1
|
Jimenez AM, Green MF. Disturbance at the self-other boundary in schizophrenia: Linking phenomenology to clinical neuroscience. Schizophr Res 2024; 272:51-60. [PMID: 39190982 DOI: 10.1016/j.schres.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
In this selective review, we describe the current neuroscientific literature on disturbances of the self-other boundary in schizophrenia as they relate to structural and experiential aspects of the self. Within these two broad categories, the structural self includes body ownership and agency, and the experiential self includes self-reflection, source monitoring, and self-referential and autobiographical memory. Further, we consider how disturbances in these domains link to the phenomenology of schizophrenia. We identify faulty internal predictive coding as a potential mechanism of disturbance in body ownership and agency, which results in susceptibility to bias (over- or under-attributing outcomes to one's own actions or intentions). This is reflected in reduced activity in the temporoparietal junction (TPJ), a heteromodal association area implicated in several aspects of self-other processing, as well as reduced fronto-parietal functional connectivity. Deficits of the experiential self in schizophrenia may stem from a lack of salience of self-related information, whereby the mental representation of self is not as rich as in healthy controls and therefore does not result in the same level of privileged processing. As a result, memory for self-referential material and autobiographical memory processes is impaired, which hinders creation of a cohesive life narrative. Impairments of the experiential self implicate abnormal activation patterns along the cortical midline, including medial prefrontal cortex and posterior cingulate/precuneus, as well as TPJ. In fact, TPJ appears to be involved in all the reviewed aspects of the self-other disturbance. We conclude with suggestions for future work, including implications for interventions with critical timing considerations.
Collapse
Affiliation(s)
- Amy M Jimenez
- Department of Veterans Affairs, Desert Pacific Mental Illness Research, Education, and Clinical Center, USA; VA Rehabilitation R&D Center on Enhancing Community Integration for Homeless Veterans, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA, USA.
| | - Michael F Green
- Department of Veterans Affairs, Desert Pacific Mental Illness Research, Education, and Clinical Center, USA; VA Rehabilitation R&D Center on Enhancing Community Integration for Homeless Veterans, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, UCLA, USA
| |
Collapse
|
2
|
Quirmbach F, Limanowski J. Visuomotor prediction during action planning in the human frontoparietal cortex and cerebellum. Cereb Cortex 2024; 34:bhae382. [PMID: 39325000 DOI: 10.1093/cercor/bhae382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
The concept of forward models in the brain, classically applied to describing on-line motor control, can in principle be extended to action planning, i.e. assuming forward sensory predictions are issued during the mere preparation of movements. To test this idea, we combined a delayed movement task with a virtual reality based manipulation of visuomotor congruence during functional magnetic resonance imaging. Participants executed simple hand movements after a delay. During the delay, two aspects of the upcoming movement could be cued: the movement type and the visuomotor mapping (i.e. congruence of executed hand movements and visual movement feedback by a glove-controlled virtual hand). Frontoparietal areas showed increased delay period activity when preparing pre-specified movements (cued > uncued). The cerebellum showed increased activity during the preparation for incongruent > congruent visuomotor mappings. The left anterior intraparietal sulcus showed an interaction effect, responding most strongly when a pre-specified (cued) movement was prepared under expected visuomotor incongruence. These results suggest that motor planning entails a forward prediction of visual body movement feedback, which can be adjusted in anticipation of nonstandard visuomotor mappings, and which is likely computed by the cerebellum and integrated with state estimates for (planned) control in the anterior intraparietal sulcus.
Collapse
Affiliation(s)
- Felix Quirmbach
- Faculty of Psychology, Technical University of Dresden, Helmholtzstraße 10, 01069 Dresden, Germany
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Jakub Limanowski
- Center for Tactile Internet with Human-in-the-Loop, Technical University of Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
- Institute of Psychology, University of Greifswald, Franz-Mehring-Straße 47, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Tanabe J, Amimoto K, Sakai K. Brain Activity in Visual-Motor Illusions With Enhanced Joint Motion Intensity. Cureus 2024; 16:e65786. [PMID: 39219877 PMCID: PMC11363815 DOI: 10.7759/cureus.65786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Visual-motor illusion (VMI) is a cognitive approach used to evoke kinesthetic sensations. Research suggests that VMI can modulate brain activity depending on the specific joint movement observed. This study aimed to identify differences in brain activity when observing video images of joint movements at different intensities of movement in VMI. Methodology The study included 14 healthy adult participants. Two types of video images were used: pure ankle dorsiflexion movements (Standard-VMI) and ankle dorsiflexion movements with added resistance (Power-VMI). The brain activity measurement protocol employed a block design with one set of 15 seconds rest, 30 seconds VMI task, and 30 seconds follow-up. Each participant performed the VMI task twice, alternating between Standard-VMI and Power-VMI. Brain activity was measured using functional near-infrared spectroscopy, focusing on motor-related regions. Subjective impressions were assessed using visual analog scales (VAS) for kinesthetic illusions. Results The results revealed that Power-VMI stimulated significantly greater brain activity in the premotor and supplementary motor cortex, supramarginal gyrus, and superior parietal lobule compared with Standard-VMI. Power-VMI resulted in higher VAS values for kinesthetic illusion than Standard-VMI. Additionally, a positive correlation was observed between brain activity in the superior parietal lobule and the degree of kinesthetic illusion. Conclusions These findings indicate that Power-VMI enhances both motor-related brain areas and motor-sensory illusions, potentially having a greater impact on improving motor function. This study provides valuable insights for developing VMI interventions for rehabilitation, particularly for individuals with paralysis or movement impairments.
Collapse
Affiliation(s)
- Junpei Tanabe
- Department of Physical Therapy, Hiroshima Cosmopolitan University, Hiroshima, JPN
| | - Kazu Amimoto
- Department of Physical Therapy, Faculty of Rehabilitation, Sendai Seiyo Gakuin College, Sendai, JPN
| | - Katsuya Sakai
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, JPN
| |
Collapse
|
4
|
Tanabe T, Kaneko H. Illusory Directional Sensation Induced by Asymmetric Vibrations Influences Sense of Agency and Velocity in Wrist Motions. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1749-1756. [PMID: 38656862 DOI: 10.1109/tnsre.2024.3393434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Illusory directional sensations are generated through asymmetric vibrations applied to the fingertips and have been utilized to induce upper-limb motions in the rehabilitation and training of patients with visual impairment. However, its effects on motor control remain unclear. This study aimed to verify the effects of illusory directional sensations on wrist motion. We conducted objective and subjective evaluations of wrist motion during a motor task, while inducing an illusory directional sensation that was congruent or incongruent with wrist motion. We found that, when motion and illusory directional sensations were congruent, the sense of agency for motion decreased. This indicates an induction sensation of the hand being moved by the illusion. Interestingly, although no physical force was applied to the hand, the angular velocity of the wrist was higher in the congruent condition than that in the no-stimulation condition. The angular velocity of the wrist and electromyography signals of the agonist muscles were weakly positively correlated, suggesting that the participants may have increased their wrist velocity. In other words, the congruence between the direction of motion and illusory directional sensation induced the sensation of the hand being moved, even though the participants' wrist-motion velocity increased. This phenomenon can be explained by the discrepancy between the sensation of active motion predicted by the efferent copy, and that of actual motion caused by the addition of the illusion. The findings of this study can guide the design of novel rehabilitation methods.
Collapse
|
5
|
Cai Y, Yang H, Wang X, Xiong Z, Kühn S, Bi Y, Wei K. Neural correlates of an illusionary sense of agency caused by virtual reality. Cereb Cortex 2024; 34:bhad547. [PMID: 38365271 DOI: 10.1093/cercor/bhad547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 02/18/2024] Open
Abstract
Sense of agency (SoA) is the sensation that self-actions lead to ensuing perceptual consequences. The prospective mechanism emphasizes that SoA arises from motor prediction and its comparison with actual action outcomes, while the reconstructive mechanism stresses that SoA emerges from retrospective causal processing about the action outcomes. Consistent with the prospective mechanism, motor planning regions were identified by neuroimaging studies using the temporal binding (TB) effect, a behavioral measure often linked to implicit SoA. Yet, TB also occurs during passive observation of another's action, lending support to the reconstructive mechanism, but its neural correlates remain unexplored. Here, we employed virtual reality (VR) to modulate such observation-based SoA and examined it with functional magnetic resonance imaging (fMRI). After manipulating an avatar hand in VR, participants passively observed an avatar's "action" and showed a significant increase in TB. The binding effect was associated with the right angular gyrus and inferior parietal lobule, which are critical nodes for inferential and agency processing. These results suggest that the experience of controlling an avatar may potentiate inferential processing within the right inferior parietal cortex and give rise to the illusionary SoA without voluntary action.
Collapse
Affiliation(s)
- Yiyang Cai
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China
| | - Huichao Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaosha Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ziyi Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Simone Kühn
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, 14195 Berlin, Germany
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Kunlin Wei
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
- Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Awaji A, Fuchigami T, Ogata R, Morioka S. Effects of Vibration-Based Generation of Timing of Tactile Perception on Upper Limb Function After Stroke: A Case Study. Cureus 2023; 15:e50855. [PMID: 38249200 PMCID: PMC10798842 DOI: 10.7759/cureus.50855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Sensorimotor dysfunction of the fingers and hands hinders the recovery of motor function post-stroke. Generally, hemiplegic patients are unable to properly control the dynamic friction generated between their fingers and objects during hand/finger muscle activity. In addition to sensory information, a sense of agency generated by the temporal synchronization of sensory prediction and sensory feedback is required to control this dynamic friction. In the present study, we utilized a novel rehabilitation device that transmits real-time fingertip contact information to a transducer in a case of stroke hemiplegia with sensorimotor deficits and stagnated hand/finger motor performance. Post-intervention, the patient's upper extremity motor function score (FMA-UE), which had previously been in a state of arrested recovery, improved from 51/66 to 61/66, especially in the wrist joints. Excessive grip force during object grasping and frequency of falling objects was notably decreased post-intervention. We believe that rehabilitation tasks using perceptual generation via transducer will be a new tool for the rehabilitation of post-stroke hand/finger sensorimotor deficits.
Collapse
Affiliation(s)
- Ayaka Awaji
- Department of Physical Therapy, Faculty of Health Sciences, Kio University, Nara, JPN
| | - Takeshi Fuchigami
- Neurorehabilitation Research Center, Kio University, Nara, JPN
- Department of Rehabilitation, Kishiwada Rehabilitation Hospital, Osaka, JPN
- Stroke Rehabilitation Research Laboratory, Kishiwada Rehabilitation Hospital, Osaka, JPN
| | - Rento Ogata
- Department of Rehabilitation, Kishiwada Rehabilitation Hospital, Osaka, JPN
- Stroke Rehabilitation Research Laboratory, Kishiwada Rehabilitation Hospital, Osaka, JPN
- Department of Neurorehabilitation, Graduate School of Health Sciences, Kio University, Nara, JPN
| | - Shu Morioka
- Neurorehabilitation Research Center, Kio University, Nara, JPN
- Stroke Rehabilitation Research Laboratory, Kishiwada Rehabilitation Hospital, Osaka, JPN
| |
Collapse
|
7
|
Veillette JP, Lopes P, Nusbaum HC. Temporal Dynamics of Brain Activity Predicting Sense of Agency over Muscle Movements. J Neurosci 2023; 43:7842-7852. [PMID: 37722848 PMCID: PMC10648515 DOI: 10.1523/jneurosci.1116-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Our muscles are the primary means through which we affect the external world, and the sense of agency (SoA) over the action through those muscles is fundamental to our self-awareness. However, SoA research to date has focused almost exclusively on agency over action outcomes rather than over the musculature itself, as it was believed that SoA over the musculature could not be manipulated directly. Drawing on methods from human-computer interaction and adaptive experimentation, we use human-in-the-loop Bayesian optimization to tune the timing of electrical muscle stimulation so as to robustly elicit a SoA over electrically actuated muscle movements in male and female human subjects. We use time-resolved decoding of subjects' EEG to estimate the time course of neural activity which predicts reported agency on a trial-by-trial basis. Like paradigms which assess SoA over action consequences, we found that the late (post-conscious) neural activity predicts SoA. Unlike typical paradigms, however, we also find patterns of early (sensorimotor) activity with distinct temporal dynamics predicts agency over muscle movements, suggesting that the "neural correlates of agency" may depend on the level of abstraction (i.e., direct sensorimotor feedback versus downstream consequences) most relevant to a given agency judgment. Moreover, fractal analysis of the EEG suggests that SoA-contingent dynamics of neural activity may modulate the sensitivity of the motor system to external input.SIGNIFICANCE STATEMENT The sense of agency, the feeling of "I did that," when directing one's own musculature is a core feature of human experience. We show that we can robustly manipulate the sense of agency over electrically actuated muscle movements, and we investigate the time course of neural activity that predicts the sense of agency over these actuated movements. We find evidence of two distinct neural processes: a transient sequence of patterns that begins in the early sensorineural response to muscle stimulation and a later, sustained signature of agency. These results shed light on the neural mechanisms by which we experience our movements as volitional.
Collapse
Affiliation(s)
- John P Veillette
- Department of Psychology, University of Chicago, Chicago, Illinois 60637
| | - Pedro Lopes
- Department of Computer Science, University of Chicago, Chicago, Illinois 60637
| | - Howard C Nusbaum
- Department of Psychology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
8
|
Morioka S. A new concept of brain lateralization from the function of the temporo-parietal junctions: Comment on "Left and right temporal-parietal junctions (TPJs) as "match/mismatch" hedonic machines: A unifying account of TPJ function" by Doricchi et al. Phys Life Rev 2023; 44:302-304. [PMID: 36857872 DOI: 10.1016/j.plrev.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Affiliation(s)
- Shu Morioka
- Neurorehabilitation Research Center, Kio University, 4-2-2 Umaminaka, Koryo, Kitakatsuragi, Nara 635-0832 Japan.
| |
Collapse
|
9
|
Abstract
The generation of an internal body model and its continuous update is essential in sensorimotor control. Although known to rely on proprioceptive sensory feedback, the underlying mechanism that transforms this sensory feedback into a dynamic body percept remains poorly understood. However, advances in the development of genetic tools for proprioceptive circuit elements, including the sensory receptors, are beginning to offer new and unprecedented leverage to dissect the central pathways responsible for proprioceptive encoding. Simultaneously, new data derived through emerging bionic neural machine-interface technologies reveal clues regarding the relative importance of kinesthetic sensory feedback and insights into the functional proprioceptive substrates that underlie natural motor behaviors.
Collapse
Affiliation(s)
- Paul D Marasco
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA;
- Charles Shor Epilepsy Center, Cleveland Clinic, Cleveland, Ohio, USA
- Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joriene C de Nooij
- Department of Neurology and the Columbia University Motor Neuron Center, Columbia University Medical Center, New York, NY, USA;
| |
Collapse
|
10
|
Morita T, Zhu Y, Aoyama T, Takeuchi M, Yamamoto K, Hasegawa Y. Auditory Feedback for Enhanced Sense of Agency in Shared Control. SENSORS (BASEL, SWITZERLAND) 2022; 22:9779. [PMID: 36560147 PMCID: PMC9787405 DOI: 10.3390/s22249779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
There is a growing need for robots that can be remotely controlled to perform tasks of one's own choice. However, the SoA (Sense of Agency: the sense of recognizing that the motion of an observed object is caused by oneself) is reduced because the subject of the robot motion is identified as external due to shared control. To address this issue, we aimed to suppress the decline in SoA by presenting auditory feedback that aims to blur the distinction between self and others. We performed the tracking task in a virtual environment under four different auditory feedback conditions, with varying levels of automation to manipulate the virtual robot gripper. Experimental results showed that the proposed auditory feedback suppressed the decrease in the SoA at a medium level of automation. It is suggested that our proposed auditory feedback could blur the distinction between self and others, and that the operator attributes the subject of the motion of the manipulated object to himself.
Collapse
Affiliation(s)
- Tomoya Morita
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yaonan Zhu
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Tadayoshi Aoyama
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Masaru Takeuchi
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Kento Yamamoto
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| | - Yasuhisa Hasegawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
11
|
Asakage S, Nakano T. The salience network is activated during self-recognition from both first-person and third-person perspectives. Hum Brain Mapp 2022; 44:559-570. [PMID: 36129447 PMCID: PMC9842878 DOI: 10.1002/hbm.26084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023] Open
Abstract
We usually observe ourselves from two perspectives. One is the first-person perspective, which we perceive directly with our own eyes, and the other is the third-person perspective, which we observe ourselves in a mirror or a picture. However, whether the self-recognition associated with these two perspectives has a common or separate neural basis remains unclear. To address this, we used functional magnetic resonance imaging to examine brain activity while participants viewed pretaped video clips of themselves and others engaged in meal preparation taken from first-person and third-person perspectives. We found that the first-person behavioral videos of the participants and others induced greater activation in the premotor-intraparietal region. In contrast, the third-person behavioral videos induced greater activation in the default mode network compared with the first-person videos. Regardless of the perspective, the videos of the participants induced greater activation in the salience network than the videos of others. On the other hand, the videos of others induced greater activation in the precuneus and lingual gyrus than the videos of the participants. These results suggest that the salience network is commonly involved in self-recognition from both perspectives, even though the brain regions involved in action observation for the two perspectives are distinct.
Collapse
Affiliation(s)
- Shoko Asakage
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan
| | - Tamami Nakano
- Graduate School of Frontiers BioscienceOsaka UniversityOsakaJapan,Graduate School of MedicineOsaka UniversityOsakaJapan,Center for Information and Neural Networks (CiNet)OsakaJapan
| |
Collapse
|
12
|
Kerr WT, Tatekawa H, Lee JK, Karimi AH, Sreenivasan SS, O'Neill J, Smith JM, Hickman LB, Savic I, Nasrullah N, Espinoza R, Narr K, Salamon N, Beimer NJ, Hadjiiski LM, Eliashiv DS, Stacey WC, Engel J, Feusner JD, Stern JM. Clinical MRI morphological analysis of functional seizures compared to seizure-naïve and psychiatric controls. Epilepsy Behav 2022; 134:108858. [PMID: 35933959 DOI: 10.1016/j.yebeh.2022.108858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/26/2022] [Accepted: 07/15/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE Functional seizures (FS), also known as psychogenic nonepileptic seizures (PNES), are physical manifestations of acute or chronic psychological distress. Functional and structural neuroimaging have identified objective signs of this disorder. We evaluated whether magnetic resonance imaging (MRI) morphometry differed between patients with FS and clinically relevant comparison populations. METHODS Quality-screened clinical-grade MRIs were acquired from 666 patients from 2006 to 2020. Morphometric features were quantified with FreeSurfer v6. Mixed-effects linear regression compared the volume, thickness, and surface area within 201 regions-of-interest for 90 patients with FS, compared to seizure-naïve patients with depression (n = 243), anxiety (n = 68), and obsessive-compulsive disorder (OCD, n = 41), respectively, and to other seizure-naïve controls with similar quality MRIs, accounting for the influence of multiple confounds including depression and anxiety based on chart review. These comparison populations were obtained through review of clinical records plus research studies obtained on similar scanners. RESULTS After Bonferroni-Holm correction, patients with FS compared with seizure-naïve controls exhibited thinner bilateral superior temporal cortex (left 0.053 mm, p = 0.014; right 0.071 mm, p = 0.00006), thicker left lateral occipital cortex (0.052 mm, p = 0.0035), and greater left cerebellar white-matter volume (1085 mm3, p = 0.0065). These findings were not accounted for by lower MRI quality in patients with FS. CONCLUSIONS These results reinforce prior indications of structural neuroimaging correlates of FS and, in particular, distinguish brain morphology in FS from that in depression, anxiety, and OCD. Future work may entail comparisons with other psychiatric disorders including bipolar and schizophrenia, as well as exploration of brain structural heterogeneity within FS.
Collapse
Affiliation(s)
- Wesley T Kerr
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA.
| | - Hiroyuki Tatekawa
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John K Lee
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Amir H Karimi
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Siddhika S Sreenivasan
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jena M Smith
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - L Brian Hickman
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ivanka Savic
- Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Nilab Nasrullah
- Department of Women's and Children's Health, Karolinska Institute and Neurology Clinic, Karolinksa University Hospital, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Randall Espinoza
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Katherine Narr
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nicholas J Beimer
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lubomir M Hadjiiski
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Dawn S Eliashiv
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - William C Stacey
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, Canada; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - John M Stern
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
13
|
Shimada S. Multisensory and Sensorimotor Integration in the Embodied Self: Relationship between Self-Body Recognition and the Mirror Neuron System. SENSORS 2022; 22:s22135059. [PMID: 35808553 PMCID: PMC9269734 DOI: 10.3390/s22135059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023]
Abstract
The embodied self is rooted in the self-body in the "here and now". The senses of self-ownership and self-agency have been proposed as the basis of the sense of embodied self, and many experimental studies have been conducted on this subject. This review summarizes the experimental research on the embodied self that has been conducted over the past 20 years, mainly from the perspective of multisensory integration and sensorimotor integration regarding the self-body. Furthermore, the phenomenon of back projection, in which changes in an external object (e.g., a rubber hand) with which one has a sense of ownership have an inverse influence on the sensation and movement of one's own body, is discussed. This postulates that the self-body illusion is not merely an illusion caused by multisensory and/or sensorimotor integration, but is the incorporation of an external object into the self-body representation in the brain. As an extension of this fact, we will also review research on the mirror neuron system, which is considered to be the neural basis of recognition of others, and discuss how the neural basis of self-body recognition and the mirror neuron system can be regarded as essentially the same.
Collapse
Affiliation(s)
- Sotaro Shimada
- School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
14
|
Impaired Relationship between Sense of Agency and Prediction Error Due to Post-Stroke Sensorimotor Deficits. J Clin Med 2022; 11:jcm11123307. [PMID: 35743378 PMCID: PMC9225153 DOI: 10.3390/jcm11123307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sense of agency refers to the experience of controlling one’s actions. Studies on healthy people indicated that their self-other attribution can be realized based on prediction error which is an inconsistency between the internal prediction and sensory feedback of the movements. However, studies on patients with post-stroke sensorimotor deficits hypothesized that their self-other attribution can be based on different attribution strategies. This preliminary study examined this hypothesis by investigating whether post-stroke sensorimotor deficits can diminish the correlation between prediction errors and self-other judgments. Participants performed sinusoidal movements with visual feedback and judged if it represented their or another’s movements (i.e., self-other judgment). The results indicated that the patient who had worse upper limb sensorimotor deficits and lesser paretic upper limb activity compared with the other patient made more misattributions and showed a lower correlation between prediction errors and self-other judgments. This finding suggests that post-stroke sensorimotor deficits can impair the relationship between prediction error and self-other attribution, supporting the hypothesis that patients with such deficits can have altered strategies for the registration of agency.
Collapse
|
15
|
Charalampaki A, Ninija Karabanov A, Ritterband-Rosenbaum A, Bo Nielsen J, Roman Siebner H, Schram Christensen M. Sense of agency as synecdoche: Multiple neurobiological mechanisms may underlie the phenomenon summarized as sense of agency. Conscious Cogn 2022; 101:103307. [PMID: 35447600 DOI: 10.1016/j.concog.2022.103307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/13/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022]
Abstract
Functional magnetic resonance imaging (fMRI) studies on the sense of agency (SoA) have yielded heterogeneous findings identifying regional brain activity during tasks that probed SoA. In this review, we argue that the reason behind this between-study heterogeneity is a "synecdochic" way the field conceptualizes and studies SoA. Typically, a single feature is experimentally manipulated and then this is interpreted as covering all aspects of SoA. The purpose of this paper is to give an overview of the fMRI studies of SoA and attempt to provide meaningful categories whereby the heterogeneous findings may be classified. This classification is based on a separation of the experimental paradigms (Feedback Manipulations of ongoing movements, Action-Effect, and Sensory Attenuation) and type of report employed (implicit, explicit reports of graded or dichotic nature, and whether these concern self-other distinctions or sense of control). We only find that Feedback Manipulation and Action-Effect share common activation in supplementary motor area, insula and cerebellum in positive SoA and inferior frontal gyrus in the negative SoA, but observe large networks related to SoA only in Feedback Manipulation studies. To illustrate the advantages of this approach, we discuss the findings from an fMRI study which we conducted, within this framework.
Collapse
Affiliation(s)
- Angeliki Charalampaki
- Department of Neuroscience, Christensen Lab, University of Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.
| | - Anke Ninija Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Anina Ritterband-Rosenbaum
- Department of Neuroscience, Christensen Lab, University of Copenhagen, Denmark; The Elsass Foundation, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience, Christensen Lab, University of Copenhagen, Denmark; The Elsass Foundation, Charlottenlund, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
16
|
Su WC, Culotta M, Tsuzuki D, Bhat A. Cortical activation during cooperative joint actions and competition in children with and without an autism spectrum condition (ASC): an fNIRS study. Sci Rep 2022; 12:5177. [PMID: 35338178 PMCID: PMC8956636 DOI: 10.1038/s41598-022-08689-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Children with an Autism Spectrum Condition (ASC) have social communication and perceptuomotor difficulties that affect their ability to engage in dyadic play. In this study, we compared spatio-temporal errors and fNIRS-related cortical activation between children with and without an ASC during a Lincoln Log dyadic game requiring them to play leader or follower roles, move in synchrony or while taking turns, and move cooperatively or competitively with an adult partner. Children with an ASC had greater motor, planning, and spatial errors and took longer to complete the building tasks compared to typically developing (TD) children. Children with an ASC had lower superior temporal sulcus (STS) activation during Turn-take and Compete, and greater Inferior Parietal Lobe (IPL) activation during Lead and Turn-take compared to TD children. As dyadic play demands increased, TD children showed greater STS activation during Turn-take (vs. Synchrony) and Compete (vs. Cooperate) whereas children with an ASC showed greater IPL activation during Lead and Compete (vs. Cooperate). Our findings suggest that children with an ASC rely on self-generated action plans (i.e., increased IPL activation) more than relying on their partner’s action cues (i.e., reduced STS activation) when engaging in dyadic play including joint actions and competition.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, 540 S College Avenue, Newark, DE, USA.,Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, 540 S College Avenue, Newark, DE, USA.,Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, 540 S College Avenue, Newark, DE, USA. .,Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA. .,Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
17
|
The Role of the Interaction between the Inferior Parietal Lobule and Superior Temporal Gyrus in the Multisensory Go/No-go Task. Neuroimage 2022; 254:119140. [PMID: 35342002 DOI: 10.1016/j.neuroimage.2022.119140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
Information from multiple sensory modalities interacts. Using functional magnetic resonance imaging (fMRI), we aimed to identify the neural structures correlated with how cooccurring sound modulates the visual motor response execution. The reaction time (RT) to audiovisual stimuli was significantly faster than the RT to visual stimuli. Signal detection analyses showed no significant difference in the perceptual sensitivity (d') between audiovisual and visual stimuli, while the response criteria (β or c) of the audiovisual stimuli was decreased compared to the visual stimuli. The functional connectivity between the left inferior parietal lobule (IPL) and bilateral superior temporal gyrus (STG) was enhanced in Go processing compared with No-go processing of audiovisual stimuli. Furthermore, the left precentral gyrus (PreCG) showed enhanced functional connectivity with the bilateral STG and other areas of the ventral stream in Go processing compared with No-go processing of audiovisual stimuli. These results revealed that the neuronal network correlated with modulations of the motor response execution after the presentation of both visual stimuli along with cooccurring sound in a multisensory Go/Nogo task, including the left IPL, left PreCG, bilateral STG and some areas of the ventral stream. The role of the interaction between the IPL and STG in transforming audiovisual information into motor behavior is discussed. The current study provides a new perspective for exploring potential brain mechanisms underlying how humans execute appropriate behaviors on the basis of multisensory information.
Collapse
|
18
|
Ohata R, Ogawa K, Imamizu H. Neuroimaging Examination of Driving Mode Switching Corresponding to Changes in the Driving Environment. Front Hum Neurosci 2022; 16:788729. [PMID: 35250514 PMCID: PMC8895376 DOI: 10.3389/fnhum.2022.788729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Car driving is supported by perceptual, cognitive, and motor skills trained through continuous daily practice. One of the skills that characterize experienced drivers is to detect changes in the driving environment and then flexibly switch their driving modes in response to the changes. Previous functional neuroimaging studies on motor control investigated the mechanisms underlying behaviors adaptive to changes in control properties or parameters of experimental devices such as a computer mouse or a joystick. The switching of multiple internal models mainly engages adaptive behaviors and underlies the interplay between the cerebellum and frontoparietal network (FPN) regions as the neural process. However, it remains unclear whether the neural mechanisms identified in previous motor control studies also underlie practical driving behaviors. In the current study, we measure functional magnetic resonance imaging (fMRI) activities while participants control a realistic driving simulator inside the MRI scanner. Here, the accelerator sensitivity of a virtual car is abruptly changed, requiring participants to respond to this change flexibly to maintain stable driving. We first compare brain activities before and after the sensitivity change. As a result, sensorimotor areas, including the left cerebellum, increase their activities after the sensitivity change. Moreover, after the change, activity significantly increases in the inferior parietal lobe (IPL) and dorsolateral prefrontal cortex (DLPFC), parts of the FPN regions. By contrast, the posterior cingulate cortex, a part of the default mode network, deactivates after the sensitivity change. Our results suggest that the neural bases found in previous experimental studies can serve as the foundation of adaptive driving behaviors. At the same time, this study also highlights the unique contribution of non-motor regions to addressing the high cognitive demands of driving.
Collapse
Affiliation(s)
- Ryu Ohata
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Ryu Ohata,
| | - Kenji Ogawa
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Imamizu
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- Research Into Artifacts, Center for Engineering, The University of Tokyo, Tokyo, Japan
- Hiroshi Imamizu,
| |
Collapse
|
19
|
Aizu N, Otaki R, Nishii K, Kito T, Yao R, Uemura K, Izumi SI, Yamada K. Body-Specific Attention to the Hands and Feet in Healthy Adults. Front Syst Neurosci 2022; 15:805746. [PMID: 35145381 PMCID: PMC8821660 DOI: 10.3389/fnsys.2021.805746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
To execute the intended movement, the brain directs attention, called body-specific attention, to the body to obtain information useful for movement. Body-specific attention to the hands has been examined but not to the feet. We aimed to confirm the existence of body-specific attention to the hands and feet, and examine its relation to motor and sensory functions from a behavioral perspective. The study included two groups of 27 right-handed and right-footed healthy adults, respectively. Visual detection tasks were used to measure body-specific attention. We measured reaction times to visual stimuli on or off the self-body and calculated the index of body-specific attention score to subtract the reaction time on self-body from that off one. Participants were classified into low and high attention groups based on each left and right body-specific attention index. For motor functions, Experiment 1 comprised handgrip strength and ball-rotation tasks for the hands, and Experiment 2 comprised toe grip strength involved in postural control for the feet. For sensory functions, the tactile thresholds of the hands and feet were measured. The results showed that, in both hands, the reaction time to visual stimuli on the hand was significantly lesser than that offhand. In the foot, this facilitation effect was observed in the right foot but not the left, which showed the correlation between body-specific attention and the normalized toe gripping force, suggesting that body-specific attention affected postural control. In the hand, the number of rotations of the ball was higher in the high than in the low attention group, regardless of the elaboration exercise difficulty or the left or right hand. However, this relation was not observed in the handgripping task. Thus, body-specific attention to the hand is an important component of elaborate movements. The tactile threshold was higher in the high than in the low attention group, regardless of the side in hand and foot. The results suggested that more body-specific attention is directed to the limbs with lower tactile abilities, supporting the sensory information reaching the brain. Therefore, we suggested that body-specific attention regulates the sensory information to help motor control.
Collapse
Affiliation(s)
- Naoki Aizu
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- *Correspondence: Naoki Aizu
| | - Ryoji Otaki
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Nishii
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Takumi Kito
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
| | - Runhong Yao
- Department of Physical Therapy, School of Health Sciences, Japan University of Health Sciences, Satte, Japan
| | - Kenya Uemura
- Department of Rehabilitation, Hachinohe City Hospital, Hachinohe, Japan
| | - Shin-ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Kouji Yamada
- School of Health Sciences, Faculty of Rehabilitation, Fujita Health University, Toyoake, Japan
- Graduate School of Health Sciences, Fujita Health University, Toyoake, Japan
| |
Collapse
|
20
|
Ishikawa R, Ayabe-Kanamura S, Izawa J. The role of motor memory dynamics in structuring bodily self-consciousness. iScience 2021; 24:103511. [PMID: 34934929 PMCID: PMC8661550 DOI: 10.1016/j.isci.2021.103511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Bodily self-consciousness has been considered a sensorimotor root of self-consciousness. If this is the case, how does sensorimotor memory, which is important for the prediction of sensory consequences of volitional actions, influence awareness of bodily self-consciousness? This question is essential for understanding the effective acquisition and recovery of self-consciousness following its impairment, but it has remained unexamined. Here, we investigated how body ownership and agency recovered following body schema distortion in a virtual reality environment along with two kinds of motor memories: memories that were rapidly updated and memories that were gradually updated. We found that, although agency and body ownership recovered in parallel, the recovery of body ownership was predicted by fast memories and that of agency was predicted by slow memories. Thus, the bodily self was represented in multiple motor memories with different dynamics. This finding demystifies the controversy about the causal relationship between body ownership and agency.
Collapse
Affiliation(s)
- Ryota Ishikawa
- Ph.D. Program in Humanics, University of Tsukuba, Ibaraki 305-8573, Japan
| | | | - Jun Izawa
- Faculty of Engineering, Information, and Systems, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
21
|
Saito H, Horie A, Maekawa A, Matsubara S, Wakisaka S, Kashino Z, Kasahara S, Inami M. Transparency in Human-Machine Mutual Action. JOURNAL OF ROBOTICS AND MECHATRONICS 2021. [DOI: 10.20965/jrm.2021.p0987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in human-computer integration (HInt) have focused on the development of human-machine systems, where both human and machine autonomously act upon each other. However, a key challenge in designing such systems is augmenting the user’s physical abilities while maintaining their sense of self-attribution. This challenge is particularly prevalent when both human and machine are capable of acting upon each other, thereby creating a human-machine mutual action (HMMA) system. To address this challenge, we present a design framework that is based on the concept of transparency. We define transparency in HInt as the degree to which users can self-attribute an experience when machines intervene in the users’ action. Using this framework, we form a set of design guidelines and an approach for designing HMMA systems. By using transparency as our focus, we aim to provide a design approach for not only achieving human-machine fusion into a single agent, but also controlling the degrees of fusion at will. This study also highlights the effectiveness of our design approach through an analysis of existing studies that developed HMMA systems. Further development of our design approach is discussed, and future prospects for HInt and HMMA system designs are presented.
Collapse
|
22
|
Baptista A, Cohen D, Jacquet PO, Chambon V. The Cognitive, Ecological, and Developmental Origins of Self-Disturbance in Borderline Personality Disorder. Front Psychiatry 2021; 12:707091. [PMID: 34658950 PMCID: PMC8514658 DOI: 10.3389/fpsyt.2021.707091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/03/2021] [Indexed: 01/21/2023] Open
Abstract
Self-disturbance is recognized as a key symptom of Borderline Personality Disorder (BPD). Although it is the source of significant distress and significant costs to society, it is still poorly specified. In addition, current research and models on the etiology of BPD do not provide sufficient evidence or predictions about who is at risk of developing BPD and self-disturbance, and why. The aim of this review is to lay the foundations of a new model inspired by recent developments at the intersection of social cognition, behavioral ecology, and developmental biology. We argue that the sense of agency is an important dimension to consider when characterizing self-disturbances in BPD. Second, we address the poorly characterized relation between self-disturbances and adverse life conditions encountered early in life. We highlight the potential relevance of Life-History Theory-a major framework in evolutionary developmental biology-to make sense of this association. We put forward the idea that the effect of early life adversity on BPD symptomatology depends on the way individuals trade their limited resources between competing biological functions during development.
Collapse
Affiliation(s)
- Axel Baptista
- Institut Jean Nicod, Département d'études Cognitives, ENS, EHESS, CNRS, PSL University, Paris, France
- Service de Psychiatrie de l'Enfant et de l'Adolescent, GH Pitié-Salpêtrière Charles Foix, APHP.6, Paris, France
- Université de Paris, Paris, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - David Cohen
- Service de Psychiatrie de l'Enfant et de l'Adolescent, GH Pitié-Salpêtrière Charles Foix, APHP.6, Paris, France
- Institut des Systèmes Intelligents et de Robotique, Sorbonne Université, ISIR CNRS UMR 7222, Paris, France
| | - Pierre Olivier Jacquet
- Institut Jean Nicod, Département d'études Cognitives, ENS, EHESS, CNRS, PSL University, Paris, France
- Laboratoire de Neurosciences Cognitives & Computationnelles, Département d'études Cognitives, École Normale Supérieure, INSERM, PSL University, Paris, France
- Institut du Psychotraumatisme de l'Enfant et de l'Adolescent, Centre Hospitalier de Versailles et Conseil départemental des Yvelines et des Hauts de Seine, Versailles, France
| | - Valérian Chambon
- Institut Jean Nicod, Département d'études Cognitives, ENS, EHESS, CNRS, PSL University, Paris, France
| |
Collapse
|
23
|
Wen W, Yun S, Yamashita A, Northcutt BD, Asama H. Deceleration Assistance Mitigated the Trade-off Between Sense of Agency and Driving Performance. Front Psychol 2021; 12:643516. [PMID: 34149526 PMCID: PMC8208475 DOI: 10.3389/fpsyg.2021.643516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Driving assistance technology has gained traction in recent years and is becoming more widely used in vehicles. However, drivers usually experience a reduced sense of agency when driving assistance is active even though automated assistance improves driving performance by reducing human error and ensuring quick reactions. The present study examined whether driving assistance can maintain human sense of agency during early deceleration in the face of collision risk, compared with manual deceleration. In the experimental task, participants decelerate their vehicle in a driving simulator to avoid collision with a vehicle that suddenly cut in front of them and decelerated. In the assisted condition, the system performed deceleration 100 ms after the cut-in. Participants were instructed to decelerate their vehicle and follow the vehicle that cut-in. This design ensured that the deceleration assistance applied a similar control to the vehicle as the drivers intended to, only faster and smoother. Participants rated their sense of agency and their driving performance. The results showed that drivers maintained their sense of agency and improved driving performance under driving assistance. The findings provided insights into designing driving assistance that can maintain drivers' sense of agency while improving future driving performance. It is important to establish a mode of joint-control in which the system shares the intention of human drivers and provides improved execution of control.
Collapse
Affiliation(s)
- Wen Wen
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Sonmin Yun
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Atsushi Yamashita
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Hajime Asama
- Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Uhlmann L, Pazen M, van Kemenade BM, Kircher T, Straube B. Neural Correlates of Self-other Distinction in Patients with Schizophrenia Spectrum Disorders: The Roles of Agency and Hand Identity. Schizophr Bull 2021; 47:1399-1408. [PMID: 33433625 PMCID: PMC8379550 DOI: 10.1093/schbul/sbaa186] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Schizophrenia spectrum disorders (SSD) are characterized by disturbed self-other distinction. While previous studies associate abnormalities in the sense of agency (ie, the feeling that an action and the resulting sensory consequences are produced by oneself) with disturbed processing in the angular gyrus, passive movement conditions to isolate contributions of motor predictions are lacking. Furthermore, the role of body identity (ie, visual features determining whether a seen body part belongs to oneself) in self-other distinction is unclear. In the current study, fMRI was used to assess the roles of agency and hand identity in self-other distinction. Patients with SSD and healthy controls (HC) performed active and passive hand movements (agency manipulation) while seeing their own or someone else's hand moving in accordance with their action (hand identity manipulation). Variable delays (0-417 ms) between movement and feedback had to be detected. Our results showed overall lower delay detection performances during active than passive conditions; however, these differences were reduced in patients when the own hand was displayed. On a neural level, we found that in HC, activation in the right angular gyrus was modulated by agency and hand identity. In contrast, agency and hand identity revealed no overlapping activation in patients, due to reduced effects of agency. Importantly, HC and SSD patients shared similar effects of hand identity in the angular gyrus. Our results suggest that disturbances of self-other distinction in SSD are particularly driven by agency, while self-other distinction based on hand identity might be spared.
Collapse
Affiliation(s)
- Lukas Uhlmann
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany,To whom correspondence should be addressed; Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; tel: +49-6421-58-66883; e-mail:
| | - Mareike Pazen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Bianca M van Kemenade
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany,Center for Mind, Brain and Behavior (CMBB), Marburg, Germany
| |
Collapse
|
25
|
Categorical Perception of Control. eNeuro 2020; 7:ENEURO.0258-20.2020. [PMID: 32917795 PMCID: PMC7598912 DOI: 10.1523/eneuro.0258-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 11/21/2022] Open
Abstract
The self is a distinct entity from the rest of the world, and actions and sensory feedback are our channels of interaction with the external world. This study examined how the sense of control influences people's perception of sensorimotor input under the framework of categorical perception. Twenty human participants (18 males, two females) took part in both experiments. Experiment 1 showed that the sensitivity (d') of detecting a 20% change in control from no change was higher when the changes occurred at the control-category boundary than within each category. Experiment 2 showed that the control categories greatly affected early attention allocation, even when the judgment of control was unnecessary to the task. Taken together, these results showed that our perceptual and cognitive systems are highly sensitive to small changes in control that build up to a determinant change in the control category within a relatively narrow boundary zone between categories, compared with a continuous, gradual physical change in control.
Collapse
|