1
|
Molinaro G, Collins AGE. A goal-centric outlook on learning. Trends Cogn Sci 2023; 27:1150-1164. [PMID: 37696690 DOI: 10.1016/j.tics.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Goals play a central role in human cognition. However, computational theories of learning and decision-making often take goals as given. Here, we review key empirical findings showing that goals shape the representations of inputs, responses, and outcomes, such that setting a goal crucially influences the central aspects of any learning process: states, actions, and rewards. We thus argue that studying goal selection is essential to advance our understanding of learning. By following existing literature in framing goal selection within a hierarchy of decision-making problems, we synthesize important findings on the principles underlying goal value attribution and exploration strategies. Ultimately, we propose that a goal-centric perspective will help develop more complete accounts of learning in both biological and artificial agents.
Collapse
Affiliation(s)
- Gaia Molinaro
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Anne G E Collins
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Aberbach-Goodman S, Mukamel R. Temporal hierarchy of observed goal-directed actions. Sci Rep 2023; 13:19701. [PMID: 37952024 PMCID: PMC10640622 DOI: 10.1038/s41598-023-46917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
During social interactions, we continuously integrate current and previous information over varying timescales to infer other people's action intentions. Motor cognition theories argue for a hierarchical organization of goal-directed actions based on temporal scales. Accordingly, transient motor primitives are represented at lower levels of the hierarchy, a combination of primitives building motor sequences at subordinate levels, and more stable overarching action goals at superordinate levels. A neural topography of hierarchal timescales for information accumulation was previously shown in the visual and auditory domains. However, whether such a temporal hierarchy can also account for observed goal-directed action representations in motor pathways remains to be determined. Thus, the current study examined the neural architecture underlying the processing of observed goal-directed actions using inter-subject correlation (ISC) of fMRI activity. Observers (n = 24) viewed sequential hand movements presented in their intact order or piecewise scrambled at three timescales pertaining to goal-directed action evolution (Primitives: ± 1.5 s, Sub-Goals: ± 4 s, and High-Goals: ± 10 s). The results revealed differential intrinsic temporal capacities for integrating goal-directed action information across brain areas engaged in action observation. Longer timescales (> ± 10 s) were found in the posterior parietal and dorsal premotor compared to the ventral premotor (± 4 s) and anterior parietal (± 1.5 s) cortex. Moreover, our results revealed a hemispheric bias with more extended timescales in the right MT+, primary somatosensory, and early visual cortices compared to their homotopic regions in the left hemisphere. Our findings corroborate a hierarchical neural mapping of observed actions based on temporal scales of goals and provide further support for a ubiquitous time-dependent neural organization of information processing across multiple modalities.
Collapse
Affiliation(s)
- Shahar Aberbach-Goodman
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, 6997801, Tel-Aviv, Israel
| | - Roy Mukamel
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, 6997801, Tel-Aviv, Israel.
| |
Collapse
|
3
|
Schröger E, Roeber U, Coy N. Markov chains as a proxy for the predictive memory representations underlying mismatch negativity. Front Hum Neurosci 2023; 17:1249413. [PMID: 37771348 PMCID: PMC10525344 DOI: 10.3389/fnhum.2023.1249413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Events not conforming to a regularity inherent to a sequence of events elicit prediction error signals of the brain such as the Mismatch Negativity (MMN) and impair behavioral task performance. Events conforming to a regularity lead to attenuation of brain activity such as stimulus-specific adaptation (SSA) and behavioral benefits. Such findings are usually explained by theories stating that the information processing system predicts the forthcoming event of the sequence via detected sequential regularities. A mathematical model that is widely used to describe, to analyze and to generate event sequences are Markov chains: They contain a set of possible events and a set of probabilities for transitions between these events (transition matrix) that allow to predict the next event on the basis of the current event and the transition probabilities. The accuracy of such a prediction depends on the distribution of the transition probabilities. We argue that Markov chains also have useful applications when studying cognitive brain functions. The transition matrix can be regarded as a proxy for generative memory representations that the brain uses to predict the next event. We assume that detected regularities in a sequence of events correspond to (a subset of) the entries in the transition matrix. We apply this idea to the Mismatch Negativity (MMN) research and examine three types of MMN paradigms: classical oddball paradigms emphasizing sound probabilities, between-sound regularity paradigms manipulating transition probabilities between adjacent sounds, and action-sound coupling paradigms in which sounds are associated with actions and their intended effects. We show that the Markovian view on MMN yields theoretically relevant insights into the brain processes underlying MMN and stimulates experimental designs to study the brain's processing of event sequences.
Collapse
Affiliation(s)
- Erich Schröger
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Urte Roeber
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Nina Coy
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| |
Collapse
|
4
|
Mazor M, Gong C, Fleming SM. Re-evaluating frontopolar and temporoparietal contributions to detection and discrimination confidence. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221091. [PMID: 37090969 PMCID: PMC10113806 DOI: 10.1098/rsos.221091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
Previously, we identified a subset of regions where the relation between decision confidence and univariate functional magnetic resonance imaging (fMRI) activity was quadratic, with stronger activation for both high and low compared with intermediate levels of confidence. We further showed that, in a subset of these regions, this quadratic modulation appeared only for confidence in detection decisions about the presence or absence of a stimulus, and not for confidence in discrimination decisions about stimulus identity (Mazor et al. 2021). Here, in a pre-registered follow-up experiment, we sought to replicate our original findings and identify the origins of putative detection-specific confidence signals by introducing a novel asymmetric-discrimination condition. The new condition required discriminating two alternatives but was engineered such that the distribution of perceptual evidence was asymmetric, just as in yes/no detection. We successfully replicated the quadratic modulation of subjective confidence in prefrontal, parietal and temporal cortices. However, in contrast with our original report, this quadratic effect was similar in detection and discrimination responses, but stronger in the novel asymmetric-discrimination condition. We interpret our findings as weighing against the detection-specificity of confidence signatures and speculate about possible alternative origins of a quadratic modulation of decision confidence.
Collapse
Affiliation(s)
- Matan Mazor
- School of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
- Wellcome Centre for Human Neuroimaging, University College London, London WC1E 6BT, UK
| | - Chudi Gong
- Division of Psychology and Language Science, University College London, London WC1E 6BT, UK
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Stephen M. Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London WC1E 6BT, UK
- Department of Experimental Psychology, University College London, London WC1E 6BT, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK
| |
Collapse
|
5
|
Widmann A, Schröger E. Intention-based predictive information modulates auditory deviance processing. Front Neurosci 2022; 16:995119. [PMID: 36248631 PMCID: PMC9554204 DOI: 10.3389/fnins.2022.995119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
The human brain is highly responsive to (deviant) sounds violating an auditory regularity. Respective brain responses are usually investigated in situations when the sounds were produced by the experimenter. Acknowledging that humans also actively produce sounds, the present event-related potential study tested for differences in the brain responses to deviants that were produced by the listeners by pressing one of two buttons. In one condition, deviants were unpredictable with respect to the button-sound association. In another condition, deviants were predictable with high validity yielding correctly predicted deviants and incorrectly predicted (mispredicted) deviants. Temporal principal component analysis revealed deviant-specific N1 enhancement, mismatch negativity (MMN) and P3a. N1 enhancements were highly similar for each deviant type, indicating that the underlying neural mechanism is not affected by intention-based expectation about the self-produced forthcoming sound. The MMN was abolished for predictable deviants, suggesting that the intention-based prediction for a deviant can overwrite the prediction derived from the auditory regularity (predicting a standard). The P3a was present for each deviant type but was largest for mispredicted deviants. It is argued that the processes underlying P3a not only evaluate the deviant with respect to the fact that it violates an auditory regularity but also with respect to the intended sensorial effect of an action. Overall, our results specify current theories of auditory predictive processing, as they reveal that intention-based predictions exert different effects on different deviance-specific brain responses.
Collapse
Affiliation(s)
- Andreas Widmann
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Erich Schröger
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| |
Collapse
|
6
|
Rawji V, Modi S, Rocchi L, Jahanshahi M, Rothwel J. Proactive inhibition is marked by differences in the pattern of motor cortex activity during movement preparation and execution. J Neurophysiol 2022; 127:819-828. [PMID: 35235439 PMCID: PMC8957347 DOI: 10.1152/jn.00359.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Successful human behavior relies on the ability to flexibly alter movements depending on the context in which they are made. One such context-dependent modulation is proactive inhibition, a type of behavioral inhibition used when anticipating the need to stop or change movements. We investigated how the motor cortex might prepare and execute movements made under different contexts. We used transcranial magnetic stimulation (TMS) in different coil orientations [postero-anterior (PA) and antero-posterior (AP) flowing currents] and pulse widths (120 and 30 µs) to probe the excitability of different inputs to corticospinal neurons while participants performed two reaction time tasks: a simple reaction time task and a stop-signal task requiring proactive inhibition. We took inspiration from state space models to assess whether the pattern of motor cortex activity changed due to proactive inhibition (PA and AP neuronal circuits represent the x and y axes of a state space upon which motor cortex activity unfolds during motor preparation and execution). We found that the rise in motor cortex excitability was delayed when proactive inhibition was required. State space visualizations showed altered patterns of motor cortex activity (combined PA120 and AP30 activity) during proactive inhibition, despite adjusting for reaction time. Overall, we show that the pattern of neural activity generated by the motor cortex during movement preparation and execution is dependent upon the context under which the movement is to be made. NEW & NOTEWORTHY Using directional TMS, we find that the human motor cortex flexibly changes its pattern of neural activity depending on the context in which a movement is due to be made. Interestingly, this occurs despite adjusting for reaction time. We also show that state space and dynamical systems models of movement can be noninvasively visualized in humans using TMS, thereby offering a novel method to study these powerful models in humans.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sachin Modi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - John Rothwel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|