1
|
Puzzo CD, Martinez-Garcia RI, Liu H, Dyson LF, Gilbert WO, Cruikshank SJ. Integration of distinct cortical inputs to primary and higher order inhibitory cells of the thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.618039. [PMID: 39416152 PMCID: PMC11482941 DOI: 10.1101/2024.10.12.618039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The neocortex controls its own sensory input in part through top-down inhibitory mechanisms. Descending corticothalamic projections drive GABAergic neurons of the thalamic reticular nucleus (TRN), which govern thalamocortical cell activity via inhibition. Neurons in sensory TRN are organized into primary and higher order (HO) subpopulations, with separate intrathalamic connections and distinct genetic and functional properties. Here, we investigated top-down neocortical control over primary and HO neurons of somatosensory TRN. Projections from layer 6 of somatosensory cortex evoked stronger and more state-dependent activity in primary than in HO TRN, driven by more robust synaptic inputs and potent T-type calcium currents. However, HO TRN received additional, physiologically distinct, inputs from motor cortex and layer 5 of S1. Thus, in a departure from the canonical focused sensory layer 6 innervation characteristic of primary TRN, HO TRN integrates broadly from multiple corticothalamic systems, with unique state-dependence, extending the range of mechanisms for top-down control.
Collapse
|
2
|
Vadisiute A, Meijer E, Therpurakal RN, Mueller M, Szabó F, Messore F, Jursenas A, Bredemeyer O, Krone LB, Mann E, Vyazovskiy V, Hoerder-Suabedissen A, Molnár Z. Glial cells undergo rapid changes following acute chemogenetic manipulation of cortical layer 5 projection neurons. Commun Biol 2024; 7:1286. [PMID: 39384971 PMCID: PMC11464517 DOI: 10.1038/s42003-024-06994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Bidirectional communication between neurons and glial cells is crucial to establishing and maintaining normal brain function. Some of these interactions are activity-dependent, yet it remains largely unexplored how acute changes in neuronal activity affect glial-to-neuron and neuron-to-glial dynamics. Here, we use excitatory and inhibitory designer receptors exclusively activated by designer drugs (DREADD) to study the effects of acute chemogenetic manipulations of a subpopulation of layer 5 cortical projection and dentate gyrus neurons in adult (Rbp4Cre) mouse brains. We show that acute chemogenetic neuronal activation reduces synaptic density, and increases microglia and astrocyte reactivity, but does not affect parvalbumin (PV+) neurons, only perineuronal nets (PNN). Conversely, acute silencing increases synaptic density and decreases glial reactivity. We show fast glial response upon clozapine-N-oxide (CNO) administration in cortical and subcortical regions. Together, our work provides evidence of fast, activity-dependent, bidirectional interactions between neurons and glial cells.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom.
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom.
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Rajeevan Narayanan Therpurakal
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Department of Neurology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Marissa Mueller
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Fernando Messore
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | | | - Oliver Bredemeyer
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom
| | - Lukas B Krone
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
- Centre for Experimental Neurology, University of Bern, Bern, Switzerland
| | - Ed Mann
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
| | - Vladyslav Vyazovskiy
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Kavli Institute for Nanoscience Discovery, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom
- Kavli Institute for Nanoscience Discovery, Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
- Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, United Kingdom.
- St John's College, University of Oxford, St Giles', Oxford, United Kingdom.
| |
Collapse
|
3
|
Chen Z, Wang S, Wang J, Wang Y, Qi X, An B, Sun L, Lin L. SNAP25-induced MYC upregulation promotes high-grade neuroendocrine lung carcinoma progression. Front Immunol 2024; 15:1411114. [PMID: 39430761 PMCID: PMC11486671 DOI: 10.3389/fimmu.2024.1411114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background This study investigated the expression and role of Synaptosome associated protein 25 (SNAP25) in high-grade neuroendocrine carcinoma (HGNEC). Methods We used differentially expressed analysis and weighted gene co-expression network analysis (WGCNA) to identify key genes and modules in HGNEC. KEGG and GO analyses helped understand these genes' roles, and ROC curves assessed their diagnostic value. We also studied SNAP25's relation to immune infiltration and confirmed findings with in vitro and vivo experiments and datasets. Results WGCNA identified 595 key genes related to pathways like MAPK signaling, GABAergic synapse, and cancer-related transcriptional misregulation. Top genes included SNAP25, MYC, NRXN1, GAD2, and SYT1. SNAP25 was notably associated with M2 macrophage infiltration. Dataset GSE40275 confirmed SNAP25's high expression and poor prognosis in HGNEC. qRT-PCR and WB analyses showed increased SNAP25 and c-MYC levels in HGNEC, promoting MEK/ERK pathway activity. Reducing SNAP25 decreased H1299 cell proliferation, migration, invasion, and levels of c-MYC, MEK, and ERK. Finally, in vivo experiments further confirmed that SNAP25 knockout can inhibit tumor growth. Conclusion SNAP25 regulates c-MYC activation by stimulating the MEK/ERK pathway, ultimately influencing the development of HGNEC.
Collapse
Affiliation(s)
- Zhiqiang Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangjun Qi
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo An
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Hu YQ, Liu WT, Wu Y, Hu ZB, Tao YC, Zhang Q, Chen JY, Li M, Hu L, Ding YQ. DCC in the cerebral cortex is required for cognitive functions in mouse. Brain Pathol 2024:e13306. [PMID: 39293934 DOI: 10.1111/bpa.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024] Open
Abstract
Schizophrenia (SZ) is a highly heritable mental disorder, and genome-wide association studies have identified the association between deleted in colorectal cancer (DCC) and SZ. Previous study has shown a lowered expression of DCC in the cerebral cortex of SZ patient. In this study, we identified novel single nucleotide polymorphisms (SNPs) of DCC statistically correlated with SZ. Based on these, we generated DCC conditional knockout (CKO) mice and explored behavioral phenotypes in these mice. We observed that deletion of DCC in cortical layer VI but not layer V led to deficits in fear and spatial memory, as well as defective sensorimotor gating revealed by the prepulse inhibition test (PPI). Critically, the defective sensorimotor gating could be restored by olanzapine, an antipsychotic drug. Furthermore, we found that the levels of p-AKT and p-GSK3α/β were decreased, which was responsible for impaired PPI in the DCC-deficient mice. Finally, the DCC-deficient mice also displayed reduced spine density of pyramidal neurons and disturbed delta-oscillations. Our data, for the first time, identified and explored downstream substrates and signaling pathway of DCC which supports the hypothesis that DCC is a SZ-related risky gene and when defective, may promote SZ-like pathogenesis and behavioral phenotypes in mice.
Collapse
Affiliation(s)
- Yun-Qing Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wei-Tang Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yong Wu
- Research Center for Mental Health and Neuroscience, Wuhan Mental Health Center, Jianghan University, Wuhan, China
| | - Zhi-Bin Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yun-Chao Tao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ling Hu
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Yu-Qiang Ding
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Masilamoni GJ, Kelly H, Swain AJ, Pare JF, Villalba RM, Smith Y. Structural Plasticity of GABAergic Pallidothalamic Terminals in MPTP-Treated Parkinsonian Monkeys: A 3D Electron Microscopic Analysis. eNeuro 2024; 11:ENEURO.0241-23.2024. [PMID: 38514185 PMCID: PMC10957232 DOI: 10.1523/eneuro.0241-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.
Collapse
Affiliation(s)
- G J Masilamoni
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - H Kelly
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - A J Swain
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - J F Pare
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - R M Villalba
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - Y Smith
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
6
|
Hayashi S, Ohno N, Knott G, Molnár Z. Correlative light and volume electron microscopy to study brain development. Microscopy (Oxf) 2023; 72:279-286. [PMID: 36620906 DOI: 10.1093/jmicro/dfad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Recent advances in volume electron microscopy (EM) have been driving our thorough understanding of the brain architecture. Volume EM becomes increasingly powerful when cells and their subcellular structures that are imaged in light microscopy are correlated to those in ultramicrographs obtained with EM. This correlative approach, called correlative light and volume electron microscopy (vCLEM), is used to link three-dimensional ultrastructural information with physiological data such as intracellular Ca2+ dynamics. Genetic tools to express fluorescent proteins and/or an engineered form of a soybean ascorbate peroxidase allow us to perform vCLEM using natural landmarks including blood vessels without immunohistochemical staining. This immunostaining-free vCLEM has been successfully employed in two-photon Ca2+ imaging in vivo as well as in studying complex synaptic connections in thalamic neurons that receive a variety of specialized inputs from the cerebral cortex. In this mini-review, we overview how volume EM and vCLEM have contributed to studying the developmental processes of the brain. We also discuss potential applications of genetic manipulation of target cells using clustered regularly interspaced short palindromic repeats-associated protein 9 and subsequent volume EM to the analysis of protein localization as well as to loss-of-function studies of genes regulating brain development. We give examples for the combinatorial usage of genetic tools with vCLEM that will further enhance our understanding of regulatory mechanisms underlying brain development.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, 5-1 Higashiyama Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Graham Knott
- Biological Electron Microscopy Facility, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, Lausanne CH-1015, Switzerland
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
7
|
Govindaiah G, Fox MA, Guido W. Pattern of Driver-Like Input onto Neurons of the Mouse Ventral Lateral Geniculate Nucleus. eNeuro 2023; 10:ENEURO.0386-22.2022. [PMID: 36609305 PMCID: PMC9850909 DOI: 10.1523/eneuro.0386-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
The ventral lateral geniculate nucleus (vLGN) is a retinorecipient region of thalamus that contributes to a number of complex visual behaviors. Retinal axons that target vLGN terminate exclusively in the external subdivision (vLGNe), which is also transcriptionally and cytoarchitectonically distinct from the internal subdivision (vLGNi). While recent studies shed light on the cell types and efferent projections of vLGNe and vLGNi, we have a crude understanding of the source and nature of the excitatory inputs driving postsynaptic activity in these regions. Here, we address this by conducting in vitro whole-cell recordings in acutely prepared thalamic slices and using electrical and optical stimulation techniques to examine the postsynaptic excitatory activity evoked by the activation of retinal or cortical layer V input onto neurons in vLGNe and vLGNi. Activation of retinal afferents by electrical stimulation of optic tract or optical stimulation of retinal terminals resulted in robust driver-like excitatory activity in vLGNe. Optical activation of corticothalamic terminals from layer V resulted in similar driver-like activity in both vLGNe and vLGNi. Using a dual-color optogenetic approach, we found that many vLGNe neurons received convergent input from these two sources. Both individual pathways displayed similar driver-like properties, with corticothalamic stimulation leading to a stronger form of synaptic depression than retinogeniculate stimulation. We found no evidence of convergence in vLGNi, with neurons only responding to corticothalamic stimulation. These data provide insight into the influence of excitatory inputs to vLGN and reveal that only neurons in vLGNe receive convergent input from both sources.
Collapse
Affiliation(s)
- Gubbi Govindaiah
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Michael A. Fox
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202
| |
Collapse
|
8
|
Vadisiute A, Meijer E, Szabó F, Hoerder-Suabedissen A, Kawashita E, Hayashi S, Molnár Z. The role of snare proteins in cortical development. Dev Neurobiol 2022; 82:457-475. [PMID: 35724379 PMCID: PMC9539872 DOI: 10.1002/dneu.22892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 12/01/2022]
Abstract
Neural communication in the adult nervous system is mediated primarily through chemical synapses, where action potentials elicit Ca2+ signals, which trigger vesicular fusion and neurotransmitter release in the presynaptic compartment. At early stages of development, the brain is shaped by communication via trophic factors and other extracellular signaling, and by contact-mediated cell-cell interactions including chemical synapses. The patterns of early neuronal impulses and spontaneous and regulated neurotransmitter release guide the precise topography of axonal projections and contribute to determining cell survival. The study of the role of specific proteins of the synaptic vesicle release machinery in the establishment, plasticity, and maintenance of neuronal connections during development has only recently become possible, with the advent of mouse models where various members of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex have been genetically manipulated. We provide an overview of these models, focusing on the role of regulated vesicular release and/or cellular excitability in synaptic assembly, development and maintenance of cortical circuits, cell survival, circuit level excitation-inhibition balance, myelination, refinement, and plasticity of key axonal projections from the cerebral cortex. These models are important for understanding various developmental and psychiatric conditions, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Auguste Vadisiute
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Elise Meijer
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Florina Szabó
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Anna Hoerder-Suabedissen
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| | - Eri Kawashita
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | - Shuichi Hayashi
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Mease RA, Gonzalez AJ. Corticothalamic Pathways From Layer 5: Emerging Roles in Computation and Pathology. Front Neural Circuits 2021; 15:730211. [PMID: 34566583 PMCID: PMC8458899 DOI: 10.3389/fncir.2021.730211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Large portions of the thalamus receive strong driving input from cortical layer 5 (L5) neurons but the role of this important pathway in cortical and thalamic computations is not well understood. L5-recipient "higher-order" thalamic regions participate in cortico-thalamo-cortical (CTC) circuits that are increasingly recognized to be (1) anatomically and functionally distinct from better-studied "first-order" CTC networks, and (2) integral to cortical activity related to learning and perception. Additionally, studies are beginning to elucidate the clinical relevance of these networks, as dysfunction across these pathways have been implicated in several pathological states. In this review, we highlight recent advances in understanding L5 CTC networks across sensory modalities and brain regions, particularly studies leveraging cell-type-specific tools that allow precise experimental access to L5 CTC circuits. We aim to provide a focused and accessible summary of the anatomical, physiological, and computational properties of L5-originating CTC networks, and outline their underappreciated contribution in pathology. We particularly seek to connect single-neuron and synaptic properties to network (dys)function and emerging theories of cortical computation, and highlight information processing in L5 CTC networks as a promising focus for computational studies.
Collapse
Affiliation(s)
- Rebecca A. Mease
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
10
|
Dong X, Yang L, Liu K, Ji X, Tang C, Li W, Ma L, Mei Y, Peng T, Feng B, Wu Z, Tang Q, Gao Y, Yan K, Zhou W, Xiong M. Transcriptional networks identify synaptotagmin-like 3 as a regulator of cortical neuronal migration during early neurodevelopment. Cell Rep 2021; 34:108802. [PMID: 33657377 DOI: 10.1016/j.celrep.2021.108802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/25/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Human brain development is a complex process involving neural proliferation, differentiation, and migration that are directed by many essential cellular factors and drivers. Here, using the NetBID2 algorithm and developing human brain RNA sequencing dataset, we identify synaptotagmin-like 3 (SYTL3) as one of the top drivers of early human brain development. Interestingly, SYTL3 exhibits high activity but low expression in both early developmental human cortex and human embryonic stem cell (hESC)-derived neurons. Knockout of SYTL3 (SYTL3-KO) in human neurons or knockdown of Sytl3 in embryonic mouse cortex markedly promotes neuronal migration. SYTL3-KO causes an abnormal distribution of deep-layer neurons in brain organoids and reduces presynaptic neurotransmitter release in hESC-derived neurons. We further demonstrate that SYTL3-KO-accelerated neuronal migration is modulated by high expression of matrix metalloproteinases. Together, based on bioinformatics and biological experiments, we identify SYTL3 as a regulator of cortical neuronal migration in human and mouse developing brains.
Collapse
Affiliation(s)
- Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Lin Yang
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Kaiyi Liu
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Xiaoli Ji
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China; Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Chuanqing Tang
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wanxing Li
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Ling Ma
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yuting Mei
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ting Peng
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ban Feng
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, Shanghai, China
| | - Ziyan Wu
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, Shanghai, China
| | - Qingyuan Tang
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Yanyan Gao
- Ultrasonography Department, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Kai Yan
- Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Wenhao Zhou
- Molecular Medical Center, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China; Key Laboratory of Neonatal Diseases, Ministry of Health, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - Man Xiong
- Stem Cell Center, Children's Hospital of Fudan University, Shanghai 201102, China.
| |
Collapse
|