1
|
Silbert LC. Vascular Cognitive Impairment. Continuum (Minneap Minn) 2024; 30:1699-1725. [PMID: 39620840 DOI: 10.1212/con.0000000000001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
OBJECTIVE Vascular cognitive impairment is a major contributor to age-associated cognitive decline, both independently and as a contributor to mixed dementia syndromes. This article reviews the current understanding of how vascular dysfunction contributes to cognitive impairment and dementia risk in older individuals and includes updated diagnostic criteria and treatment recommendations. LATEST DEVELOPMENTS Clinical and research criteria have been evolving to more accurately determine the full prevalence of vascular cognitive impairment. The Boston Criteria version 2.0 for cerebral amyloid angiopathy now includes multiple punctate MRI T2 white matter hyperintensities and MR-visible perivascular spaces in addition to previously described T2* hemorrhagic signatures. MR-visible perivascular spaces are associated with both vascular cognitive impairment and Alzheimer disease, potentially linking cerebrovascular dysfunction to neurodegenerative disorders through its role in brain waste clearance. The American Heart Association's goal for cardiovascular health promotion, "Life's Essential 8," has been updated to include sleep health and acknowledges psychological well-being and social determinants of health as fundamental components necessary to achieve optimal cardiovascular health for all adults. ESSENTIAL POINTS Vascular cognitive impairment is a common and often underrecognized contributor to cognitive impairment in older individuals, with heterogeneous etiologies requiring individualized treatment strategies. Effective cerebrovascular disease risk factor modification starting in midlife is critical to reducing the risk of Alzheimer disease and related dementias, with the goal of preventing vascular brain injury and maintaining cognitive reserve in the presence of nonvascular age-related brain pathologies.
Collapse
|
2
|
Lyubomudrov M, Babkina A, Tsokolaeva Z, Yadgarov M, Shigeev S, Sundukov D, Golubev A. Morphology of Cortical Microglia in the Hyperacute Phase of Subarachnoid Hemorrhage. BIOLOGY 2024; 13:917. [PMID: 39596872 PMCID: PMC11591589 DOI: 10.3390/biology13110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/09/2024] [Indexed: 11/29/2024]
Abstract
Hemorrhagic stroke is the deadliest type of stroke. Cellular and molecular biomarkers are important for understanding the pathophysiology of stroke. Microglia are among the most promising biological markers. However, the morphological and physiological characteristics of microglia, as well as the structural and functional aspects of their interactions with neurons and other cells, are largely unknown. Due to the large number of different morphological phenotypes and very limited information on microglial changes in subarachnoid hemorrhage (SAH), we performed this study aimed at identifying the features of the distribution of various microglial phenotypes in the layers of the cerebral cortex in the hyperacute phase of non-traumatic SAH. We studied the distribution of various microglial phenotypes in the layers of the cerebral cortex of SAH non-survivors with a control group (coronary heart disease and sudden cardiac death were the underlying causes of death). An immunohistochemical study using antibodies to iba-1 (a marker of microglia) revealed changes in the morphological phenotypes of microglia in the cerebral cortex after subarachnoid hemorrhage. Significant differences between the groups indicate a rapid microglial response to injury. The findings indicate that there are quantitative and phenotypic changes in microglia in the cerebral cortex during early SAH in the human cortex.
Collapse
Affiliation(s)
- Maksim Lyubomudrov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Anastasiya Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Zoya Tsokolaeva
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Mikhail Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Sergey Shigeev
- Bureau of Forensic Medical Examination of the Department of Healthcare of the City of Moscow, Moscow 115516, Russia
| | - Dmitriy Sundukov
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia
| | - Arkady Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
- Institute of Medicine, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Moscow 117198, Russia
| |
Collapse
|
3
|
Planas AM. Role of microglia in stroke. Glia 2024; 72:1016-1053. [PMID: 38173414 DOI: 10.1002/glia.24501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Microglia play key roles in the post-ischemic inflammatory response and damaged tissue removal reacting rapidly to the disturbances caused by ischemia and working to restore the lost homeostasis. However, the modified environment, encompassing ionic imbalances, disruption of crucial neuron-microglia interactions, spreading depolarization, and generation of danger signals from necrotic neurons, induce morphological and phenotypic shifts in microglia. This leads them to adopt a proinflammatory profile and heighten their phagocytic activity. From day three post-ischemia, macrophages infiltrate the necrotic core while microglia amass at the periphery. Further, inflammation prompts a metabolic shift favoring glycolysis, the pentose-phosphate shunt, and lipid synthesis. These shifts, combined with phagocytic lipid intake, drive lipid droplet biogenesis, fuel anabolism, and enable microglia proliferation. Proliferating microglia release trophic factors contributing to protection and repair. However, some microglia accumulate lipids persistently and transform into dysfunctional and potentially harmful foam cells. Studies also showed microglia that either display impaired apoptotic cell clearance, or eliminate synapses, viable neurons, or endothelial cells. Yet, it will be essential to elucidate the viability of engulfed cells, the features of the local environment, the extent of tissue damage, and the temporal sequence. Ischemia provides a rich variety of region- and injury-dependent stimuli for microglia, evolving with time and generating distinct microglia phenotypes including those exhibiting proinflammatory or dysfunctional traits and others showing pro-repair features. Accurate profiling of microglia phenotypes, alongside with a more precise understanding of the associated post-ischemic tissue conditions, is a necessary step to serve as the potential foundation for focused interventions in human stroke.
Collapse
Affiliation(s)
- Anna M Planas
- Cerebrovascular Research Laboratory, Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Cerebrovascular Diseases, Area of Clinical and Experimental Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Barcelona, Spain
| |
Collapse
|
4
|
Boghozian R, Sharma S, Narayana K, Cheema M, Brown CE. Sex and interferon gamma signaling regulate microglia migration in the adult mouse cortex in vivo. Proc Natl Acad Sci U S A 2023; 120:e2302892120. [PMID: 37428916 PMCID: PMC10629543 DOI: 10.1073/pnas.2302892120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
Although microglia possess the unique ability to migrate, whether mobility is evident in all microglia, is sex dependent, and what molecular mechanisms drive this, is not well understood in the adult brain. Using longitudinal in vivo two-photon imaging of sparsely labeled microglia, we find a relatively small population of microglia (~5%) are mobile under normal conditions. Following injury (microbleed), the fraction of mobile microglia increased in a sex-dependent manner, with male microglia migrating significantly greater distances toward the microbleed relative to their female counterparts. To understand the signaling pathways involved, we interrogated the role of interferon gamma (IFNγ). Our data show that in male mice, stimulating microglia with IFNγ promotes migration whereas inhibiting IFNγ receptor 1 signaling inhibits them. By contrast, female microglia were generally unaffected by these manipulations. These findings highlight the diversity of microglia migratory responses to injury, its dependence on sex and the signaling mechanisms that modulate this behavior.
Collapse
Affiliation(s)
- Roobina Boghozian
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Kamal Narayana
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Manjinder Cheema
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Craig E. Brown
- Division of Medical Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, BCV6T 2A1, Canada
| |
Collapse
|
5
|
Tariq MB, Lee J, McCullough LD. Sex differences in the inflammatory response to stroke. Semin Immunopathol 2023; 45:295-313. [PMID: 36355204 PMCID: PMC10924671 DOI: 10.1007/s00281-022-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality and disproportionally affects women, in part due to their higher longevity. Older women have poorer outcomes after stroke with high rates of cognitive deficits, depression, and reduced quality of life. Post-stroke inflammatory responses are also sexually dimorphic and drive differences in infarct size and recovery. Factors that influence sex-specific immune responses can be both intrinsic and extrinsic. Differences in gonadal hormone exposure, sex chromosome compliment, and environmental/social factors can drive changes in transcriptional and metabolic profiles. In addition, how these variables interact, changes across the lifespan. After the onset of ischemic injury, necrosis and apoptosis occur, which activate microglia and other glial cells within the central nervous system, promoting the release of cytokines and chemokines and neuroinflammation. Cells involved in innate and adaptive immune responses also have dual functions after stroke as they can enhance inflammation acutely, but also contribute to suppression of the inflammatory cascade and later repair. In this review, we provide an overview of the current literature on sex-specific inflammatory responses to ischemic stroke. Understanding these differences is critical to identifying therapeutic options for both men and women.
Collapse
Affiliation(s)
- Muhammad Bilal Tariq
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA
| | - Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA
| | - Louise D McCullough
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA.
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin St, MSB7044B, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Liu Z, He B, Wang X, Peng J, Sun Q, Luo C. Deep cortical microinfarction induced by femtosecond laser in mice: Long-term secondary pathological changes in corresponding superficial cortex. Neurosci Lett 2023; 802:137170. [PMID: 36898650 DOI: 10.1016/j.neulet.2023.137170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies have explored the clinical consequences of cortical microinfarction, mainly age-related cognitive decline. However, functional impairment of deep cortical microinfarction remains poorly understood. Based on anatomical knowledge and previous research, we infer that damage to the deep cortex may lead to cognitive deficits and communication impairment between the superficial cortex and thalamus. This study aimed to develop a new model of deep cortical microinfarction based on femtosecond laser ablation of a perforating artery. METHODS Twenty-eight mice were anesthetized with isoflurane, and a cranial window was thinned using a microdrill. Intensively focused femtosecond laser pulses were used to produce perforating arteriolar occlusions and ischemic brain damage was examined using histological analysis. RESULTS Occlusion of different perforating arteries induced different types of cortical microinfarctions. Blocking the perforating artery, which enters the cerebral cortex vertically and has no branches within 300 μm below, can result in deep cortical microinfarction. Moreover, this model showed neuronal loss and microglial activation in the lesions as well as dysplasia of nerve fibers and β-amyloid deposition in the corresponding superficial cortex. CONCLUSIONS We present here a new model of deep cortical microinfarction in mice, in which specific perforating arteries are selectively occluded by a femtosecond laser, and we preliminarily observe several long-term effects related to cognition. This animal model is helpful in investigating the pathophysiology of deep cerebral microinfarction. However, further clinical and experimental studies are required to explore deep cortical microinfarctions in greater molecular and physiological detail.
Collapse
Affiliation(s)
- Zhoujing Liu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou 510120, China
| | - Xuemin Wang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Jiamin Peng
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Qiaosong Sun
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| | - Chuanming Luo
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| |
Collapse
|
7
|
Schreiber S, Bernal J, Arndt P, Schreiber F, Müller P, Morton L, Braun-Dullaeus RC, Valdés-Hernández MDC, Duarte R, Wardlaw JM, Meuth SG, Mietzner G, Vielhaber S, Dunay IR, Dityatev A, Jandke S, Mattern H. Brain Vascular Health in ALS Is Mediated through Motor Cortex Microvascular Integrity. Cells 2023; 12:957. [PMID: 36980297 PMCID: PMC10047140 DOI: 10.3390/cells12060957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Brain vascular health appears to be critical for preventing the development of amyotrophic lateral sclerosis (ALS) and slowing its progression. ALS patients often demonstrate cardiovascular risk factors and commonly suffer from cerebrovascular disease, with evidence of pathological alterations in their small cerebral blood vessels. Impaired vascular brain health has detrimental effects on motor neurons: vascular endothelial growth factor levels are lowered in ALS, which can compromise endothelial cell formation and the integrity of the blood-brain barrier. Increased turnover of neurovascular unit cells precedes their senescence, which, together with pericyte alterations, further fosters the failure of toxic metabolite removal. We here provide a comprehensive overview of the pathogenesis of impaired brain vascular health in ALS and how novel magnetic resonance imaging techniques can aid its detection. In particular, we discuss vascular patterns of blood supply to the motor cortex with the number of branches from the anterior and middle cerebral arteries acting as a novel marker of resistance and resilience against downstream effects of vascular risk and events in ALS. We outline how certain interventions adapted to patient needs and capabilities have the potential to mechanistically target the brain microvasculature towards favorable motor cortex blood supply patterns. Through this strategy, we aim to guide novel approaches to ALS management and a better understanding of ALS pathophysiology.
Collapse
Affiliation(s)
- Stefanie Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Jose Bernal
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Philipp Arndt
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Frank Schreiber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Patrick Müller
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Department of Internal Medicine/Cardiology and Angiology, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | | | | - Roberto Duarte
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Joanna Marguerite Wardlaw
- Centre for Clinical Brain Sciences, The University of Edinburgh, UK Dementia Research Institute Centre, Edinburgh EH16 4UX, UK
| | - Sven Günther Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Grazia Mietzner
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Ildiko Rita Dunay
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Institute of Inflammation and Neurodegeneration, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Solveig Jandke
- Department of Neurology, Otto von Guericke University Magdeburg, Medical Faculty, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Department of Biomedical Magnetic Resonance, Faculty of Natural Sciences, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
8
|
Jiang H, Deng S, Zhang J, Chen J, Li B, Zhu W, Zhang M, Zhang C, Meng Z. Acupuncture treatment for post-stroke depression: Intestinal microbiota and its role. Front Neurosci 2023; 17:1146946. [PMID: 37025378 PMCID: PMC10070763 DOI: 10.3389/fnins.2023.1146946] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke-induced depression is a common complication and an important risk factor for disability. Besides psychiatric symptoms, depressed patients may also exhibit a variety of gastrointestinal symptoms, and even take gastrointestinal symptoms as the primary reason for medical treatment. It is well documented that stress may disrupt the balance of the gut microbiome in patients suffering from post-stroke depression (PSD), and that disruption of the gut microbiome is closely related to the severity of the condition in depressed patients. Therefore, maintaining the balance of intestinal microbiota can be the focus of research on the mechanism of acupuncture in the treatment of PSD. Furthermore, stroke can be effectively treated with acupuncture at all stages and it may act as a special microecological regulator by regulating intestinal microbiota as well. In this article, we reviewed the studies on changing intestinal microbiota after acupuncture treatment and examined the existing problems and development prospects of acupuncture, microbiome, and poststroke depression, in order to provide new ideas for future acupuncture research.
Collapse
Affiliation(s)
- Hailun Jiang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shizhe Deng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jieying Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junjie Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boxuan Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weiming Zhu
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglong Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chao Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Chao Zhang,
| | - Zhihong Meng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Zhihong Meng,
| |
Collapse
|
9
|
Long-term microglial phase-specific dynamics during single vessel occlusion and recanalization. Commun Biol 2022; 5:841. [PMID: 35986097 PMCID: PMC9391347 DOI: 10.1038/s42003-022-03784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular occlusion leading to brain dysfunctions is usually considered evoking microglia-induced inflammation response. However, it remains unclear how microglia interact with blood vessels in the development of vascular occlusion-related brain disorders. Here, we illuminate long-term spatiotemporal dynamics of microglia during single vessel occlusion and recanalization. Microglia display remarkable response characteristics in different phases, including acute reaction, rapid diffusion, transition and chronic effect. Fibrinogen-induced microglial cluster promotes major histocompatibility complex II (MHCII) expression. Microglial soma represents a unique filament-shape migration and has slower motility compared to the immediate reaction of processes to occlusion. We capture proliferative microglia redistribute territory. Microglial cluster resolves gradually and microglia recover to resting state both in the morphology and function in the chronic effect phase. Therefore, our study offers a comprehensive analysis of spatiotemporal dynamics of microglia and potential mechanisms to both vessel occlusion and recanalization. Microglial phase-specific response suggests the morphological feature-oriented phased intervention would be an attractive option for vascular occlusion-related diseases treatments. The spatiotemporal dynamics of the microglial inflammatory response to single vessel occlusion and recanalization are analysed, revealing four different response phases.
Collapse
|
10
|
Freeze WM, Zanon Zotin MC, Scherlek AA, Perosa V, Auger CA, Warren AD, van der Weerd L, Schoemaker D, Horn MJ, Gurol ME, Gokcal E, Bacskai BJ, Viswanathan A, Greenberg SM, Reijmer YD, van Veluw SJ. Corpus callosum lesions are associated with worse cognitive performance in cerebral amyloid angiopathy. Brain Commun 2022; 4:fcac105. [PMID: 35611313 PMCID: PMC9123849 DOI: 10.1093/braincomms/fcac105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
The impact of vascular lesions on cognition is location dependent. Here, we assessed the contribution of small vessel disease lesions in the corpus callosum to vascular cognitive impairment in cerebral amyloid angiopathy, as a model for cerebral small vessel disease. Sixty-five patients with probable cerebral amyloid angiopathy underwent 3T magnetic resonance imaging, including a diffusion tensor imaging scan, and neuropsychological testing. Microstructural white-matter integrity was quantified by fractional anisotropy and mean diffusivity. Z-scores on individual neuropsychological tests were averaged into five cognitive domains: information processing speed, executive functioning, memory, language and visuospatial ability. Corpus callosum lesions were defined as haemorrhagic (microbleeds or larger bleeds) or ischaemic (microinfarcts, larger infarcts and diffuse fluid-attenuated inversion recovery hyperintensities). Associations between corpus callosum lesion presence, microstructural white-matter integrity and cognitive performance were examined with multiple regression models. The prevalence of corpus callosum lesions was confirmed in an independent cohort of memory clinic patients with and without cerebral amyloid angiopathy (n = 82). In parallel, we assessed corpus callosum lesions on ex vivo magnetic resonance imaging in cerebral amyloid angiopathy patients (n = 19) and controls (n = 5) and determined associated tissue abnormalities with histopathology. A total number of 21 corpus callosum lesions was found in 19/65 (29%) cerebral amyloid angiopathy patients. Corpus callosum lesion presence was associated with reduced microstructural white-matter integrity within the corpus callosum and in the whole-brain white matter. Patients with corpus callosum lesions performed significantly worse on all cognitive domains except language, compared with those without corpus callosum lesions after correcting for age, sex, education and time between magnetic resonance imaging and neuropsychological assessment. This association was independent of the presence of intracerebral haemorrhage, whole-brain fractional anisotropy and mean diffusivity, and white-matter hyperintensity volume and brain volume for the domains of information processing speed and executive functioning. In the memory clinic patient cohort, corpus callosum lesions were present in 14/54 (26%) patients with probable and 2/8 (25%) patients with possible cerebral amyloid angiopathy, and in 3/20 (15%) patients without cerebral amyloid angiopathy. In the ex vivo cohort, corpus callosum lesions were present in 10/19 (53%) patients and 2/5 (40%) controls. On histopathology, ischaemic corpus callosum lesions were associated with tissue loss and demyelination, which extended beyond the lesion core. Together, these data suggest that corpus callosum lesions are a frequent finding in cerebral amyloid angiopathy, and that they independently contribute to cognitive impairment through strategic microstructural disruption of white-matter tracts.
Collapse
Affiliation(s)
- Whitney M. Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, The Netherlands
| | - Maria Clara Zanon Zotin
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School, USP, SP, Brazil
| | - Ashley A. Scherlek
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Valentina Perosa
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Corinne A. Auger
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Andrew D. Warren
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Louise van der Weerd
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mitchell J. Horn
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - M. Edip Gurol
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Elif Gokcal
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Brian J. Bacskai
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Anand Viswanathan
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M. Greenberg
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Yael D. Reijmer
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Susanne J. van Veluw
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology, J. Philip Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
11
|
Rost NS, Brodtmann A, Pase MP, van Veluw SJ, Biffi A, Duering M, Hinman JD, Dichgans M. Post-Stroke Cognitive Impairment and Dementia. Circ Res 2022; 130:1252-1271. [PMID: 35420911 DOI: 10.1161/circresaha.122.319951] [Citation(s) in RCA: 290] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poststroke cognitive impairment and dementia (PSCID) is a major source of morbidity and mortality after stroke worldwide. PSCID occurs as a consequence of ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. Cognitive impairment and dementia manifesting after a clinical stroke is categorized as vascular even in people with comorbid neurodegenerative pathology, which is common in elderly individuals and can contribute to the clinical expression of PSCID. Manifestations of cerebral small vessel disease, such as covert brain infarcts, white matter lesions, microbleeds, and cortical microinfarcts, are also common in patients with stroke and likewise contribute to cognitive outcomes. Although studies of PSCID historically varied in the approach to timing and methods of diagnosis, most of them demonstrate that older age, lower educational status, socioeconomic disparities, premorbid cognitive or functional decline, life-course exposure to vascular risk factors, and a history of prior stroke increase risk of PSCID. Stroke characteristics, in particular stroke severity, lesion volume, lesion location, multiplicity and recurrence, also influence PSCID risk. Understanding the complex interaction between an acute stroke event and preexisting brain pathology remains a priority and will be critical for developing strategies for personalized prediction, prevention, targeted interventions, and rehabilitation. Current challenges in the field relate to a lack of harmonization of definition and classification of PSCID, timing of diagnosis, approaches to neurocognitive assessment, and duration of follow-up after stroke. However, evolving knowledge on pathophysiology, neuroimaging, and biomarkers offers potential for clinical applications and may inform clinical trials. Preventing stroke and PSCID remains a cornerstone of any strategy to achieve optimal brain health. We summarize recent developments in the field and discuss future directions closing with a call for action to systematically include cognitive outcome assessment into any clinical studies of poststroke outcome.
Collapse
Affiliation(s)
- Natalia S Rost
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Amy Brodtmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia (A. Brodtmann).,Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia (A. Brodtmann. M.P.P.)
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia (A. Brodtmann. M.P.P.).,Harvard T.H. Chan School of Public Health, Boston (M.P.P.)
| | - Susanne J van Veluw
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown (S.J.v.V.)
| | - Alessandro Biffi
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Divisions of Memory Disorders and Behavioral Neurology (A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marco Duering
- J. Philip Kistler Stroke Research Center (N.S.R., S.J.v.V., A. Biffi), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M. Duering, M. Dichgans).,Medical Image Analysis Center and Department of Biomedical Engineering, University of Basel, Switzerland (M. Duering)
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (J.D.H.).,Department of Neurology, West Los Angeles VA Medical Center, CA (J.D.H.)
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M. Duering, M. Dichgans).,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (M. Dichgans).,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (M. Dichgans)
| |
Collapse
|
12
|
van Veluw SJ, Arfanakis K, Schneider JA. Neuropathology of Vascular Brain Health: Insights From Ex Vivo Magnetic Resonance Imaging-Histopathology Studies in Cerebral Small Vessel Disease. Stroke 2022; 53:404-415. [PMID: 35000425 PMCID: PMC8830602 DOI: 10.1161/strokeaha.121.032608] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sporadic cerebral small vessel disease (SVD) is a major contributor to vascular cognitive impairment and dementia in the aging human brain. On neuropathology, sporadic SVD is characterized by abnormalities to the small vessels of the brain predominantly in the form of cerebral amyloid angiopathy and arteriolosclerosis. These pathologies frequently coexist with Alzheimer disease changes, such as plaques and tangles, in a single brain. Conversely, during life, magnetic resonance imaging (MRI) only captures the larger manifestations of SVD in the form of parenchymal brain abnormalities. There appears to be a major knowledge gap regarding the underlying neuropathology of individual MRI-detectable SVD abnormalities. Ex vivo MRI in postmortem human brain tissue is a powerful tool to bridge this gap. This review summarizes current insights into the histopathologic correlations of MRI manifestations of SVD, their underlying cause, presumed pathophysiology, and associated secondary tissue injury. Moreover, we discuss the advantages and limitations of ex vivo MRI-guided histopathologic investigations and make recommendations for future studies.
Collapse
Affiliation(s)
- Susanne J. van Veluw
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA,Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA,Departments of Pathology and Neurological Sciences, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
13
|
Finger CE, Moreno-Gonzalez I, Gutierrez A, Moruno-Manchon JF, McCullough LD. Age-related immune alterations and cerebrovascular inflammation. Mol Psychiatry 2022; 27:803-818. [PMID: 34711943 PMCID: PMC9046462 DOI: 10.1038/s41380-021-01361-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
Aging is associated with chronic systemic inflammation, which contributes to the development of many age-related diseases, including vascular disease. The world's population is aging, leading to an increasing prevalence of both stroke and vascular dementia. The inflammatory response to ischemic stroke is critical to both stroke pathophysiology and recovery. Age is a predictor of poor outcomes after stroke. The immune response to stroke is altered in aged individuals, which contributes to the disparate outcomes between young and aged patients. In this review, we describe the current knowledge of the effects of aging on the immune system and the cerebral vasculature and how these changes alter the immune response to stroke and vascular dementia in animal and human studies. Potential implications of these age-related immune alterations on chronic inflammation in vascular disease outcome are highlighted.
Collapse
Affiliation(s)
- Carson E. Finger
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Ines Moreno-Gonzalez
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA ,grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Antonia Gutierrez
- grid.10215.370000 0001 2298 7828Department of Cell Biology, Genetics and Physiology, Instituto de Investigacion Biomedica de Malaga-IBIMA, Faculty of Sciences, Malaga University, Malaga, Spain ,grid.418264.d0000 0004 1762 4012Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Malaga, Spain
| | - Jose Felix Moruno-Manchon
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, UTHealth Science Center at Houston, Houston, TX USA
| |
Collapse
|
14
|
Cohen D, Mashiach R, Houben L, Galisova A, Addadi Y, Kain D, Lubart A, Blinder P, Allouche-Arnon H, Bar-Shir A. Glyconanofluorides as Immunotracers with a Tunable Core Composition for Sensitive Hotspot Magnetic Resonance Imaging of Inflammatory Activity. ACS NANO 2021; 15:7563-7574. [PMID: 33872494 PMCID: PMC8155386 DOI: 10.1021/acsnano.1c01040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Nature-inspired nanosized formulations based on an imageable, small-sized inorganic core scaffold, on which biomolecules are assembled to form nanobiomimetics, hold great promise for both early diagnostics and developed therapeutics. Nevertheless, the fabrication of nanobiomimetics that allow noninvasive background-free mapping of pathological events with improved sensitivity, enhanced specificity, and multiplexed capabilities remains a major challenge. Here, we introduce paramagnetic glyconanofluorides as small-sized (<10 nm) glycomimetics for immunotargeting and sensitive noninvasive in vivo19F magnetic resonance imaging (MRI) mapping of inflammation. A very short T1 relaxation time (70 ms) of the fluorides was achieved by doping the nanofluorides' solid crystal core with paramagnetic Sm3+, resulting in a significant 8-fold enhancement in their 19F MRI sensitivity, allowing faster acquisition and improved detectability levels. The fabricated nanosized glycomimetics exhibit significantly enhanced uptake within activated immune cells, providing background-free in vivo mapping of inflammatory activity, demonstrated in both locally induced inflammation and clinically related neuropathology animal models. Fabricating two types of nanofluorides, each with a distinct chemical shift, allowed us to exploit the color-like features of 19F MRI to map, in real time, immune specificity and preferred targetability of the paramagnetic glyconanofluorides, demonstrating the approach's potential extension to noninvasive multitarget imaging scenarios that are not yet applicable for nanobiomimetics based on other nanocrystal cores.
Collapse
Affiliation(s)
- Dana Cohen
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Reut Mashiach
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Lothar Houben
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Andrea Galisova
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Yoseph Addadi
- Life
Sciences Core Facilities, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - David Kain
- Neurobiology,
Biochemistry and Biophysics School, George S. Wise Faculty of Life
Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alisa Lubart
- Neurobiology,
Biochemistry and Biophysics School, George S. Wise Faculty of Life
Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pablo Blinder
- Neurobiology,
Biochemistry and Biophysics School, George S. Wise Faculty of Life
Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hyla Allouche-Arnon
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Organic Chemistry, Weizmann Institute
of Science, Rehovot 7610001, Israel
| |
Collapse
|