR1 is a potential therapeutic target in neuroblastoma. Cancer Cell Int 2022; 22:174. [PMID: 35488346 PMCID: PMC9052553 DOI: 10.1186/s12935-022-02587-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND FGFR1 regulates cell-cell adhesion and extracellular matrix architecture and acts as oncogene in several cancers. Potential cancer driver mutations of FGFR1 occur in neuroblastoma (NB), a neural crest-derived pediatric tumor arising in sympathetic nervous system, but so far they have not been studied experimentally. We investigated the driver-oncogene role of FGFR1 and the implication of N546K mutation in therapy-resistance in NB cells. METHODS Public datasets were used to predict the correlation of FGFR1 expression with NB clinical outcomes. Whole genome sequencing data of 19 paired diagnostic and relapse NB samples were used to find somatic mutations. In NB cell lines, silencing by short hairpin RNA and transient overexpression of FGFR1 were performed to evaluate the effect of the identified mutation by cell growth, invasion and cologenicity assays. HEK293, SHSY5Y and SKNBE2 were selected to investigate subcellular wild-type and mutated protein localization. FGFR1 inhibitor (AZD4547), alone or in combination with PI3K inhibitor (GDC0941), was used to rescue malignant phenotypes induced by overexpression of FGFR1 wild-type and mutated protein. RESULTS High FGFR1 expression correlated with low relapse-free survival in two independent NB gene expression datasets. In addition, we found the somatic mutation N546K, the most recurrent point mutation of FGFR1 in all cancers and already reported in NB, in one out of 19 matched primary and recurrent tumors. Loss of FGFR1 function attenuated invasion and cologenicity in NB cells, whereas FGFR1 overexpression enhanced oncogenicity. The overexpression of FGFR1N546K protein showed a higher nuclear localization compared to wild-type protein and increased cellular invasion and cologenicity. Moreover, N546K mutation caused the failure in response to treatment with FGFR1 inhibitor by activation of ERK, STAT3 and AKT pathways. The combination of FGFR1 and PI3K pathway inhibitors was effective in reducing the invasive and colonigenic ability of cells overexpressing FGFR1 mutated protein. CONCLUSIONS FGFR1 is an actionable driver oncogene in NB and a promising therapy may consist in targeting FGFR1 mutations in patients with therapy-resistant NB.
Collapse
Affiliation(s)
- Flora Cimmino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Annalaura Montella
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, 20122, Milan, Italy
| | - Marianna Avitabile
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | | | - Feliciano Visconte
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Sueva Cantalupo
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Teresa Maiorino
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy
| | - Biagio De Angelis
- Hematology/Oncology and Cell and Gene Therapy Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Franco Locatelli
- IRCCS Bambino Gesù Children's Hospital, Sapienza, University of Rome, 00165, Rome, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80145, Naples, Italy.
| |
Collapse
|
11
|
Cardinale A, Cantalupo S, Lasorsa VA, Montella A, Cimmino F, Succoio M, Vermeulen M, Baltissen MP, Esposito M, Avitabile M, Formicola D, Testori A, Bonfiglio F, Ghiorzo P, Scalvenzi M, Ayala F, Zambrano N, Iles MM, Xu M, Law MH, Brown KM, Iolascon A, Capasso M. Functional annotation and investigation of the 10q24.33 melanoma risk locus identifies a common variant that influences transcriptional regulation of OBFC1. Hum Mol Genet 2022; 31:863-874. [PMID: 34605909 PMCID: PMC9077268 DOI: 10.1093/hmg/ddab293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
The 10q24.33 locus is known to be associated with susceptibility to cutaneous malignant melanoma (CMM), but the mechanisms underlying this association have been not extensively investigated. We carried out an integrative genomic analysis of 10q24.33 using epigenomic annotations and in vitro reporter gene assays to identify regulatory variants. We found two putative functional single nucleotide polymorphisms (SNPs) in an enhancer and in the promoter of OBFC1, respectively, in neural crest and CMM cells, one, rs2995264, altering enhancer activity. The minor allele G of rs2995264 correlated with lower OBFC1 expression in 470 CMM tumors and was confirmed to increase the CMM risk in a cohort of 484 CMM cases and 1801 controls of Italian origin. Hi-C and chromosome conformation capture (3C) experiments showed the interaction between the enhancer-SNP region and the promoter of OBFC1 and an isogenic model characterized by CRISPR-Cas9 deletion of the enhancer-SNP region confirmed the potential regulatory effect of rs2995264 on OBFC1 transcription. Moreover, the presence of G-rs2995264 risk allele reduced the binding affinity of the transcription factor MEOX2. Biologic investigations showed significant cell viability upon depletion of OBFC1, specifically in CMM cells that were homozygous for the protective allele. Clinically, high levels of OBFC1 expression associated with histologically favorable CMM tumors. Finally, preliminary results suggested the potential effect of decreased OBFC1 expression on telomerase activity in tumorigenic conditions. Our results support the hypothesis that reduced expression of OBFC1 gene through functional heritable DNA variation can contribute to malignant transformation of normal melanocytes.
Collapse
Affiliation(s)
- Antonella Cardinale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | - Vito Alessandro Lasorsa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | - Annalaura Montella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | | | | | - Michiel Vermeulen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Matteo Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
| | - Marianna Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | - Daniela Formicola
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
- SOC Genetica Medica, Azienda Ospedaliera Universitaria Meyer, Firenze 50139, Italy
| | - Alessandro Testori
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
| | - Ferdinando Bonfiglio
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
- Dipartimento di Ingegneria chimica, dei Materiali e della Produzione industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Paola Ghiorzo
- Genetica dei Rumori Rari, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche, Università degli Studi di Genova, Genova, Italy
| | - Massimiliano Scalvenzi
- Dipartimento di Medicina clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples 80136, Italy
| | - Fabrizio Ayala
- Department of Melanoma and Cancer Immunotherapy, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | - Mark M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Mai Xu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute Brisbane, Queensland 4006, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin M Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples 80136, Italy
- CEINGE Biotecnologie Avanzate, Naples 80145, Italy
| |
Collapse
|
12
|
Lasorsa VA, Montella A, Cantalupo S, Tirelli M, de Torres C, Aveic S, Tonini GP, Iolascon A, Capasso M. Somatic mutations enriched in cis-regulatory elements affect genes involved in embryonic development and immune system response in neuroblastoma. Cancer Res 2022; 82:1193-1207. [PMID: 35101866 DOI: 10.1158/0008-5472.can-20-3788] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/04/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
Noncoding cis-regulatory variants have gained interest as cancer drivers, yet progress in understanding their significance is hindered by the numerous challenges and limitations of variant prioritization. To overcome these limitations, we focused on active cis-regulatory elements (aCRE) in order to design a customized panel for the deep sequencing of 56 neuroblastoma tumor and normal DNA sample pairs. In order to search for driver mutations, aCREs were defined by reanalysis of H3K27ac ChiP-seq peaks in 25 neuroblastoma cell lines. These regulatory genomic regions were tested for an excess of somatic mutations and assessed for statistical significance using a global approach that accounted for chromatin accessibility and replication timing. Additional validation was provided by whole genome sequence analysis of 151 neuroblastomas. Analysis of Hi-C data determined the presence of candidate target genes interacting with mutated regions. An excess of somatic mutations in aCREs of diverse genes were identified, including IPO7, HAND2, and ARID3A. CRISPR-Cas9 editing was utilized to assess the functional consequences of mutations in the IPO7 aCRE. Patients with noncoding mutations in aCREs showed inferior overall and event-free survival independent of age at diagnosis, stage, risk stratification, and MYCN status. Expression of aCRE-interacting genes correlated strongly with negative prognostic markers and low survival rates. Moreover, a convergence between the biological functions of aCRE target genes and transcription factors with mutated binding motifs was associated with embryonic development and immune system response. Overall, this strategy enabled the identification of somatic mutations in regulatory elements that collectively promote neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Vito Alessandro Lasorsa
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II
| | - Annalaura Montella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, CEINGE Biotecnologie Avanzate
| | | | | | - Carmen de Torres
- Developmental Tumor Biology Laboratory and Department of Oncology, Hospital Sant Joan de Déu Barcelona
| | - Sanja Aveic
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Citta della Speranza
| | | | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II
| |
Collapse
|
13
|
Li Y, Lu T, Wang J, Zhuo Z, Miao L, Yang Z, Zhang J, Cheng J, Zhou H, Li S, Li L, He J, Li A. YTHDC1 gene polymorphisms and neuroblastoma susceptibility in Chinese children. Aging (Albany NY) 2021; 13:25426-25439. [PMID: 34897032 PMCID: PMC8714171 DOI: 10.18632/aging.203760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial tumor in children. YTHDC1, a member of RNA methylation modification binding proteins, plays critical roles in tumor occurrence and metastasis. However, it is unclear whether YTHDC1 gene polymorphisms are related to NB susceptibility. Herein, we aimed to evaluate the association between YTHDC1 gene polymorphisms (rs2293596 T>C, rs2293595 T>C, rs3813832 T>C) and susceptibility of NB by logistic regression models. In this eight-center case-control study, 898 patients with NB and 1734 healthy controls were genotyped by TaqMan assay. The results showed that rs3813832 TC genotype could significantly reduce the susceptibility of NB compared with the TT genotype [adjusted odds ratio (AOR) = 0.81, 95% confidence interval (CI) = 0.68-0.96, P = 0.018]. Combined genotype analysis revealed that individuals with 3 protective genotypes had a prominently lower NB risk than those with 0-2 protective genotypes (AOR = 0.80, 95% CI = 0.68-0.94, P = 0.006). The stratified analysis also demonstrated the protective effect of rs3813832 TC/CC and 3 protective genotypes in certain subgroups. Further functional experiments revealed that YTHDC1 siRNA-554, targeting the area near the rs3813832 T>C polymorphism site, could observably inhibit the proliferation and migration of NB cells. In conclusion, our findings highlight the involvement of YTHDC1 gene and its genetic variants in the etiology of NB.
Collapse
Affiliation(s)
- Yong Li
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
- Department of Pediatric Surgery, Hunan Children’s Hospital, Changsha 410004, Hunan, China
| | - Tongyi Lu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jian Wang
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lei Miao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan 030013, Shannxi, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming 650228, Yunnan, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Aiwu Li
- Department of Pediatric Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
14
|
Zhou C, Wang Y, He L, Zhu J, Li J, Tang Y, Zhou H, He J, Wu H. Association between NER pathway gene polymorphisms and neuroblastoma risk in an eastern Chinese population. Mol Ther Oncolytics 2021; 20:3-11. [PMID: 33575466 PMCID: PMC7851491 DOI: 10.1016/j.omto.2020.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is a common childhood malignancy. Nucleotide excision repair (NER) polymorphisms have been shown to influence cancer susceptibility by modifying DNA repair efficiency. To investigate the association of NER gene polymorphisms with neuroblastoma risk, we constructed a three-center case-control study. A total of 19 candidate single-nucleotide polymorphisms (SNPs) in NER genes were analyzed. Odds ratios (ORs) and 95% confidential intervals (CIs) were calculated to evaluate the associations. We identified five independent SNPs that were significantly associated with neuroblastoma risk, including XPA rs1800975 (dominant model: adjusted OR = 0.73, 95% CI = 0.55-0.98, p = 0.033), XPA rs3176752 (recessive model: adjusted OR = 2.78, 95% CI = 1.12-6.91, p = 0.028), XPD rs3810366 (dominant: adjusted OR = 1.44, 95% CI = 1.05-1.97, p = 0.022; recessive: adjusted OR = 1.58, 95% CI = 1.18-2.11, p = 0.002), XPD rs238406 (dominant: adjusted OR = 0.64, 95% CI = 0.48-0.84, p = 0.002; recessive: adjusted OR = 0.67, 95% CI = 0.48-0.94, p = 0.021), and XPG rs2094258 (recessive: adjusted OR = 1.44, 95% CI = 1.03-2.04, p = 0.036). Stratified analysis was carried out. Furthermore, these findings were strengthened by false-positive report probability (FPRP) analysis and expression quantitative trait loci (eQTL) analysis. In conclusion, our study indicates that five SNPs in NER genes are correlated with neuroblastoma susceptibility in the eastern Chinese population, providing novel insight into the genetic underpinnings of neuroblastoma. However, further large-scale studies are required to verify these findings.
Collapse
Affiliation(s)
- Chunlei Zhou
- Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Yizhen Wang
- Department of Pathology, Anhui Provincial Children’s Hospital, Hefei 230051, Anhui, China
| | - Lili He
- Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jinghang Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Yingzi Tang
- Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Corresponding author: Jing He, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China.
| | - Haiyan Wu
- Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China
- Corresponding author: Haiyan Wu, Department of Pathology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, Jiangsu, China.
| |
Collapse
|
15
|
Lin HH, Tsai WC, Tsai CK, Chen SH, Huang LC, Hueng DY, Hung KC. Overexpression of Cell-Surface Marker SLC16A1 Shortened Survival in Human High-Grade Gliomas. J Mol Neurosci 2021; 71:1614-1621. [PMID: 33641091 DOI: 10.1007/s12031-021-01806-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 10/22/2022]
Abstract
Solute carrier family 16 member 1 (SLC16A1) is a crucial transcription factor in modifying cancer progression and metastasis. However, its character in defining the clinical prognosis of human gliomas has not been illuminated. In our analysis from PREdiction of Clinical Outcomes from Genomic Profiles (PRECOG), The Cancer Genome Atlas (TCGA), and Chinese Glioma Genome Atlas (CGGA), we found that SLC16A1 mRNA expression level was significantly increased in high-grade gliomas in contrast to low-grade gliomas and non-tumor controls (P < 0.05). Kaplan-Meier analysis of four independent cohort studies from the Gene Expression Omnibus (GEO) profile, TCGA, and CGGA which consistently presented patients with high SLC16A1 mRNA expression displayed poor overall survival in high-grade glioma patients (P < 0.05 by log-rank test). Based on the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), the protein-protein interaction analysis of SLC16A1-regulated oncogenesis showed SLC16A1 as a potential hub protein. Immunohistochemical staining exhibited that SLC16A1 protein overexpressed in high-grade gliomas compared with low-grade clinical glioma samples. All these findings suggest that SLC16A1 expression has a positive correlation with WHO pathological grading and poor survival. SLC16A1 might be a potential biomarker of prognosis in human gliomas.
Collapse
Affiliation(s)
- Hong-Han Lin
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd., Neihu, Taipei, 11490, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Chia-Kuang Tsai
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ssu-Han Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Li-Chun Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Dueng-Yuan Hueng
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11490, Taiwan. .,Department of Biochemistry, National Defense Medical Center, Taipei, 11490, Taiwan. .,Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan.
| | - Kuang-Chen Hung
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan. .,Division of Neurosurgery, Department of Surgery, Taichung Armed Force General Hospital, Taichung, 41152, Taiwan. .,General Education Center, College of Humanities and General Education, Central Taiwan University of Science and Technology, Taichung, Taiwan. .,Department of Healthcare Administration, College of Management, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
16
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
17
|
Yu WY, Hill ST, Chan ER, Pink JJ, Cooper K, Leachman S, Lund AW, Kulkarni R, Bordeaux JS. Computational Drug Repositioning Identifies Statins as Modifiers of Prognostic Genetic Expression Signatures and Metastatic Behavior in Melanoma. J Invest Dermatol 2021; 141:1802-1809. [PMID: 33417917 DOI: 10.1016/j.jid.2020.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022]
Abstract
Despite advances in melanoma treatment, more than 70% of patients with distant metastasis die within 5 years. Proactive treatment of early melanoma to prevent metastasis could save lives and reduce overall healthcare costs. Currently, there are no treatments specifically designed to prevent early melanoma from progressing to metastasis. We used the Connectivity Map to conduct an in silico drug screen and identified 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) as a drug class that might prevent melanoma metastasis. To confirm the in vitro effect of statins, RNA sequencing was completed on A375 cells after treatment with fluvastatin to describe changes in the melanoma transcriptome. Statins induced differential expression in genes associated with metastasis and are used in commercially available prognostic tests for melanoma metastasis. Finally, we completed a chart review of 475 patients with melanoma. Patients taking statins were less likely to have metastasis at the time of melanoma diagnosis in both univariate and multivariate analyses (24.7% taking statins vs. 37.6% not taking statins, absolute risk reduction = 12.9%, P = 0.038). These findings suggest that statins might be useful as a treatment to prevent melanoma metastasis. Prospective trials are required to verify our findings and to determine the mechanism of metastasis prevention.
Collapse
Affiliation(s)
- Wesley Y Yu
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA.
| | - Sheena T Hill
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - E Ricky Chan
- Institute for Computational Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - John J Pink
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kevin Cooper
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sancy Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, New York, USA; Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA; Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Rajan Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeremy S Bordeaux
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Zeng H, Li M, Liu J, Zhu J, Cheng J, Li Y, Zhang J, Yang Z, Li L, Zhou H, Li S, Xia H, Zou Y, He J, Yang T. YTHDF2 Gene rs3738067 A>G Polymorphism Decreases Neuroblastoma Risk in Chinese Children: Evidence From an Eight-Center Case-Control Study. Front Med (Lausanne) 2021; 8:797195. [PMID: 34970571 PMCID: PMC8712649 DOI: 10.3389/fmed.2021.797195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/26/2021] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma is a primary malignancy mainly occurring in children. We have reported that polymorphisms of several N6-methyladenosine (m6A) RNA modification-related genes contributed to neuroblastoma risk in previous studies. YTHDF2, a "reader" of RNA m6A modification, is involved in cancer progression. Here, we estimated the association between a YTHDF2 gene rs3738067 A>G polymorphism and neuroblastoma susceptibility in 898 neuroblastoma patients and 1,734 healthy individuals from China. We found that the rs3738067 A>G could decrease neuroblastoma risk [AG vs. AA: adjusted odds ratio (OR) = 0.76, 95% confidence interval (CI) = 0.64-0.90, P = 0.002; AG/GG vs. AA: adjusted OR = 0.81, 95% CI = 0.69-0.95, P = 0.011). Besides, the rs3738067 AG/GG genotype was related to reduced neuroblastoma risk in the following subgroups: children aged 18 months and under, boys, patients with tumors originating from retroperitoneal, patients at clinical stage IV, and cases at clinical stages III plus IV. Importantly, false-positive report probability analysis proved our significant results worthy of close attention of. The expression quantitative trait locus analysis results revealed that the rs3738067 was associated with the expression of YTHDF2.
Collapse
Affiliation(s)
- Huijuan Zeng
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meng Li
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yong Li
- Department of Pediatric Surgery, Hunan Children's Hospital, Changsha, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics Research, Yunnan Medical Center for Pediatric Diseases, Kunming Children's Hospital, Kunming, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suhong Li
- Department of Pathology, Children Hospital and Women Health Center of Shanxi, Taiyuan, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Jing He
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Tianyou Yang
| |
Collapse
|
19
|
Abstract
Neuroblastoma (NB) is a pediatric tumor of embryonic origin. About 1-2% of all NBs are familial cases, and genetic predisposition is suspected for the remaining cases. During the last decade, genome-wide association studies (GWAS) and high-throughput sequencing approaches have been used to identify associations among common and rare genetic variants and NB risk. Substantial data has been produced by large patient cohorts that implicate various genes in NB tumorigenesis, such as CASC15, BARD1, CHEK2, LMO1, LIN28B, AXIN2, BRCA1, TP53, SMARCA4, and CDK1NB. NB, as well as other pediatric cancers, has few recurrent mutations but several copy number variations (CNVs). Almost all NBs show both numerical and structural CNVs. The proportion between numerical and structural CNVs differs between localized and metastatic tumors, with a greater prevalence of structural CNVs in metastatic NB. This genomic chaos frequently identified in NBs suggests that chromosome instability (CIN) could be one of the major actors in NB oncogenesis. Interestingly, many NB-predisposing variants occur in genes involved in the control of genome stability, mitosis, and normal chromosome separation. Here, we discuss the relationship between genetic predisposition and CIN in NB.
Collapse
Affiliation(s)
- Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy.
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Univeristà degli Studi di Napoli Federico II, Naples, Italy. .,CEINGE Biotecnologie Avanzate, Naples, Italy.
| |
Collapse
|
20
|
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, Iolascon A. Genetic Predisposition to Solid Pediatric Cancers. Front Oncol 2020; 10:590033. [PMID: 33194750 PMCID: PMC7656777 DOI: 10.3389/fonc.2020.590033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Progresses over the past years have extensively improved our capacity to use genome-scale analyses—including high-density genotyping and exome and genome sequencing—to identify the genetic basis of pediatric tumors. In particular, exome sequencing has contributed to the evidence that about 10% of children and adolescents with tumors have germline genetic variants associated with cancer predisposition. In this review, we provide an overview of genetic variations predisposing to solid pediatric tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the biological processes affected by the involved mutated genes. A careful description of the genetic basis underlying a large number of syndromes associated with an increased risk of pediatric cancer is also reported. We place particular emphasis on the emerging view that interactions between germline and somatic alterations are a key determinant of cancer development. We propose future research directions, which focus on the biological function of pediatric risk alleles and on the potential links between the germline genome and somatic changes. Finally, the importance of developing new molecular diagnostic tests including all the identified risk germline mutations and of considering the genetic predisposition in screening tests and novel therapies is emphasized.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Maiorino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
21
|
Pan J, Zhu J, Wang M, Yang T, Hu C, Yang J, Zhang J, Cheng J, Zhou H, Xia H, He J, Zou Y. Association of MYC gene polymorphisms with neuroblastoma risk in Chinese children: A four-center case-control study. J Gene Med 2020; 22:e3190. [PMID: 32222109 DOI: 10.1002/jgm.3190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 03/15/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neuroblastoma is one of the most common malignant tumors in childhood. Polymorphisms in proto-oncogene MYC are implicated in many cancers, although their role in neuroblastoma remains unclear. In the present study, we attempted to investigate the association between MYC gene polymorphisms and neuroblastoma susceptibility in Chinese children. METHODS We included two MYC polymorphisms (rs4645943 and rs2070583) and assessed their effects on neuroblastoma risk in 505 cases and 1070 controls via the Taqman method. RESULTS In single and combined locus analysis, no significant association was found between the two selected polymorphisms and neuroblastoma susceptibility. In stratification analysis, the rs4645943 CT/TT genotypes were significantly associated with a decreased neuroblastoma risk in subjects with tumors originating from other sites [adjusted odds ratio (OR) = 0.42, 95% confidence interval (CI) = 0.21-0.84, p = 0.013]. Meanwhile, the presence of one or two protective genotypes was significantly associated with a decreased neuroblastoma risk in subjects with tumors arising from other sites (adjusted OR = 0.50, 95% CI = 0.26-0.96, p = 0.036). CONCLUSIONS The present study indicates that MYC gene polymorphisms may have a weak effect on the neuroblastoma risk, which neeeds to be verified further.
Collapse
Affiliation(s)
- Jing Pan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinhong Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Mi Wang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Hu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiliang Yang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haixia Zhou
- Department of Hematology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Zou
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|