1
|
Zohar E, Kozak S, Abeles D, Shahar M, Censor N. Convolutional neural networks uncover the dynamics of human visual memory representations over time. Cereb Cortex 2024; 34:bhae447. [PMID: 39530747 DOI: 10.1093/cercor/bhae447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The ability to accurately retrieve visual details of past events is a fundamental cognitive function relevant for daily life. While a visual stimulus contains an abundance of information, only some of it is later encoded into long-term memory representations. However, an ongoing challenge has been to isolate memory representations that integrate various visual features and uncover their dynamics over time. To address this question, we leveraged a novel combination of empirical and computational frameworks based on the hierarchal structure of convolutional neural networks and their correspondence to human visual processing. This enabled to reveal the contribution of different levels of visual representations to memory strength and their dynamics over time. Visual memory strength was measured with distractors selected based on their shared similarity to the target memory along low or high layers of the convolutional neural network hierarchy. The results show that visual working memory relies similarly on low and high-level visual representations. However, already after a few minutes and on to the next day, visual memory relies more strongly on high-level visual representations. These findings suggest that visual representations transform from a distributed to a stronger high-level conceptual representation, providing novel insights into the dynamics of visual memory over time.
Collapse
Affiliation(s)
- Eden Zohar
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Stas Kozak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Dekel Abeles
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Moni Shahar
- The Center for Artificial Intelligence and Data Science (TAD), Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nitzan Censor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Kondat T, Tik N, Sharon H, Tavor I, Censor N. Distinct Neural Plasticity Enhancing Visual Perception. J Neurosci 2024; 44:e0301242024. [PMID: 39103221 PMCID: PMC11376337 DOI: 10.1523/jneurosci.0301-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/10/2024] [Accepted: 06/04/2024] [Indexed: 08/07/2024] Open
Abstract
The developed human brain shows remarkable plasticity following perceptual learning, resulting in improved visual sensitivity. However, such improvements commonly require extensive stimuli exposure. Here we show that efficiently enhancing visual perception with minimal stimuli exposure recruits distinct neural mechanisms relative to standard repetition-based learning. Participants (n = 20, 12 women, 8 men) encoded a visual discrimination task, followed by brief memory reactivations of only five trials each performed on separate days, demonstrating improvements comparable with standard repetition-based learning (n = 20, 12 women, 8 men). Reactivation-induced learning engaged increased bilateral intraparietal sulcus (IPS) activity relative to repetition-based learning. Complementary evidence for differential learning processes was further provided by temporal-parietal resting functional connectivity changes, which correlated with behavioral improvements. The results suggest that efficiently enhancing visual perception with minimal stimuli exposure recruits distinct neural processes, engaging higher-order control and attentional resources while leading to similar perceptual gains. These unique brain mechanisms underlying improved perceptual learning efficiency may have important implications for daily life and in clinical conditions requiring relearning following brain damage.
Collapse
Affiliation(s)
- Taly Kondat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Niv Tik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haggai Sharon
- Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Nitzan Censor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
3
|
Wang Z, Tan Q, Frank SM, Sasaki Y, Sheinberg D, Phillips KA, Watanabe T. Learning of the same task subserved by substantially different mechanisms between patients with body dysmorphic disorder and healthy individuals. Cereb Cortex 2024; 34:bhae215. [PMID: 38798001 PMCID: PMC11128689 DOI: 10.1093/cercor/bhae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
It has remained unclear whether individuals with psychiatric disorders involving altered visual processing employ similar neuronal mechanisms during perceptual learning of a visual task. We investigated this question by training patients with body dysmorphic disorder, a psychiatric disorder characterized by distressing or impairing preoccupation with nonexistent or slight defects in one's physical appearance, and healthy controls on a visual detection task for human faces with low spatial frequency components. Brain activation during task performance was measured with functional magnetic resonance imaging before the beginning and after the end of behavioral training. Both groups of participants improved performance on the trained task to a similar extent. However, neuronal changes in the fusiform face area were substantially different between groups such that activation for low spatial frequency faces in the right fusiform face area increased after training in body dysmorphic disorder patients but decreased in controls. Moreover, functional connectivity between left and right fusiform face area decreased after training in patients but increased in controls. Our results indicate that neuronal mechanisms involved in perceptual learning of a face detection task differ fundamentally between body dysmorphic disorder patients and controls. Such different neuronal mechanisms in body dysmorphic disorder patients might reflect the brain's adaptations to altered functions imposed by the psychiatric disorder.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, United States
- Institute for Psychology, University of Regensburg, Universitätsstraße 31, Regensburg Bavaria 93053, Germany
| | - Qingleng Tan
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, United States
| | - Sebastian M Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, United States
- Institute for Psychology, University of Regensburg, Universitätsstraße 31, Regensburg Bavaria 93053, Germany
| | - Yuka Sasaki
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, United States
| | - David Sheinberg
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI 02903, United States
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, United States
| | - Katharine A Phillips
- Warren Alpert Medical School, Brown University, 222 Richmond Street, Providence, RI 02903, United States
- Present address: Department of Psychiatry, Weill Cornell Medicine, Cornell University, 15 E 62nd Street 5th Floor, New York, NY 10065, United States
| | - Takeo Watanabe
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer Street, Providence, RI 02912, United States
| |
Collapse
|
4
|
Fleming LL, Harnett NG, Ressler KJ. Sensory alterations in post-traumatic stress disorder. Curr Opin Neurobiol 2024; 84:102821. [PMID: 38096758 PMCID: PMC10922208 DOI: 10.1016/j.conb.2023.102821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024]
Abstract
PTSD is characterized by difficulties in accurately evaluating the threat value of sensory stimuli. While the role of canonical fear and threat neural circuitry in this ability has been well studied, recent lines of evidence suggest a need to include more emphasis on sensory processing in the conceptualization of PTSD symptomology. Specifically, studies have demonstrated a strong association between variability in sensory processing regions and the severity of PTSD symptoms. In this review, we summarize recent findings that underscore the importance of sensory processing in PTSD, in addition to the structural and functional characteristics of associated sensory brain regions. First, we discuss the link between PTSD and various behavioral aspects of sensory processing. This is followed by a discussion of recent findings that link PTSD to variability in the structure of both gray and white matter in sensory brain regions. We then delve into how brain activity (measured with task-based and resting-state functional imaging) in sensory regions informs our understanding of PTSD symptomology.
Collapse
Affiliation(s)
- Leland L Fleming
- Division of Depression and Anxiety, McLean Hospital, Belmont, USA; Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, USA; Department of Psychiatry, Harvard Medical School, Boston, USA
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, USA; Department of Psychiatry, Harvard Medical School, Boston, USA.
| |
Collapse
|
5
|
Wang Z, Tan Q, Frank SM, Sasaki Y, Sheinberg D, Phillips KA, Watanabe T. Learning of the same task subserved by substantially different mechanisms between patients with Body Dysmorphic Disorder and healthy individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.571882. [PMID: 38187719 PMCID: PMC10769234 DOI: 10.1101/2023.12.19.571882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
It is generally believed that learning of a perceptual task involving low-level neuronal mechanisms is similar between individuals. However, it is unclear whether this assumption also applies to individuals with psychiatric disorders that are known to have altered brain activation during visual processing. We investigated this question in patients with body dysmorphic disorder (BDD), a psychiatric disorder characterized by distressing or impairing preoccupation with nonexistent or slight defects in one's physical appearance, and in healthy controls. Participants completed six training sessions on separate days on a visual detection task for human faces with low spatial frequency (LSF) components. Brain activation during task performance was measured with functional magnetic resonance imaging (fMRI) on separate days prior to and after training. The behavioral results showed that both groups of participants improved on the visual detection task to a similar extent through training. Despite this similarity in behavioral improvement, neuronal changes in the Fusiform Face Area (FFA), a core cortical region involved in face processing, with training were substantially different between groups. First, activation in the right FFA for LSF faces relative to High Spatial Frequency (HSF) faces that were used as an untrained control increased after training in BDD patients but decreased in controls. Second, resting state functional connectivity between left and right FFAs decreased after training in BDD patients but increased in controls. Contrary to the assumption that learning of a perceptual task is subserved by the same neuronal mechanisms across individuals, our results indicate that the neuronal mechanisms involved in learning of a face detection task differ fundamentally between patients with BDD and healthy individuals. The involvement of different neuronal mechanisms for learning of even simple perceptual tasks in patients with BDD might reflect the brain's adaptations to altered functions imposed by the psychiatric disorder.
Collapse
Affiliation(s)
- Zhiyan Wang
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
- Institute for Psychology, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Qingleng Tan
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
| | - Sebastian M. Frank
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
- Institute for Psychology, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Yuka Sasaki
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
| | - David Sheinberg
- Warren Alpert Medical School, Brown University, 222 Richmond St., Providence, RI 02903, USA
- Department of Neuroscience, Brown University, 185 Meeting St., Providence, RI 02912, USA
| | - Katharine A. Phillips
- Warren Alpert Medical School, Brown University, 222 Richmond St., Providence, RI 02903, USA
- Present address: Department of Psychiatry, Weill Cornell Medicine, Cornell University 15 E 62nd St 5th floor, New York, NY 10065, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 190 Thayer St., Providence, RI 02912, USA
| |
Collapse
|
6
|
Kondat T, Aderka M, Censor N. Modulating temporal dynamics of performance across retinotopic locations enhances the generalization of perceptual learning. iScience 2023; 26:108276. [PMID: 38026175 PMCID: PMC10654611 DOI: 10.1016/j.isci.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Human visual perception can be improved through perceptual learning. However, such learning is often specific to stimulus and learning conditions. Here, we explored how temporal dynamics of performance across conditions impact learning generalization. Participants performed a visual task, with the target at retinotopic location A. Then, the target was presented at location B either immediately after location A (same-session performance) or following a 48h consolidation period (different-session performance). Long-term generalization was measured the following week. Following initial training, both groups demonstrated generalization, consistent with previous accounts of fast learning. However, long-term generalization was enhanced in the same-session performance group. Consistently, improvements at locations A and B were correlated only following same-session performance, implying an integrated learning process across locations. The results support a new account of perceptual learning and generalization dynamics, suggesting that the temporal proximity of learning and consolidation of different conditions may integrate correlated learning processes, facilitating generalized learning.
Collapse
Affiliation(s)
- Taly Kondat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Maya Aderka
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Censor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
8
|
Wang D, Tang L, Xi C, Luo D, Liang Y, Huang Q, Wang Z, Chen J, Zhao X, Zhou H, Wang F, Hu S. Targeted visual cortex stimulation (TVCS): a novel neuro-navigated repetitive transcranial magnetic stimulation mode for improving cognitive function in bipolar disorder. Transl Psychiatry 2023; 13:193. [PMID: 37291106 DOI: 10.1038/s41398-023-02498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
A more effective and better-tolerated site for repetitive transcranial magnetic stimulation (rTMS) for treating cognitive dysfunction in patients with bipolar disorder (BD) is needed. The primary visual cortex (V1) may represent a suitable site. To investigate the use of the V1, which is functionally linked to the dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), as a potential site for improving cognitive function in BD. Seed-based functional connectivity (FC) analysis was used to locate targets in the V1 that had significant FC with the DLPFC and ACC. Subjects were randomly assigned to 4 groups, namely, the DLPFC active-sham rTMS (A1), DLPFC sham-active rTMS (A2), ACC active-sham rTMS (B1), and ACC sham-active rTMS groups (B2). The intervention included the rTMS treatment once daily, with five treatments a week for four weeks. The A1 and B1 groups received 10 days of active rTMS treatment followed by 10 days of sham rTMS treatment. The A2 and B2 groups received the opposite. The primary outcomes were changes in the scores of five tests in the THINC-integrated tool (THINC-it) at week 2 (W2) and week 4 (W4). The secondary outcomes were changes in the FC between the DLPFC/ACC and the whole brain at W2 and W4. Of the original 93 patients with BD recruited, 86 were finally included, and 73 finished the trial. Significant interactions between time and intervention type (Active/Sham) were observed in the scores of the accuracy of the Symbol Check in the THINC-it tests at baseline (W0) and W2 in groups B1 and B2 (F = 4.736, p = 0.037) using a repeated-measures analysis of covariance approach. Group B1 scored higher in the accuracy of Symbol Check at W2 compared with W0 (p < 0.001), while the scores of group B2 did not differ significantly between W0 and W2. No significant interactions between time and intervention mode were seen between groups A1 and A2, nor was any within-group significance of FC between DLPFC/ACC and the whole brain observed between baseline (W0) and W2/W4 in any group. One participant in group B1 experienced disease progression after 10 active and 2 sham rTMS sessions. The present study demonstrated that V1, functionally correlated with ACC, is a potentially effective rTMS stimulation target for improving neurocognitive function in BD patients. Further investigation using larger samples is required to confirm the clinical efficacy of TVCS.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Lili Tang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, P.R. China
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210000, P.R. China
| | - Caixi Xi
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Dan Luo
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Ward Five of The Third People's Hospital of Jiashan County, Jiaxing, 314000, China
| | - Yin Liang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Taizhou Second People's Hospital, Taizhou, 318000, China
| | - Qi Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Nanchong Psychosomatic Hospital, Nanchong, 637000, China
| | - Zhong Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jingkai Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Xudong Zhao
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Huzhou Third municipal hospital, Huzhou, 313000, China
| | - Hetong Zhou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, 210000, P.R. China.
- Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210000, P.R. China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Herszage J, Bönstrup M, Cohen LG, Censor N. Reactivation-induced motor skill modulation does not operate at a rapid micro-timescale level. Sci Rep 2023; 13:2930. [PMID: 36808164 PMCID: PMC9941091 DOI: 10.1038/s41598-023-29963-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Abundant evidence shows that consolidated memories are susceptible to modifications following their reactivation. Processes of memory consolidation and reactivation-induced skill modulation have been commonly documented after hours or days. Motivated by studies showing rapid consolidation in early stages of motor skill acquisition, here we asked whether motor skill memories are susceptible to modifications following brief reactivations, even at initial stages of learning. In a set of experiments, we collected crowdsourced online motor sequence data to test whether post-encoding interference and performance enhancement occur following brief reactivations in early stages of learning. Results indicate that memories forming during early learning are not susceptible to interference nor to enhancement within a rapid reactivation-induced time window, relative to control conditions. This set of evidence suggests that reactivation-induced motor skill memory modulation might be dependent on consolidation at the macro-timescale level, requiring hours or days to occur.
Collapse
Affiliation(s)
- Jasmine Herszage
- grid.12136.370000 0004 1937 0546School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978 Tel Aviv, Israel
| | - Marlene Bönstrup
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Leonardo G. Cohen
- grid.416870.c0000 0001 2177 357XHuman Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978, Tel Aviv, Israel.
| |
Collapse
|
10
|
Bang JW, Hamilton-Fletcher G, Chan KC. Visual Plasticity in Adulthood: Perspectives from Hebbian and Homeostatic Plasticity. Neuroscientist 2023; 29:117-138. [PMID: 34382456 PMCID: PMC9356772 DOI: 10.1177/10738584211037619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The visual system retains profound plastic potential in adulthood. In the current review, we summarize the evidence of preserved plasticity in the adult visual system during visual perceptual learning as well as both monocular and binocular visual deprivation. In each condition, we discuss how such evidence reflects two major cellular mechanisms of plasticity: Hebbian and homeostatic processes. We focus on how these two mechanisms work together to shape plasticity in the visual system. In addition, we discuss how these two mechanisms could be further revealed in future studies investigating cross-modal plasticity in the visual system.
Collapse
Affiliation(s)
- Ji Won Bang
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Giles Hamilton-Fletcher
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C. Chan
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| |
Collapse
|
11
|
Schrift G, Dotan D, Censor N. Brief memory reactivations induce learning in the numeric domain. NPJ SCIENCE OF LEARNING 2022; 7:18. [PMID: 35977983 PMCID: PMC9385657 DOI: 10.1038/s41539-022-00136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Learning of arithmetic facts such as the multiplication table requires time-consuming, repeated practice. In light of evidence indicating that reactivation of encoded memories can modulate learning and memory processes at the synaptic, system and behavioral levels, we asked whether brief memory reactivations can induce human learning in the numeric domain. Adult participants performed a number-fact retrieval task in which they learned arbitrary numeric facts. Following encoding and a baseline test, 3 passive, brief reactivation sessions of only 40 s each were conducted on separate days. Learning was evaluated in a retest session. Results showed reactivations induced learning, with improved performance at retest relative to baseline test. Furthermore, performance was superior compared to a control group performing test-retest sessions without reactivations, who showed significant memory deterioration. A standard practice group completed active-retrieval sessions on 3 separate days, and showed significant learning gains. Interestingly, while these gains were higher than those of the reactivations group, subjects showing reactivation-induced learning were characterized by superior efficiency relative to standard practice subjects, with higher rate of improvement per practice time. A follow-up long-term retention experiment showed that 30 days following initial practice, weekly brief reactivations reduced forgetting, with participants performing superior to controls undergoing the same initial practice without reactivations. Overall, the results demonstrate that brief passive reactivations induce efficient learning and reduce forgetting within a numerical context. Time-efficient practice in the numeric domain carries implications for enhancement of learning strategies in daily-life settings.
Collapse
Affiliation(s)
- Gilad Schrift
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Dotan
- School of Education and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
12
|
Klorfeld-Auslender S, Paz Y, Shinder I, Rosenblatt J, Dinstein I, Censor N. A distinct route for efficient learning and generalization in autism. Curr Biol 2022; 32:3203-3209.e3. [PMID: 35700734 DOI: 10.1016/j.cub.2022.05.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022]
Abstract
Visual skill learning is the process of improving responses to surrounding visual stimuli.1 For individuals with autism spectrum disorders (ASDs), efficient skill learning may be especially valuable due to potential difficulties with sensory processing2 and challenges in adjusting flexibly to changing environments.3,4 Standard skill learning protocols require extensive practice with multiple stimulus repetitions,5-7 which may be difficult for individuals with ASD and create abnormally specific learning with poor ability to generalize.4 Motivated by findings indicating that brief memory reactivations can facilitate skill learning,8,9 we hypothesized that reactivation learning with few stimulus repetitions will enable efficient learning in individuals with ASD, similar to their learning with standard extensive practice protocols used in previous studies.4,10,11 We further hypothesized that in contrast to experience-dependent plasticity often resulting in specificity, reactivation-induced learning would enable generalization patterns in ASD. To test our hypotheses, high-functioning adults with ASD underwent brief reactivations of an encoded visual learning task, consisting of only 5 trials each instead of hundreds. Remarkably, individuals with ASD improved their visual discrimination ability in the task substantially, demonstrating successful learning. Furthermore, individuals with ASD generalized learning to an untrained visual location, indicating a unique benefit of reactivation learning mechanisms for ASD individuals. Finally, an additional experiment showed that without memory reactivations ASD subjects did not demonstrate efficient learning and generalization patterns. Taken together, the results provide proof-of-concept evidence supporting a distinct route for efficient visual learning and generalization in ASD, which may be beneficial for skill learning in other sensory and motor domains.
Collapse
Affiliation(s)
- Shira Klorfeld-Auslender
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Paz
- Cognitive and Brain Science Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Zlotowsky Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ilana Shinder
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jonathan Rosenblatt
- Zlotowsky Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ilan Dinstein
- Cognitive and Brain Science Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Department of Psychology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
13
|
Herz N, Bar-Haim Y, Tavor I, Tik N, Sharon H, Holmes EA, Censor N. Neuromodulation of Visual Cortex Reduces the Intensity of Intrusive Memories. Cereb Cortex 2021; 32:408-417. [PMID: 34265849 PMCID: PMC8754386 DOI: 10.1093/cercor/bhab217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Aversive events can be reexperienced as involuntary and spontaneous mental images of the event. Given that the vividness of retrieved mental images is coupled with elevated visual activation, we tested whether neuromodulation of the visual cortex would reduce the frequency and negative emotional intensity of intrusive memories. Intrusive memories of a viewed trauma film and their accompanied emotional intensity were recorded throughout 5 days. Functional connectivity, measured with resting-state functional magnetic resonance imaging prior to film viewing, was used as predictive marker for intrusions-related negative emotional intensity. Results indicated that an interaction between the visual network and emotion processing areas predicted intrusions’ emotional intensity. To test the causal influence of early visual cortex activity on intrusions’ emotional intensity, participants’ memory of the film was reactivated by brief reminders 1 day following film viewing, followed by inhibitory 1 Hz repetitive transcranial magnetic stimulation (rTMS) over early visual cortex. Results showed that visual cortex inhibitory stimulation reduced the emotional intensity of later intrusions, while leaving intrusion frequency and explicit visual memory intact. Current findings suggest that early visual areas constitute a central node influencing the emotional intensity of intrusive memories for negative events. Potential neuroscience-driven intervention targets designed to downregulate the emotional intensity of intrusive memories are discussed.
Collapse
Affiliation(s)
- Noa Herz
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yair Bar-Haim
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ido Tavor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Niv Tik
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Haggai Sharon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.,Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala 75142, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Solna 17177, Sweden
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
14
|
Frank SM, Qi A, Ravasio D, Sasaki Y, Rosen EL, Watanabe T. A behavioral training protocol using visual perceptual learning to improve a visual skill. STAR Protoc 2021; 2:100240. [PMID: 33409503 PMCID: PMC7773684 DOI: 10.1016/j.xpro.2020.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We describe a behavioral training protocol using visual perceptual learning (VPL) to improve visual detection skills in non-experts for subtle mammographic lesions indicative of breast cancer. This protocol can be adapted for the professional training of experts (radiologists) or to improve visual skills for other tasks, such as the detection of targets in photo or video surveillance. For complete details on the use and execution of this protocol, please refer to Frank et al. (2020a). Behavioral training using VPL induces long-lasting improvements of a visual skill Training should be conducted using detailed feedback about response accuracy Training can be conducted with minimal technical equipment VPL protocol can be used for clinical or other professional training
Collapse
Affiliation(s)
- Sebastian M Frank
- Brown University, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA
| | - Andrea Qi
- Brown University, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA
| | - Daniela Ravasio
- Brown University, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA
| | - Yuka Sasaki
- Brown University, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA
| | - Eric L Rosen
- Stanford University, Department of Radiology, 300 Pasteur Drive, Stanford, CA 94305, USA.,University of Colorado Denver, Department of Radiology, 12401 East 17th Avenue, Aurora, CO 80045, USA
| | - Takeo Watanabe
- Brown University, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Providence, RI 02912, USA
| |
Collapse
|