1
|
Qing P, Zhang X, Liu Q, Huang L, Xu D, Le J, Kendrick KM, Lai H, Zhao W. Structure-function coupling in white matter uncovers the hypoconnectivity in autism spectrum disorder. Mol Autism 2024; 15:43. [PMID: 39367506 PMCID: PMC11451199 DOI: 10.1186/s13229-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder associated with alterations in structural and functional coupling in gray matter. However, despite the detectability and modulation of brain signals in white matter, the structure-function coupling in white matter in autism remains less explored. METHODS In this study, we investigated structural-functional coupling in white matter (WM) regions, by integrating diffusion tensor data that contain fiber orientation information from WM tracts, with functional connectivity tensor data that reflect local functional anisotropy information. Using functional and diffusion magnetic resonance images, we analyzed a cohort of 89 ASD and 63 typically developing (TD) individuals from the Autism Brain Imaging Data Exchange II (ABIDE-II). Subsequently, the associations between structural-functional coupling in WM regions and ASD severity symptoms assessed by Autism Diagnostic Observation Schedule-2 were examined via supervised machine learning in an independent test cohort of 29 ASD individuals. Furthermore, we also compared the performance of multi-model features (i.e. structural-functional coupling) with single-model features (i.e. functional or structural models alone). RESULTS In the discovery cohort (ABIDE-II), individuals with ASD exhibited widespread reductions in structural-functional coupling in WM regions compared to TD individuals, particularly in commissural tracts (e.g. corpus callosum), association tracts (sagittal stratum), and projection tracts (e.g. internal capsule). Notably, supervised machine learning analysis in the independent test cohort revealed a significant correlation between these alterations in structural-functional coupling and ASD severity scores. Furthermore, compared to single-model features, the integration of multi-model features (i.e., structural-functional coupling) performed best in predicting ASD severity scores. CONCLUSION This work provides novel evidence for atypical structural-functional coupling in ASD in white matter regions, further refining our understanding of the critical role of WM networks in the pathophysiology of ASD.
Collapse
Affiliation(s)
- Peng Qing
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaodong Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qi Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Linghong Huang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dan Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiao Le
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hua Lai
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
2
|
Duan X, Shan X, Uddin LQ, Chen H. The Future of Disentangling the Heterogeneity of Autism With Neuroimaging Studies. Biol Psychiatry 2024:S0006-3223(24)01536-1. [PMID: 39181387 DOI: 10.1016/j.biopsych.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Autism spectrum disorder (ASD) is a lifelong neurodevelopmental condition. Over the past decade, a considerable number of approaches have been developed to identify potential neuroimaging-based biomarkers of ASD that have uncovered specific neural mechanisms that underlie behaviors associated with ASD. However, the substantial heterogeneity among individuals who are diagnosed with ASD hinders the development of biomarkers. Disentangling the heterogeneity of ASD is pivotal to improving the quality of life for individuals with ASD by facilitating early diagnosis and individualized interventions for those who need support. In this review, we discuss recent advances in neuroimaging that have facilitated the characterization of the heterogeneity of this condition using 3 frameworks: neurosubtyping, dimensional models, and normative models. We also discuss the challenges, possible solutions, and clinical utility of these 3 frameworks. We argue that several factors need to be considered when parsing heterogeneity using neuroimaging, including co-occurring conditions, neurodevelopment, heredity and environment, and multisite and multimodal data. We close with a discussion of future directions for achieving a better understanding of the neural mechanisms that underlie neurodevelopmental heterogeneity and the future of precision medicine in ASD.
Collapse
Affiliation(s)
- Xujun Duan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiaolong Shan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Huafu Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
3
|
Wang XH, Wu P, Li L. Predicting individual autistic symptoms for patients with autism spectrum disorder using interregional morphological connectivity. Psychiatry Res Neuroimaging 2024; 341:111822. [PMID: 38678667 DOI: 10.1016/j.pscychresns.2024.111822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Intelligent predictive models for autistic symptoms based on neuroimaging datasets were beneficial for the precise intervention of patients with ASD. The goals of this study were twofold: investigating predictive models for autistic symptoms and discovering the brain connectivity patterns for ASD-related behaviors. To achieve these goals, we obtained a cohort of patients with ASD from the ABIDE project. The autistic symptoms were measured using the Autism Diagnostic Observation Schedule (ADOS). The anatomical MRI datasets were preprocessed using the Freesurfer package, resulting in regional morphological features. For each individual, the interregional morphological network was constructed using a novel feature distance-based method. The predictive models for autistic symptoms were built using the support vector regression (SVR) algorithm with feature selection method. The predicted autistic symptoms (i.e., ADOS social score, ADOS behavior) were significantly correlated to the original measures. The most predictive features for ADOS social scores were located in the bilateral fusiform. The most predictive features for ADOS behavior scores were located in the temporal pole and the lingual gyrus. In summary, the autistic symptoms could be predicted using the interregional morphological connectivity and machine learning. The interregional morphological connectivity could be a potential biomarker for autistic symptoms.
Collapse
Affiliation(s)
- Xun-Heng Wang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Peng Wu
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, 310018, China
| |
Collapse
|
4
|
Jimenez-Marin A, Diez I, Erramuzpe A, Stramaglia S, Bonifazi P, Cortes JM. Open datasets and code for multi-scale relations on structure, function and neuro-genetics in the human brain. Sci Data 2024; 11:256. [PMID: 38424112 PMCID: PMC10904384 DOI: 10.1038/s41597-024-03060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
The human brain is an extremely complex network of structural and functional connections that operate at multiple spatial and temporal scales. Investigating the relationship between these multi-scale connections is critical to advancing our comprehension of brain function and disorders. However, accurately predicting structural connectivity from its functional counterpart remains a challenging pursuit. One of the major impediments is the lack of public repositories that integrate structural and functional networks at diverse resolutions, in conjunction with modular transcriptomic profiles, which are essential for comprehensive biological interpretation. To mitigate this limitation, our contribution encompasses the provision of an open-access dataset consisting of derivative matrices of functional and structural connectivity across multiple scales, accompanied by code that facilitates the investigation of their interrelations. We also provide additional resources focused on neuro-genetic associations of module-level network metrics, which present promising opportunities to further advance research in the field of network neuroscience, particularly concerning brain disorders.
Collapse
Affiliation(s)
- Antonio Jimenez-Marin
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Ibai Diez
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Asier Erramuzpe
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Sebastiano Stramaglia
- Dipartamento Interateneo di Fisica, Universita Degli Studi di Bari Aldo Moro, INFN, Bari, Italy
| | - Paolo Bonifazi
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Cortes
- Computational Neuroimaging Lab, Biobizkaia HRI, Barakaldo, Spain.
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain.
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
5
|
Rasero J, Jimenez-Marin A, Diez I, Toro R, Hasan MT, Cortes JM. The Neurogenetics of Functional Connectivity Alterations in Autism: Insights From Subtyping in 657 Individuals. Biol Psychiatry 2023; 94:804-813. [PMID: 37088169 DOI: 10.1016/j.biopsych.2023.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND There is little consensus and controversial evidence on anatomical alterations in the brains of people with autism spectrum disorder (ASD), due in part to the large heterogeneity present in ASD, which in turn is a major drawback for developing therapies. One strategy to characterize this heterogeneity in ASD is to cluster large-scale functional brain connectivity profiles. METHODS A subtyping approach based on consensus clustering of functional brain connectivity patterns was applied to a population of 657 autistic individuals with quality-assured neuroimaging data. We then used high-resolution gene transcriptomic data to characterize the molecular mechanism behind each subtype by performing enrichment analysis of the set of genes showing a high spatial similarity with the profiles of functional connectivity alterations between each subtype and a group of typically developing control participants. RESULTS Two major stable subtypes were found: subtype 1 exhibited hypoconnectivity (less average connectivity than typically developing control participants) and subtype 2, hyperconnectivity. The 2 subtypes did not differ in structural imaging metrics in any of the analyzed regions (68 cortical and 14 subcortical) or in any of the behavioral scores (including IQ, Autism Diagnostic Interview, and Autism Diagnostic Observation Schedule). Finally, only subtype 2, comprising about 43% of ASD participants, led to significant enrichments after multiple testing corrections. Notably, the dominant enrichment corresponded to excitation/inhibition imbalance, a leading well-known primary mechanism in the pathophysiology of ASD. CONCLUSIONS Our results support a link between excitation/inhibition imbalance and functional connectivity alterations, but only in one ASD subtype, overall characterized by brain hyperconnectivity and major alterations in somatomotor and default mode networks.
Collapse
Affiliation(s)
- Javier Rasero
- Cognitive Axon Laboratory, Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| | - Antonio Jimenez-Marin
- Computational Neuroimaging Laboratory, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain; Biomedical Research Doctorate Program, University of the Basque Country, Leioa, Spain
| | - Ibai Diez
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Roberto Toro
- Institut Pasteur, Université de Paris, Département de neuroscience, Paris, France
| | - Mazahir T Hasan
- Laboratory of Brain Circuits Therapeutics, Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Cortes
- Computational Neuroimaging Laboratory, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, The Basque Foundation for Science, Bilbao, Spain; Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
6
|
Huang X, Ming Y, Zhao W, Feng R, Zhou Y, Wu L, Wang J, Xiao J, Li L, Shan X, Cao J, Kang X, Chen H, Duan X. Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain. Mol Autism 2023; 14:41. [PMID: 37899464 PMCID: PMC10614412 DOI: 10.1186/s13229-023-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account. METHOD In this study, diffusion tensor imaging was acquired from two independent cohorts, containing 91 autistic children and 100 typically developing children (TDC), aged 4-7 years. Developmental prediction modeling using support vector regression based on TDC participants was conducted to estimate the WM atypical development index of autistic children. Then, subgroups of autistic children were identified by using the k-means clustering method and were compared to each other on the basis of demographic information, WM atypical development index, and autistic trait by using two-sample t-test. Relationship of the WM atypical development index with age was estimated by using partial correlation. Furthermore, we performed threshold-free cluster enhancement-based two-sample t-test for the group comparison in WM microstructures of each subgroup of autistic children with the rematched subsets of TDC. RESULTS We clustered autistic children into two subgroups according to WM atypical development index. The two subgroups exhibited distinct developmental stages and age-dependent diversity. WM atypical development index was found negatively associated with age. Moreover, an inverse pattern of atypical WM microstructures and different clinical manifestations in the two stages, with subgroup 1 showing overgrowth with low level of autistic traits and subgroup 2 exhibiting delayed maturation with high level of autistic traits, were revealed. CONCLUSION This study illustrated age-dependent heterogeneity in early childhood autistic children and delineated developmental stage-specific difference that ranged from an overgrowth pattern to a delayed pattern. Trial registration This study has been registered at ClinicalTrials.gov (Identifier: NCT02807766) on June 21, 2016 ( https://clinicaltrials.gov/ct2/show/NCT02807766 ).
Collapse
Affiliation(s)
- Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yating Ming
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Weixing Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yuanyue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Lei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jing Cao
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Xiaodong Kang
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
7
|
Cong J, Zhuang W, Liu Y, Yin S, Jia H, Yi C, Chen K, Xue K, Li F, Yao D, Xu P, Zhang T. Altered default mode network causal connectivity patterns in autism spectrum disorder revealed by Liang information flow analysis. Hum Brain Mapp 2023; 44:2279-2293. [PMID: 36661190 PMCID: PMC10028659 DOI: 10.1002/hbm.26209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive developmental disorder with severe cognitive impairment in social communication and interaction. Previous studies have reported that abnormal functional connectivity patterns within the default mode network (DMN) were associated with social dysfunction in ASD. However, how the altered causal connectivity pattern within the DMN affects the social functioning in ASD remains largely unclear. Here, we introduced the Liang information flow method, widely applied to climate science and quantum mechanics, to uncover the brain causal network patterns in ASD. Compared with the healthy controls (HC), we observed that the interactions among the dorsal medial prefrontal cortex (dMPFC), ventral medial prefrontal cortex (vMPFC), hippocampal formation, and temporo-parietal junction showed more inter-regional causal connectivity differences in ASD. For the topological property analysis, we also found the clustering coefficient of DMN and the In-Out degree of anterior medial prefrontal cortex were significantly decreased in ASD. Furthermore, we found that the causal connectivity from dMPFC to vMPFC was correlated with the clinical symptoms of ASD. These altered causal connectivity patterns indicated that the DMN inter-regions information processing was perturbed in ASD. In particular, we found that the dMPFC acts as a causal source in the DMN in HC, whereas it plays a causal target in ASD. Overall, our findings indicated that the Liang information flow method could serve as an important way to explore the DMN causal connectivity patterns, and it also can provide novel insights into the nueromechanisms underlying DMN dysfunction in ASD.
Collapse
Affiliation(s)
- Jing Cong
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Wenwen Zhuang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Yunhong Liu
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Shunjie Yin
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Hai Jia
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| | - Kaiqing Xue
- School of Computer and Software Engineering, Xihua University, Chengdu, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao Zhang
- Mental Health Education Center and School of Science, Xihua University, Chengdu, China
| |
Collapse
|
8
|
Inter-individual heterogeneity of functional brain networks in children with autism spectrum disorder. Mol Autism 2022; 13:52. [PMID: 36572935 PMCID: PMC9793594 DOI: 10.1186/s13229-022-00535-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with considerable clinical heterogeneity. This study aimed to explore the heterogeneity of ASD based on inter-individual heterogeneity of functional brain networks. METHODS Resting-state functional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange database were used in this study for 105 children with ASD and 102 demographically matched typical controls (TC) children. Functional connectivity (FC) networks were first obtained for ASD and TC groups, and inter-individual deviation of functional connectivity (IDFC) from the TC group was then calculated for each individual with ASD. A k-means clustering algorithm was used to obtain ASD subtypes based on IDFC patterns. The FC patterns were further compared between ASD subtypes and the TC group from the brain region, network, and whole-brain levels. The relationship between IDFC and the severity of clinical symptoms of ASD for ASD subtypes was also analyzed using a support vector regression model. RESULTS Two ASD subtypes were identified based on the IDFC patterns. Compared with the TC group, the ASD subtype 1 group exhibited a hypoconnectivity pattern and the ASD subtype 2 group exhibited a hyperconnectivity pattern. IDFC for ASD subtype 1 and subtype 2 was found to predict the severity of social communication impairments and the severity of restricted and repetitive behaviors in ASD, respectively. LIMITATIONS Only male children were selected for this study, which limits the ability to study the effects of gender and development on ASD heterogeneity. CONCLUSIONS These results suggest the existence of subtypes with different FC patterns in ASD and provide insight into the complex pathophysiological mechanism of clinical manifestations of ASD.
Collapse
|
9
|
Duan X, Chen H. Mapping brain functional and structural abnormities in autism spectrum disorder: moving toward precision treatment. PSYCHORADIOLOGY 2022; 2:78-85. [PMID: 38665600 PMCID: PMC10917159 DOI: 10.1093/psyrad/kkac013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 04/28/2024]
Abstract
Autism spectrum disorder (ASD) is a formidable challenge for psychiatry and neuroscience because of its high prevalence, lifelong nature, complexity, and substantial heterogeneity. A major goal of neuroimaging studies of ASD is to understand the neurobiological underpinnings of this disorder from multi-dimensional and multi-level perspectives, by investigating how brain anatomy, function, and connectivity are altered in ASD, and how they vary across the population. However, ongoing debate exists within those studies, and neuroimaging findings in ASD are often contradictory. Over the past decade, we have dedicated to delineate a comprehensive and consistent mapping of the abnormal structure and function of the autistic brain, and this review synthesizes the findings across our studies reaching a consensus that the "social brain" are the most affected regions in the autistic brain at different levels and modalities. We suggest that the social brain network can serve as a plausible biomarker and potential target for effective intervention in individuals with ASD.
Collapse
Affiliation(s)
- Xujun Duan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Huafu Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| |
Collapse
|
10
|
Gatica M, E. Rosas F, A. M. Mediano P, Diez I, P. Swinnen S, Orio P, Cofré R, M. Cortes J. High-order functional redundancy in ageing explained via alterations in the connectome in a whole-brain model. PLoS Comput Biol 2022; 18:e1010431. [PMID: 36054198 PMCID: PMC9477425 DOI: 10.1371/journal.pcbi.1010431] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain generates a rich repertoire of spatio-temporal activity patterns, which support a wide variety of motor and cognitive functions. These patterns of activity change with age in a multi-factorial manner. One of these factors is the variations in the brain's connectomics that occurs along the lifespan. However, the precise relationship between high-order functional interactions and connnectomics, as well as their variations with age are largely unknown, in part due to the absence of mechanistic models that can efficiently map brain connnectomics to functional connectivity in aging. To investigate this issue, we have built a neurobiologically-realistic whole-brain computational model using both anatomical and functional MRI data from 161 participants ranging from 10 to 80 years old. We show that the differences in high-order functional interactions between age groups can be largely explained by variations in the connectome. Based on this finding, we propose a simple neurodegeneration model that is representative of normal physiological aging. As such, when applied to connectomes of young participant it reproduces the age-variations that occur in the high-order structure of the functional data. Overall, these results begin to disentangle the mechanisms by which structural changes in the connectome lead to functional differences in the ageing brain. Our model can also serve as a starting point for modeling more complex forms of pathological ageing or cognitive deficits.
Collapse
Affiliation(s)
- Marilyn Gatica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
- Center for Complexity Science, Imperial College London, London, United Kingdom
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, Queen Mary University of London, London, United Kingdom
| | - Ibai Diez
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephan P. Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
- Department of Integrative and Computational Neuroscience, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Jesus M. Cortes
- Neuroimaging Lab, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
11
|
Fernandez-Iriondo I, Jimenez-Marin A, Sierra B, Aginako N, Bonifazi P, Cortes JM. Brain Mapping of Behavioral Domains Using Multi-Scale Networks and Canonical Correlation Analysis. Front Neurosci 2022; 16:889725. [PMID: 35801180 PMCID: PMC9255673 DOI: 10.3389/fnins.2022.889725] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Simultaneous mapping of multiple behavioral domains into brain networks remains a major challenge. Here, we shed some light on this problem by employing a combination of machine learning, structural and functional brain networks at different spatial resolutions (also known as scales), together with performance scores across multiple neurobehavioral domains, including sensation, motor skills, and cognition. Provided by the Human Connectome Project, we make use of three cohorts: 640 participants for model training, 160 subjects for validation, and 200 subjects for model performance testing thus enhancing prediction generalization. Our modeling consists of two main stages, namely dimensionality reduction in brain network features at multiple scales, followed by canonical correlation analysis, which determines an optimal linear combination of connectivity features to predict multiple behavioral performance scores. To assess the differences in the predictive power of each modality, we separately applied three different strategies: structural unimodal, functional unimodal, and multimodal, that is, structural in combination with functional features of the brain network. Our results show that the multimodal association outperforms any of the unimodal analyses. Then, to answer which human brain structures were most involved in predicting multiple behavioral scores, we simulated different synthetic scenarios in which in each case we completely deleted a brain structure or a complete resting state network, and recalculated performance in its absence. In deletions, we found critical structures to affect performance when predicting single behavioral domains, but this occurred in a lesser manner for prediction of multi-domain behavior. Overall, our results confirm that although there are synergistic contributions between brain structure and function that enhance behavioral prediction, brain networks may also be mutually redundant in predicting multidomain behavior, such that even after deletion of a structure, the connectivity of the others can compensate for its lack in predicting behavior.
Collapse
Affiliation(s)
- Izaro Fernandez-Iriondo
- Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Doctoral Programme in Informatics Engineering, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Antonio Jimenez-Marin
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Basilio Sierra
- Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Naiara Aginako
- Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Paolo Bonifazi
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Jesus M. Cortes
- Computational Neuroimaging Lab, BioCruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
12
|
Huang J, Ke P, Chen X, Li S, Zhou J, Xiong D, Huang Y, Li H, Ning Y, Duan X, Li X, Zhang W, Wu F, Wu K. Multimodal Magnetic Resonance Imaging Reveals Aberrant Brain Age Trajectory During Youth in Schizophrenia Patients. Front Aging Neurosci 2022; 14:823502. [PMID: 35309897 PMCID: PMC8929292 DOI: 10.3389/fnagi.2022.823502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Accelerated brain aging had been widely reported in patients with schizophrenia (SZ). However, brain aging trajectories in SZ patients have not been well-documented using three-modal magnetic resonance imaging (MRI) data. In this study, 138 schizophrenia patients and 205 normal controls aged 20–60 were included and multimodal MRI data were acquired for each individual, including structural MRI, resting state-functional MRI and diffusion tensor imaging. The brain age of each participant was estimated by features extracted from multimodal MRI data using linear multiple regression. The correlation between the brain age gap and chronological age in SZ patients was best fitted by a positive quadratic curve with a peak chronological age of 47.33 years. We used the peak to divide the subjects into a youth group and a middle age group. In the normal controls, brain age matched chronological age well for both the youth and middle age groups, but this was not the case for schizophrenia patients. More importantly, schizophrenia patients exhibited increased brain age in the youth group but not in the middle age group. In this study, we aimed to investigate brain aging trajectories in SZ patients using multimodal MRI data and revealed an aberrant brain age trajectory in young schizophrenia patients, providing new insights into the pathophysiological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Pengfei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoyi Chen
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Shijia Li
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dongsheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuanyuan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Hehua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yuping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xujun Duan
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Wensheng Zhang
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Fengchun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou, China
- *Correspondence: Fengchun Wu,
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
- Institute for Healthcare Artificial Intelligence Application, Guangdong Second Provincial General Hospital, Guangzhou, China
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Kai Wu,
| |
Collapse
|
13
|
Liu L, Liu J, Yang L, Wen B, Zhang X, Cheng J, Han S, Zhang Y, Cheng J. Accelerated Brain Aging in Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2022; 13:852479. [PMID: 35599767 PMCID: PMC9120421 DOI: 10.3389/fpsyt.2022.852479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2022] [Indexed: 12/14/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) may be accompanied by an accelerated structural decline of the brain with age compared to healthy controls (HCs); however, this has yet to be proven. To answer this question, we built a brain age prediction model using mean gray matter volumes of each brain region as features, which were obtained by voxel-based morphometry derived from T1-weighted MRI scans. The prediction model was built using two Chinese Han datasets (dataset 1, N = 106 for HCs and N = 90 for patients with OCD; dataset 2, N = 270 for HCs) to evaluate its performance. Then, a new prediction model was trained using data for HCs in dataset 1 and applied to patients with OCD to investigate the brain aging trajectory. The brain-predicted age difference (brain-PAD) scores, defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with matched HCs in dataset 1. It was demonstrated that the prediction model performs consistently across different datasets. Patients with OCD presented higher brain-PAD scores than matched HCs, suggesting that patients with OCD presented accelerated brain aging. In addition, brain-PAD scores were negatively correlated with the duration of illness, suggesting that brain-PAD scores might capture progressive structural brain changes. These results identified accelerated brain aging in patients with OCD for the first time and deepened our understanding of the pathogenesis of OCD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhong Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Public Health, School of Medicine, Huanghuai University, Zhumadian, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junying Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Fang K, Han S, Li Y, Ding J, Wu J, Zhang W. The Vital Role of Central Executive Network in Brain Age: Evidence From Machine Learning and Transcriptional Signatures. Front Neurosci 2021; 15:733316. [PMID: 34557071 PMCID: PMC8453084 DOI: 10.3389/fnins.2021.733316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Recent studies combining neuroimaging with machine learning methods successfully infer an individual’s brain age, and its discrepancy with the chronological age is used to identify age-related diseases. However, which brain networks play decisive roles in brain age prediction and the underlying biological basis of brain age remain unknown. To answer these questions, we estimated an individual’s brain age in the Southwest University Adult Lifespan Dataset (N = 492) from the gray matter volumes (GMV) derived from T1-weighted MRI scans by means of Gaussian process regression. Computational lesion analysis was performed to determine the importance of each brain network in brain age prediction. Then, we identified brain age-related genes by using prior brain-wide gene expression data, followed by gene enrichment analysis using Metascape. As a result, the prediction model successfully inferred an individual’s brain age and the computational lesion prediction results identified the central executive network as a vital network in brain age prediction (Steiger’s Z = 2.114, p = 0.035). In addition, the brain age-related genes were enriched in Gene Ontology (GO) processes/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways grouped into numbers of clusters, such as regulation of iron transmembrane transport, synaptic signaling, synapse organization, retrograde endocannabinoid signaling (e.g., dopaminergic synapse), behavior (e.g., memory and associative learning), neurotransmitter secretion, and dendrite development. In all, these results reveal that the GMV of the central executive network played a vital role in predicting brain age and bridged the gap between transcriptome and neuroimaging promoting an integrative understanding of the pathophysiology of brain age.
Collapse
Affiliation(s)
- Keke Fang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Li
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jing Ding
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Jilian Wu
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
15
|
Wang Q, Hu K, Wang M, Zhao Y, Liu Y, Fan L, Liu B. Predicting brain age during typical and atypical development based on structural and functional neuroimaging. Hum Brain Mapp 2021; 42:5943-5955. [PMID: 34520078 PMCID: PMC8596985 DOI: 10.1002/hbm.25660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 11/08/2022] Open
Abstract
Exploring typical and atypical brain developmental trajectories is very important for understanding the normal pace of brain development and the mechanisms by which mental disorders deviate from normal development. A precise and sex-specific brain age prediction model is desirable for investigating the systematic deviation and individual heterogeneity of disorders associated with atypical brain development, such as autism spectrum disorders. In this study, we used partial least squares regression and the stacking algorithm to establish a sex-specific brain age prediction model based on T1-weighted structural magnetic resonance imaging and resting-state functional magnetic resonance imaging. The model showed good generalization and high robustness on four independent datasets with different ethnic information and age ranges. A predictor weights analysis showed the differences and similarities in changes in structure and function during brain development. At the group level, the brain age gap estimation for autistic patients was significantly smaller than that for healthy controls in both the ABIDE dataset and the healthy brain network dataset, which suggested that autistic patients as a whole exhibited the characteristics of delayed development. However, within the ABIDE dataset, the premature development group had significantly higher Autism Diagnostic Observation Schedule (ADOS) scores than those of the delayed development group, implying that individuals with premature development had greater severity. Using these findings, we built an accurate typical brain development trajectory and developed a method of atypical trajectory analysis that considers sex differences and individual heterogeneity. This strategy may provide valuable clues for understanding the relationship between brain development and mental disorders.
Collapse
Affiliation(s)
- Qi Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Ke Hu
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Zhao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| |
Collapse
|
16
|
Ahmad S, Wu Y, Yap PT. Surface-Guided Image Fusion for Preserving Cortical Details in Human Brain Templates. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2021; 12907:390-399. [PMID: 35403173 PMCID: PMC8986340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human brain templates are a basis for comparison of brain features across individuals. They should ideally capture an atomical details at both coarse and fine scales to facilitate comparison at varying granularity. Brain template construction typically involves spatial normalization and image fusion. While significant efforts have been dedicated to improving brain templates with sophisticated spatial normalization algorithms, image fusion is typically carried out using intensity-based averaging, causing blurring of anatomical structures. Here, we present an image fusion method that exploits cortical surfaces as guidance to help preserve details in brain templates. Our method encodes cortical boundary information given by a cortical surface mesh in a signed distance function (SDF) map. We use the SDF map to help determine localized contributions of the individual images, especially at cortical boundaries, in image fusion. Experimental results demonstrate that our method significantly improves the preservation of fine gyral and sulcal details, resulting in detailed brain templates with good surface-volume agreement.
Collapse
Affiliation(s)
- Sahar Ahmad
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
17
|
He C, Cortes JM, Kang X, Cao J, Chen H, Guo X, Wang R, Kong L, Huang X, Xiao J, Shan X, Feng R, Chen H, Duan X. Individual-based morphological brain network organization and its association with autistic symptoms in young children with autism spectrum disorder. Hum Brain Mapp 2021; 42:3282-3294. [PMID: 33934442 PMCID: PMC8193534 DOI: 10.1002/hbm.25434] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 01/01/2023] Open
Abstract
Individual-based morphological brain networks built from T1-weighted magnetic resonance imaging (MRI) reflect synchronous maturation intensities between anatomical regions at the individual level. Autism spectrum disorder (ASD) is a socio-cognitive and neurodevelopmental disorder with high neuroanatomical heterogeneity, but the specific patterns of morphological networks in ASD remain largely unexplored at the individual level. In this study, individual-based morphological networks were constructed by using high-resolution structural MRI data from 40 young children with ASD (age range: 2-8 years) and 38 age-, gender-, and handedness-matched typically developing children (TDC). Measurements were recorded as threefold. Results showed that compared with TDC, young children with ASD exhibited lower values of small-worldness (i.e., σ) of individual-level morphological brain networks, increased morphological connectivity in cortico-striatum-thalamic-cortical (CSTC) circuitry, and decreased morphological connectivity in the cortico-cortical network. In addition, morphological connectivity abnormalities can predict the severity of social communication deficits in young children with ASD, thus confirming an associational impact at the behavioral level. These findings suggest that the morphological brain network in the autistic developmental brain is inefficient in segregating and distributing information. The results also highlight the crucial role of abnormal morphological connectivity patterns in the socio-cognitive deficits of ASD and support the possible use of the aberrant developmental patterns of morphological brain networks in revealing new clinically-relevant biomarkers for ASD.
Collapse
Affiliation(s)
- Changchun He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Jesus M. Cortes
- Computational Neuroimaging LaboratoryBiocruces‐Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque: The Basque Foundation for ScienceBilbaoSpain
- Department of Cell Biology and HistologyUniversity of the Basque CountryLeioaSpain
| | - Xiaodong Kang
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMSichuan Bayi Rehabilitation CenterChengduChina
| | - Jing Cao
- Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCMSichuan Bayi Rehabilitation CenterChengduChina
| | - Heng Chen
- School of MedicineMedical College of Guizhou UniversityGuiyangChina
| | - Xiaonan Guo
- School of Information Science and EngineeringYanshan UniversityQinhuangdaoChina
- Hebei Key Laboratory of information transmission and signal processingYanshan UniversityQinhuangdaoChina
| | - Ruishi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Material Science and EngineeringSouth China University of TechnologyGuangzhouChina
| | - Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- MOE Key Lab for NeuroinformationHigh‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
18
|
Han S, Chen Y, Zheng R, Li S, Jiang Y, Wang C, Fang K, Yang Z, Liu L, Zhou B, Wei Y, Pang J, Li H, Zhang Y, Cheng J. The stage-specifically accelerated brain aging in never-treated first-episode patients with depression. Hum Brain Mapp 2021; 42:3656-3666. [PMID: 33932251 PMCID: PMC8249899 DOI: 10.1002/hbm.25460] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Depression associated with structural brain abnormalities is hypothesized to be related with accelerated brain aging. However, there is far from a unified conclusion because of clinical variations such as medication status, cumulative illness burden. To explore whether brain age is accelerated in never‐treated first‐episode patients with depression and its association with clinical characteristics, we constructed a prediction model where gray matter volumes measured by voxel‐based morphometry derived from T1‐weighted MRI scans were treated as features. The prediction model was first validated using healthy controls (HCs) in two Chinese Han datasets (Dataset 1, N = 130 for HCs and N = 195 for patients with depression; Dataset 2, N = 270 for HCs) separately or jointly, then the trained prediction model using HCs (N = 400) was applied to never‐treated first‐episode patients with depression (N = 195). The brain‐predicted age difference (brain‐PAD) scores defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with age‐, gender‐, educational level‐matched HCs in Dataset 1. Overall, patients presented higher brain‐PAD scores suggesting patients with depression having an “older” brain than expected. More specially, this difference occurred at illness onset (illness duration <3 months) and following 2 years then disappeared as the illness further advanced (>2 years) in patients. This phenomenon was verified by another data‐driven method and significant correlation between brain‐PAD scores and illness duration in patients. Our results reveal that accelerated brain aging occurs at illness onset and suggest it is a stage‐dependent phenomenon in depression.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Keke Fang
- Phase I Clinical Research Center, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhengui Yang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Jianyue Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hengfen Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China.,Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China.,Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China.,Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China.,Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China.,Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
| |
Collapse
|
19
|
Kong LY, Huang YY, Lei BY, Ke PF, Li HH, Zhou J, Xiong DS, Li GX, Chen J, Li XB, Xiang ZM, Ning YP, Wu FC, Wu K. Divergent Alterations of Structural-Functional Connectivity Couplings in First-episode and Chronic Schizophrenia Patients. Neuroscience 2021; 460:1-12. [PMID: 33588002 DOI: 10.1016/j.neuroscience.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Emerging evidence suggests that the coupling relating the structural connectivity (SC) of the brain to its functional connectivity (FC) exhibits remarkable changes during development, normal aging, and diseases. Although altered structural-functional connectivity couplings (SC-FC couplings) have been previously reported in schizophrenia patients, the alterations in SC-FC couplings of different illness stages of schizophrenia (SZ) remain largely unknown. In this study, we collected structural and resting-state functional MRI data from 73 normal controls (NCs), 61 first-episode (FeSZ) and 78 chronic (CSZ) schizophrenia patients. Positive and negative syndrome scale (PANSS) scores were assessed for all patients. Structural and functional brain networks were constructed using gray matter volume (GMV) and resting-state magnetic resonance imaging (rs-fMRI) time series measurements. At the connectivity level, the CSZ patients showed significantly increased SC-FC coupling strength compared with the FeSZ patients. At the node strength level, significant decreased SC-FC coupling strength was observed in the FeSZ patients compared to that of the NCs, and the coupling strength was positively correlated with negative PANSS scores. These results demonstrated divergent alterations of SC-FC couplings in FeSZ and CSZ patients. Our findings provide new insight into the neuropathological mechanisms underlying the developmental course of SZ.
Collapse
Affiliation(s)
- Ling-Yin Kong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yuan-Yuan Huang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Bing-Ye Lei
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Peng-Fei Ke
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - He-Hua Li
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Jing Zhou
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Dong-Sheng Xiong
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Gui-Xiang Li
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Jun Chen
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China
| | - Xiao-Bo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Zhi-Ming Xiang
- Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; Department of Radiology, Panyu Central Hospital of Guangzhou, Guangzhou 511400, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China
| | - Feng-Chun Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China.
| | - Kai Wu
- Department of Biomedical Engineering, School of Material Science and Engineering, South China University of Technology, Guangzhou 510006, China; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou Huiai Hospital, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou 510370, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou 510500, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Healthcare Devices, Guangzhou 510500, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| |
Collapse
|