1
|
Bachmann H, Vandemoortele B, Vermeirssen V, Carrette E, Vonck K, Boon P, Raedt R, Laureys G. Vagus nerve stimulation enhances remyelination and decreases innate neuroinflammation in lysolecithin-induced demyelination. Brain Stimul 2024; 17:575-587. [PMID: 38648972 DOI: 10.1016/j.brs.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Current treatments for Multiple Sclerosis (MS) poorly address chronic innate neuroinflammation nor do they offer effective remyelination. The vagus nerve has a strong regulatory role in inflammation and Vagus Nerve Stimulation (VNS) has potential to affect both neuroinflammation and remyelination in MS. OBJECTIVE This study investigated the effects of VNS on demyelination and innate neuroinflammation in a validated MS rodent model. METHODS Lysolecithin (LPC) was injected in the corpus callosum (CC) of 46 Lewis rats, inducing a demyelinated lesion. 33/46 rats received continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS from 2 days before LPC-injection until perfusion at 3 days post-injection (dpi) (corresponding with a demyelinated lesion with peak inflammation). 13/46 rats received cVNS or sham from 2 days before LPC-injection until perfusion at 11 dpi (corresponding with a partial remyelinated lesion). Immunohistochemistry and proteomics analyses were performed to investigate the extend of demyelination and inflammation. RESULTS Immunohistochemistry showed that cVNS significantly reduced microglial and astrocytic activation in the lesion and lesion border, and significantly reduced the Olig2+ cell count at 3 dpi. Furthermore, cVNS significantly improved remyelination with 57.4 % versus sham at 11 dpi. Proteomic gene set enrichment analyses showed increased activation of (glutamatergic) synapse pathways in cVNS versus sham, most pronounced at 3 dpi. CONCLUSION cVNS improved remyelination of an LPC-induced lesion. Possible mechanisms might include modulation of microglia and astrocyte activity, increased (glutamatergic) synapses and enhanced oligodendrocyte clearance after initial injury.
Collapse
Affiliation(s)
- Helen Bachmann
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium.
| | - Boris Vandemoortele
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Kristl Vonck
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Paul Boon
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Robrecht Raedt
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Guy Laureys
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| |
Collapse
|
2
|
Aykan SA, Xie H, Zheng Y, Chung DY, Kura S, Han Lai J, Erdogan TD, Morais A, Tamim I, Yagmur D, Ishikawa H, Arai K, Abbas Yaseen M, Boas DA, Sakadzic S, Ayata C. Rho-Kinase Inhibition Improves the Outcome of Focal Subcortical White Matter Lesions. Stroke 2022; 53:2369-2376. [PMID: 35656825 DOI: 10.1161/strokeaha.121.037358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury. METHODS A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month. RESULTS Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms. CONCLUSIONS These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.
Collapse
Affiliation(s)
- Sanem A Aykan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hongyu Xie
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China (H.X.)
| | - Yi Zheng
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - David Y Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| | - Sreekanth Kura
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.)
| | - James Han Lai
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Taylan D Erdogan
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Andreia Morais
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Isra Tamim
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Damla Yagmur
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.)
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown. (H.I., K.A.)
| | - M Abbas Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - David A Boas
- Neurophotonics Center, Department of Biomedical Engineering, Boston University, MA (S.K., D.A.B.).,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA. (D.A.B., M.A.Y., S.S.)
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Charlestown (S.A.A., H.X., Y.Z., D.Y.C., J.H.L., T.D.E., A.M., I.T., D.Y., C.A.).,Stroke Service, Department of Neurology, Massachusetts General Hospital, Charlestown, MA. (C.A., D.Y.C.)
| |
Collapse
|