1
|
Karakashevska E, Derpsch Y, Jones A, Makin ADJ. The extrastriate symmetry response is robust to alcohol intoxication. Psychophysiology 2024; 61:e14593. [PMID: 38643374 DOI: 10.1111/psyp.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/08/2024] [Accepted: 04/03/2024] [Indexed: 04/22/2024]
Abstract
Visual symmetry activates a network of regions in the extrastriate cortex and generates an event-related potential (ERP) called the sustained posterior negativity (SPN). Previous work has found that the SPN is robust to experimental manipulations of task, spatial attention, and memory load. In the current study, we investigated whether the SPN is also robust to alcohol-induced changes in mental state. A pilot experiment (N = 13) found that alcohol unexpectedly increased SPN amplitude. We followed this unexpected result with two new experiments on separate groups, using an alcohol challenge paradigm. One group completed an Oddball discrimination task (N = 26). Another group completed a Regularity discrimination task (N = 26). In both groups, participants consumed a medium dose of alcohol (0.65 g/kg body weight) and a placebo drink, in separate sessions. Alcohol reduced SPN amplitude in the Oddball task (contrary to the pilot results) but had no effect on SPN amplitude in the Regularity task. In contrast, the N1 wave was consistently dampened by alcohol in all experiments. Exploratory analysis indicated that the inconsistent effect of alcohol on SPN amplitude may be partly explained by individual differences in alcohol use. Alcohol reduced the SPN in light drinkers and increased it in heavier drinkers. Despite remaining questions, the results highlight the automaticity of symmetry processing. Symmetry still produces a large SPN response, even when participants are intoxicated, and even when symmetry is not task relevant.
Collapse
Affiliation(s)
- Elena Karakashevska
- Department of Psychology, Population Health Institute, University of Liverpool, Liverpool, UK
| | - Yiovanna Derpsch
- Faculty of Social Sciences, School of Psychology, University of East Anglia, Norwich, UK
| | - Andrew Jones
- Faculty of Health, School of Psychology, Liverpool John Moores, Liverpool, UK
| | - Alexis D J Makin
- Department of Psychology, Population Health Institute, University of Liverpool, Liverpool, UK
| |
Collapse
|
2
|
Zamboni E, Makin ADJ, Bertamini M, Morland AB. The role of task on the human brain's responses to, and representation of, visual regularity defined by reflection and rotation. Neuroimage 2024; 297:120760. [PMID: 39069225 DOI: 10.1016/j.neuroimage.2024.120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024] Open
Abstract
Identifying and segmenting objects in an image is generally achieved effortlessly and is facilitated by the presence of symmetry: a principle of perceptual organisation used to interpret sensory inputs from the retina into meaningful representations. However, while imaging studies show evidence of symmetry selective responses across extrastriate visual areas in the human brain, whether symmetry is processed automatically is still under debate. We used functional Magnetic Resonance Imaging (fMRI) to study the response to and representation of two types of symmetry: reflection and rotation. Dot pattern stimuli were presented to 15 human participants (10 female) under stimulus-relevant (symmetry) and stimulus-irrelevant (luminance) task conditions. Our results show that symmetry-selective responses emerge from area V3 and extend throughout extrastriate visual areas. This response is largely maintained when participants engage in the stimulus irrelevant task, suggesting an automaticity to processing visual symmetry. Our multi-voxel pattern analysis (MVPA) results extend these findings by suggesting that not only spatial organisation of responses to symmetrical patterns can be distinguished from that of non-symmetrical (random) patterns, but also that representation of reflection and rotation symmetry can be differentiated in extrastriate and object-selective visual areas. Moreover, task demands did not affect the neural representation of the symmetry information. Intriguingly, our MVPA results show an interesting dissociation: representation of luminance (stimulus irrelevant feature) is maintained in visual cortex only when task relevant, while information of the spatial configuration of the stimuli is available across task conditions. This speaks in favour of the automaticity for processing perceptual organisation: extrastriate visual areas compute and represent global, spatial properties irrespective of the task at hand.
Collapse
Affiliation(s)
- Elisa Zamboni
- University of Nottingham, School of Psychology, Nottingham, United Kingdom; University of York, Department of Psychology, York YO10 5DD, United Kingdom; University of York, York Neuroimaging Centre, York, United Kingdom
| | - Alexis D J Makin
- University of Liverpool, Department of Psychological Sciences, Liverpool, United Kingdom
| | - Marco Bertamini
- University of Liverpool, Department of Psychological Sciences, Liverpool, United Kingdom; Università di Padova, Dipartimento di Psicologia Generale, Padova, IT, Italy
| | - Antony B Morland
- University of York, Department of Psychology, York YO10 5DD, United Kingdom; University of York, York Neuroimaging Centre, York, United Kingdom; University of York, York Biomedical Research Institute, York, United Kingdom.
| |
Collapse
|
3
|
Makin ADJ, Buckley N, Austin E, Bertamini M. When does perceptual organization happen? Cortex 2024; 174:70-92. [PMID: 38492441 DOI: 10.1016/j.cortex.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Reflectional (mirror) symmetry is an important visual cue for perceptual organization. The brain processes symmetry rapidly and efficiently. Previous work suggests that symmetry activates the extrastriate cortex and generates an event related potential (ERP) called the Sustained Posterior Negativity (SPN). It has been claimed that no tasks completely block symmetry processing and abolish the SPN. We tested the limits of this claim with a series of eight new Electroencephalography (EEG) experiments (344 participants in total). All experiments used the same symmetrical or asymmetrical dot patterns. When participants attended to regularity in Experiment 1, there was a substantial SPN (Mean amplitude = -2.423 μV). The SPN was reduced, but not abolished, when participants discriminated dot luminance in Experiments 2 and 3 (-.835 and -1.410 μV) or the aspect ratio of a superimposed cross in Experiments 4 and 5 (-.722 and -.601 μV). The SPN also survived when the background pattern was potentially disruptive to the primary task in Experiment 6 (-1.358 μV) and when participants classified negative superimposed words in Experiment 7 (-.510 μV). Finally, the SPN remained when participants attended to the orientation of a diagonal line in Experiment 8 (-.589 μV). While task manipulations can turn down the extrastriate symmetry activation, they cannot render the system completely unresponsive. Permanent readiness to detect reflectional symmetry at the centre of the visual field could be an evolved adaptation.
Collapse
Affiliation(s)
- Alexis D J Makin
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Ned Buckley
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Emma Austin
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marco Bertamini
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
4
|
Makin ADJ, Rampone G, Bertamini M. The brain does not process horizontal reflection when attending to vertical reflection, and vice versa. J Vis 2024; 24:1. [PMID: 38427362 PMCID: PMC10913937 DOI: 10.1167/jov.24.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Previous work has found that feature attention can modulate electrophysiological responses to visual symmetry. In the current study, participants observed spatially overlapping clouds of black and white dots. They discriminated vertical symmetry from asymmetry in the target dots (e.g., black or white) and ignored the regularity of the distractor dots (e.g., white or black). We measured an electroencephalography component called the sustained posterior negativity (SPN), which is known to be generated by visual symmetry. There were five conditions with different combinations of target and distractor regularity. As well as replicating previous results, we found that an orthogonal axes of reflection in the distractor dots had no effect on SPN amplitude. We conclude that the visual system can processes reflectional symmetry in independent axis-orientation specific channels.
Collapse
Affiliation(s)
- Alexis D J Makin
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Giulia Rampone
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Marco Bertamini
- Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy
| |
Collapse
|
5
|
Laurent MA, Audurier P, De Castro V, Gao X, Durand JB, Jonas J, Rossion B, Cottereau BR. Towards an optimization of functional localizers in non-human primate neuroimaging with (fMRI) frequency-tagging. Neuroimage 2023; 270:119959. [PMID: 36822249 DOI: 10.1016/j.neuroimage.2023.119959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Non-human primate (NHP) neuroimaging can provide essential insights into the neural basis of human cognitive functions. While functional magnetic resonance imaging (fMRI) localizers can play an essential role in reaching this objective (Russ et al., 2021), they often differ substantially across species in terms of paradigms, measured signals, and data analysis, biasing the comparisons. Here we introduce a functional frequency-tagging face localizer for NHP imaging, successfully developed in humans and outperforming standard face localizers (Gao et al., 2018). FMRI recordings were performed in two awake macaques. Within a rapid 6 Hz stream of natural non-face objects images, human or monkey face stimuli were presented in bursts every 9 s. We also included control conditions with phase-scrambled versions of all images. As in humans, face-selective activity was objectively identified and quantified at the peak of the face-stimulation frequency (0.111 Hz) and its second harmonic (0.222 Hz) in the Fourier domain. Focal activations with a high signal-to-noise ratio were observed in regions previously described as face-selective, mainly in the STS (clusters PL, ML, MF; also, AL, AF), both for human and monkey faces. Robust face-selective activations were also found in the prefrontal cortex of one monkey (PVL and PO clusters). Face-selective neural activity was highly reliable and excluded all contributions from low-level visual cues contained in the amplitude spectrum of the stimuli. These observations indicate that fMRI frequency-tagging provides a highly valuable approach to objectively compare human and monkey visual recognition systems within the same framework.
Collapse
Affiliation(s)
| | - Pauline Audurier
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Vanessa De Castro
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou City, China
| | - Jean-Baptiste Durand
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Universite de Lorraine, CHRU-Nancy, Service de neurologie, F-54000, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Benoit R Cottereau
- Centre de Recherche Cerveau et Cognition, Université Toulouse 3 Paul Sabatier, CNRS, 31052 Toulouse, France.
| |
Collapse
|
6
|
Haemodynamic Signatures of Temporal Integration of Visual Mirror Symmetry. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
EEG, fMRI and TMS studies have implicated the extra-striate cortex, including the Lateral Occipital Cortex (LOC), in the processing of visual mirror symmetries. Recent research has found that the sustained posterior negativity (SPN), a symmetry specific electrophysiological response identified in the region of the LOC, is generated when temporally displaced asymmetric components are integrated into a symmetric whole. We aim to expand on this finding using dynamic dot-patterns with systematically increased intra-pair temporal delay to map the limits of temporal integration of visual mirror symmetry. To achieve this, we used functional near-infrared spectroscopy (fNIRS) which measures the changes in the haemodynamic response to stimulation using near infrared light. We show that a symmetry specific haemodynamic response can be identified following temporal integration of otherwise meaningless dot-patterns, and the magnitude of this response scales with the duration of temporal delay. These results contribute to our understanding of when and where mirror symmetry is processed in the visual system. Furthermore, we highlight fNIRS as a promising but so far underutilised method of studying the haemodynamics of mid-level visual processes in the brain.
Collapse
|
7
|
Perceptual Similarities among Wallpaper Group Exemplars. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Symmetries are abundant within the visual environment, and many animals species are sensitive to visual symmetries. Wallpaper groups constitute a class of 17 regular textures that each contain a distinct combination of the four fundamental symmetries, translation, reflection, rotation and glide reflection, and together represent the complete set of possible symmetries in two-dimensional images. Wallpapers are visually compelling and elicit responses in visual brain areas that precisely capture the symmetry content of each group in humans and other primates. Here we ask to what extent different exemplars from the same wallpaper group are perceptually similar. We used an algorithm to produce a set of well-matched exemplars from 5 of the 17 wallpaper groups and instructed participants to freely sort the exemplars from each group into as many subsets as they wished based on any criteria they saw appropriate. P1, the simplest of the 17 groups, was consistently rated more self-similar than any other group, while the other four groups, although varying in symmetry content, were comparable in self-similarity. Our results suggest that except for the most extreme case (P1), perceived self-similarity of wallpaper groups is not directly tied to categories of symmetry based on group theory.
Collapse
|