1
|
Zhang W, Li Y, Zhou C, Li B, Schwieter JW, Liu H, Liu M. Expectation to rewards modulates learning emotional words: Evidence from a hierarchical Bayesian model. Biol Psychol 2024; 193:108895. [PMID: 39481632 DOI: 10.1016/j.biopsycho.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
In language acquisition, individuals learn the emotional value of words through external feedback. Previous studies have used emotional words as experimental materials to explore the cognitive mechanisms underlying emotional language processing, but have failed to recognize that languages are acquired in changing environments. To this end, this study aims to combine reinforcement learning with emotional word learning, using a probabilistic reversal learning task to explore how individuals acquire the valence of emotional words in a dynamically changing environment. Computational modeling on both behavioral and event-related potential (ERP) data revealed that individuals' expectations to rewards modulated the learning speed and temporal processing of emotional words, demonstrating a clear negative bias. Specifically, as the expected value increased, individuals responded faster and exhibited higher amplitudes for negative emotional words. These findings shed light on the neural mechanisms of emotional word learning in a volatile environment, highlighting the crucial role of expectations in this process and a preference for learning negative information.
Collapse
Affiliation(s)
- Weiwei Zhang
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Yingyu Li
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Chuan Zhou
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China
| | - Baike Li
- School of Psychology, Liaoning Normal University, Dalian, China
| | - John W Schwieter
- Language Acquisition, Cognition, and Multilingualism Laboratory, Bilingualism Matters, Wilfrid Laurier University, Canada; Department of Linguistics and Languages, McMaster University, Canada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, China; Key Laboratory of Brain and Cognitive Neuroscience, Dalian, Liaoning Province 116029, China.
| | - Meng Liu
- School of Psychology, Liaoning Normal University, Dalian, China.
| |
Collapse
|
2
|
Wang BA, Drammis S, Hummos A, Halassa MM, Pleger B. Modulation of prefrontal couplings by prior belief-related responses in ventromedial prefrontal cortex. Front Neurosci 2023; 17:1278096. [PMID: 38033544 PMCID: PMC10684683 DOI: 10.3389/fnins.2023.1278096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Humans and other animals can maintain constant payoffs in an uncertain environment by steadily re-evaluating and flexibly adjusting current strategy, which largely depends on the interactions between the prefrontal cortex (PFC) and mediodorsal thalamus (MD). While the ventromedial PFC (vmPFC) represents the level of uncertainty (i.e., prior belief about external states), it remains unclear how the brain recruits the PFC-MD network to re-evaluate decision strategy based on the uncertainty. Here, we leverage non-linear dynamic causal modeling on fMRI data to test how prior belief-dependent activity in vmPFC gates the information flow in the PFC-MD network when individuals switch their decision strategy. We show that the prior belief-related responses in vmPFC had a modulatory influence on the connections from dorsolateral PFC (dlPFC) to both, lateral orbitofrontal (lOFC) and MD. Bayesian parameter averaging revealed that only the connection from the dlPFC to lOFC surpassed the significant threshold, which indicates that the weaker the prior belief, the less was the inhibitory influence of the vmPFC on the strength of effective connections from dlPFC to lOFC. These findings suggest that the vmPFC acts as a gatekeeper for the recruitment of processing resources to re-evaluate the decision strategy in situations of high uncertainty.
Collapse
Affiliation(s)
- Bin A. Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Sabrina Drammis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ali Hummos
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Michael M. Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
3
|
Wang BA, Veismann M, Banerjee A, Pleger B. Human orbitofrontal cortex signals decision outcomes to sensory cortex during behavioral adaptations. Nat Commun 2023; 14:3552. [PMID: 37322004 PMCID: PMC10272188 DOI: 10.1038/s41467-023-38671-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
The ability to respond flexibly to an ever-changing environment relies on the orbitofrontal cortex (OFC). However, how the OFC associates sensory information with predicted outcomes to enable flexible sensory learning in humans remains elusive. Here, we combine a probabilistic tactile reversal learning task with functional magnetic resonance imaging (fMRI) to investigate how lateral OFC (lOFC) interacts with the primary somatosensory cortex (S1) to guide flexible tactile learning in humans. fMRI results reveal that lOFC and S1 exhibit distinct task-dependent engagement: while the lOFC responds transiently to unexpected outcomes immediately following reversals, S1 is persistently engaged during re-learning. Unlike the contralateral stimulus-selective S1, activity in ipsilateral S1 mirrors the outcomes of behavior during re-learning, closely related to top-down signals from lOFC. These findings suggest that lOFC contributes to teaching signals to dynamically update representations in sensory areas, which implement computations critical for adaptive behavior.
Collapse
Affiliation(s)
- Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
| | - Maike Veismann
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany
| | - Abhishek Banerjee
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr-University Bochum, Bochum, Germany.
| |
Collapse
|
4
|
Pleger B, Wang B. P-12 Brain networks of cognitive flexibility in humans and mice. Clin Neurophysiol 2023. [DOI: 10.1016/j.clinph.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
5
|
Banerjee A, Wang BA, Teutsch J, Helmchen F, Pleger B. Analogous cognitive strategies for tactile learning in the rodent and human brain. Prog Neurobiol 2023; 222:102401. [PMID: 36608783 DOI: 10.1016/j.pneurobio.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Evolution has molded individual species' sensory capacities and abilities. In rodents, who mostly inhabit dark tunnels and burrows, the whisker-based somatosensory system has developed as the dominant sensory modality, essential for environmental exploration and spatial navigation. In contrast, humans rely more on visual and auditory inputs when collecting information from their surrounding sensory space in everyday life. As a result of such species-specific differences in sensory dominance, cognitive relevance and capacities, the evidence for analogous sensory-cognitive mechanisms across species remains sparse. However, recent research in rodents and humans yielded surprisingly comparable processing rules for detecting tactile stimuli, integrating touch information into percepts, and goal-directed rule learning. Here, we review how the brain, across species, harnesses such processing rules to establish decision-making during tactile learning, following canonical circuits from the thalamus and the primary somatosensory cortex up to the frontal cortex. We discuss concordances between empirical and computational evidence from micro- and mesoscopic circuit studies in rodents to findings from macroscopic imaging in humans. Furthermore, we discuss the relevance and challenges for future cross-species research in addressing mutual context-dependent evaluation processes underpinning perceptual learning.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom.
| | - Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany.
| | - Jasper Teutsch
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Switzerland
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany
| |
Collapse
|
6
|
Hummos A, Wang BA, Drammis S, Halassa MM, Pleger B. Thalamic regulation of frontal interactions in human cognitive flexibility. PLoS Comput Biol 2022; 18:e1010500. [PMID: 36094955 PMCID: PMC9499289 DOI: 10.1371/journal.pcbi.1010500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/22/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Interactions across frontal cortex are critical for cognition. Animal studies suggest a role for mediodorsal thalamus (MD) in these interactions, but the computations performed and direct relevance to human decision making are unclear. Here, inspired by animal work, we extended a neural model of an executive frontal-MD network and trained it on a human decision-making task for which neuroimaging data were collected. Using a biologically-plausible learning rule, we found that the model MD thalamus compressed its cortical inputs (dorsolateral prefrontal cortex, dlPFC) underlying stimulus-response representations. Through direct feedback to dlPFC, this thalamic operation efficiently partitioned cortical activity patterns and enhanced task switching across different contingencies. To account for interactions with other frontal regions, we expanded the model to compute higher-order strategy signals outside dlPFC, and found that the MD offered a more efficient route for such signals to switch dlPFC activity patterns. Human fMRI data provided evidence that the MD engaged in feedback to dlPFC, and had a role in routing orbitofrontal cortex inputs when subjects switched behavioral strategy. Collectively, our findings contribute to the emerging evidence for thalamic regulation of frontal interactions in the human brain.
Collapse
Affiliation(s)
- Ali Hummos
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Bin A. Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Bochum, Germany
| | - Sabrina Drammis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michael M. Halassa
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
- Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Antonucci LA, Penzel N, Pigoni A, Dominke C, Kambeitz J, Pergola G. Flexible and specific contributions of thalamic subdivisions to human cognition. Neurosci Biobehav Rev 2021; 124:35-53. [PMID: 33497787 DOI: 10.1016/j.neubiorev.2021.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/30/2020] [Accepted: 01/04/2021] [Indexed: 11/17/2022]
Abstract
The thalamus participates in multiple functional brain networks supporting different cognitive abilities. How thalamo-cortical connections map onto the architecture of human cognition remains an outstanding question. The aim of this meta-analysis is to map co-activation between thalamic and extra-thalamic brain regions onto separate cognitive domains and to assess thalamic subdivision specificity within each of the cognitive domains considered. We parsed 93 fMRI studies into twelve cognitive domains. Signed Differential Mapping served to obtain co-activation maps. We then projected the contribution of thalamic subdivisions onto a thalamic atlas to assess cognitive domain specificity. A set of brain regions was flexibly involved with thalamus in several cognitive domains. Thalamic subdivisions showed ample cognitive heterogeneity. Our proposed model represents thalamic involvement in cognition as an "ensemble" of functional subdivisions with common cell properties embedded in separate cortical circuits rather than a homogeneous functional unit.
Collapse
Affiliation(s)
- Linda A Antonucci
- Department of Education, Psychology and Communication - University of Bari Aldo Moro, Bari, Italy; Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany; Department of Basic Medical Sciences, Neuroscience and Sense Organs - University of Bari Aldo Moro, Bari, Italy.
| | - Nora Penzel
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany; Department of Psychiatry University of Cologne, Medical Faculty Cologne Germany
| | - Alessandro Pigoni
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany; Department of Neurosciences and Mental Health - Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Clara Dominke
- Section for Neurodiagnostic Applications, Department of Psychiatry and Psychotherapy - Ludwig Maximilians Universität, Munich, Germany
| | - Joseph Kambeitz
- Department of Psychiatry University of Cologne, Medical Faculty Cologne Germany
| | - Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs - University of Bari Aldo Moro, Bari, Italy; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA.
| |
Collapse
|