1
|
He Z, Zhang T, Wang Q, Zhang S, Cao G, Liu T, Zhao S, Jiang X, Guo L, Yuan Y, Han J. Brain functional gradients are related to cortical folding gradient. Cereb Cortex 2024; 34:bhae453. [PMID: 39569627 DOI: 10.1093/cercor/bhae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/12/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Cortical folding is closely linked to brain functions, with gyri acting more like local functional "hubs" to integrate information than sulci do. However, understanding how anatomical constraints relate to complex functions remains fragmented. One possible reason is that the relationship is estimated on brain mosaics divided by brain functions and cortical folding patterns. The boundaries of these hypothetical hard-segmented mosaics could be subject to the selection of functional/morphological features and as well as the thresholds. In contrast, functional gradient and folding gradient could provide a more feasible and unitless platform to mitigate the uncertainty introduced by boundary definition. Based on the MRI datasets, we used cortical surface curvature as the folding gradient and related it to the functional connectivity transition gradient. We found that, at the local scale, the functional gradient exhibits different function transition patterns between convex/concave cortices, with positive/negative curvatures, respectively. At the global scale, a cortex with more positive curvature could provide more function transition efficiency and play a more dominant role in more abstractive functional networks. These results reveal a novel relation between cortical morphology and brain functions, providing new clues to how anatomical constraint is related to the rise of an efficient brain function architecture.
Collapse
Affiliation(s)
- Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiyu Wang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Songyao Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Guannan Cao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518057, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yixuan Yuan
- Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
2
|
Bi XA, Yang Z, Huang Y, Xing Z, Xu L, Wu Z, Liu Z, Li X, Liu T. CE-GAN: Community Evolutionary Generative Adversarial Network for Alzheimer's Disease Risk Prediction. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3663-3675. [PMID: 38587958 DOI: 10.1109/tmi.2024.3385756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
In the studies of neurodegenerative diseases such as Alzheimer's Disease (AD), researchers often focus on the associations among multi-omics pathogeny based on imaging genetics data. However, current studies overlook the communities in brain networks, leading to inaccurate models of disease development. This paper explores the developmental patterns of AD from the perspective of community evolution. We first establish a mathematical model to describe functional degeneration in the brain as the community evolution driven by entropy information propagation. Next, we propose an interpretable Community Evolutionary Generative Adversarial Network (CE-GAN) to predict disease risk. In the generator of CE-GAN, community evolutionary convolutions are designed to capture the evolutionary patterns of AD. The experiments are conducted using functional magnetic resonance imaging (fMRI) data and single nucleotide polymorphism (SNP) data. CE-GAN achieves 91.67% accuracy and 91.83% area under curve (AUC) in AD risk prediction tasks, surpassing advanced methods on the same dataset. In addition, we validated the effectiveness of CE-GAN for pathogeny extraction. The source code of this work is available at https://github.com/fmri123456/CE-GAN.
Collapse
|
3
|
Cao C, Li Y, Hu F, Gao X. Modeling refined differences of cortical folding patterns via spatial, morphological, and temporal fusion representations. Cereb Cortex 2024; 34:bhae146. [PMID: 38602743 DOI: 10.1093/cercor/bhae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
The gyrus, a pivotal cortical folding pattern, is essential for integrating brain structure-function. This study focuses on 2-Hinge and 3-Hinge folds, characterized by the gyral convergence from various directions. Existing voxel-level studies may not adequately capture the precise spatial relationships within cortical folding patterns, especially when relying solely on local cortical characteristics due to their variable shapes and homogeneous frequency-specific features. To overcome these challenges, we introduced a novel model that combines spatial distribution, morphological structure, and functional magnetic resonance imaging data. We utilized spatio-morphological residual representations to enhance and extract subtle variations in cortical spatial distribution and morphological structure during blood oxygenation, integrating these with functional magnetic resonance imaging embeddings using self-attention for spatio-morphological-temporal representations. Testing these representations for identifying cortical folding patterns, including sulci, gyri, 2-Hinge, and 2-Hinge folds, and evaluating the impact of phenotypic data (e.g. stimulus) on recognition, our experimental results demonstrate the model's superior performance, revealing significant differences in cortical folding patterns under various stimulus. These differences are also evident in the characteristics of sulci and gyri folds between genders, with 3-Hinge showing more variations. Our findings indicate that our representations of cortical folding patterns could serve as biomarkers for understanding brain structure-function correlations.
Collapse
Affiliation(s)
- Chunhong Cao
- The MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, 411005 Xiangtan, China
| | - Yongquan Li
- The MOE Key Laboratory of Intelligent Computing and Information Processing, Xiangtan University, 411005 Xiangtan, China
| | - Fang Hu
- The Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, 423043 Chenzhou, China
| | - Xieping Gao
- The Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, 410081 Changsha, China
| |
Collapse
|
4
|
Zhao L, Dai H, Wu Z, Jiang X, Zhu D, Zhang T, Liu T. Hierarchical functional differences between gyri and sulci at different scales. Cereb Cortex 2024; 34:bhae057. [PMID: 38483143 DOI: 10.1093/cercor/bhae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 03/26/2024] Open
Abstract
Gyri and sulci are 2 fundamental cortical folding patterns of the human brain. Recent studies have suggested that gyri and sulci may play different functional roles given their structural and functional heterogeneity. However, our understanding of the functional differences between gyri and sulci remains limited due to several factors. Firstly, previous studies have typically focused on either the spatial or temporal domain, neglecting the inherently spatiotemporal nature of brain functions. Secondly, analyses have often been restricted to either local or global scales, leaving the question of hierarchical functional differences unresolved. Lastly, there has been a lack of appropriate analytical tools for interpreting the hierarchical spatiotemporal features that could provide insights into these differences. To overcome these limitations, in this paper, we proposed a novel hierarchical interpretable autoencoder (HIAE) to explore the hierarchical functional difference between gyri and sulci. Central to our approach is its capability to extract hierarchical features via a deep convolutional autoencoder and then to map these features into an embedding vector using a carefully designed feature interpreter. This process transforms the features into interpretable spatiotemporal patterns, which are pivotal in investigating the functional disparities between gyri and sulci. We evaluate the proposed framework on Human Connectome Project task functional magnetic resonance imaging dataset. The experiments demonstrate that the HIAE model can effectively extract and interpret hierarchical spatiotemporal features that are neuroscientifically meaningful. The analyses based on the interpreted features suggest that gyri are more globally activated, whereas sulci are more locally activated, demonstrating a distinct transition in activation patterns as the scale shifts from local to global. Overall, our study provides novel insights into the brain's anatomy-function relationship.
Collapse
Affiliation(s)
- Lin Zhao
- School of Computing, University of Georgia, Athens, GA 30602, USA
| | - Haixing Dai
- School of Computing, University of Georgia, Athens, GA 30602, USA
| | - Zihao Wu
- School of Computing, University of Georgia, Athens, GA 30602, USA
| | - Xi Jiang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dajiang Zhu
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX 76013, USA
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Wang L, Yang Y, Hu X, Zhao S, Jiang X, Guo L, Han J, Liu T. Frequency-specific functional difference between gyri and sulci in naturalistic paradigm fMRI. Brain Struct Funct 2024; 229:431-442. [PMID: 38193918 DOI: 10.1007/s00429-023-02746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Disentangling functional difference between cortical folding patterns of gyri and sulci provides novel insights into the relationship between brain structure and function. Previous studies using resting-state functional magnetic resonance imaging (rsfMRI) have revealed that sulcal signals exhibit stronger high-frequency but weaker low-frequency components compared to gyral ones, suggesting that gyri may serve as functional integration centers while sulci are segregated local processing units. In this study, we utilize naturalistic paradigm fMRI (nfMRI) to explore the functional difference between gyri and sulci as it has proven to record stronger functional integrations compared to rsfMRI. We adopt a convolutional neural network (CNN) to classify gyral and sulcal fMRI signals in the whole brain (the global model) and within functional brain networks (the local models). The frequency-specific difference between gyri and sulci is then inferred from the power spectral density (PSD) profiles of the learned filters in the CNN model. Our experimental results show that nfMRI shows higher gyral-sulcal PSD contrast effect sizes in the global model compared to rsfMRI. In the local models, the effect sizes are either increased or decreased depending on frequency bands and functional complexity of the FBNs. This study highlights the advantages of nfMRI in depicting the functional difference between gyri and sulci, and provides novel insights into unraveling the relationship between brain structure and function.
Collapse
Affiliation(s)
- Liting Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang Yang
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Tianming Liu
- School of Computing, University of Georgia, Athens, USA
| |
Collapse
|
6
|
Huang Y, Zhang T, Zhang S, Zhang W, Yang L, Zhu D, Liu T, Jiang X, Han J, Guo L. Genetic Influence on Gyral Peaks. Neuroimage 2023; 280:120344. [PMID: 37619794 DOI: 10.1016/j.neuroimage.2023.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Genetic mechanisms have been hypothesized to be a major determinant in the formation of cortical folding. Although there is an increasing number of studies examining the heritability of cortical folding, most of them focus on sulcal pits rather than gyral peaks. Gyral peaks, which reflect the highest local foci on gyri and are consistent across individuals, remain unstudied in terms of heritability. To address this knowledge gap, we used high-resolution data from the Human Connectome Project (HCP) to perform classical twin analysis and estimate the heritability of gyral peaks across various brain regions. Our results showed that the heritability of gyral peaks was heterogeneous across different cortical regions, but relatively symmetric between hemispheres. We also found that pits and peaks are different in a variety of anatomic and functional measures. Further, we explored the relationship between the levels of heritability and the formation of cortical folding by utilizing the evolutionary timeline of gyrification. Our findings indicate that the heritability estimates of both gyral peaks and sulcal pits decrease linearly with the evolution timeline of gyrification. This suggests that the cortical folds which formed earlier during gyrification are subject to stronger genetic influences than the later ones. Moreover, the pits and peaks coupled by their time of appearance are also positively correlated in respect of their heritability estimates. These results fill the knowledge gap regarding genetic influences on gyral peaks and significantly advance our understanding of how genetic factors shape the formation of cortical folding. The comparison between peaks and pits suggests that peaks are not a simple morphological mirror of pits but could help complete the understanding of folding patterns.
Collapse
Affiliation(s)
- Ying Huang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China; School of Information and Technology, Northwest University, Xi'an 710127, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Songyao Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Weihan Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Li Yang
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Dajiang Zhu
- Computer Science & Engineering, University of Texas at Arlington, TX 76010, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Xi Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
7
|
Nowinski WL. On presentation of the human cerebral sulci from inside of the cerebrum. J Anat 2023; 243:690-696. [PMID: 37218094 PMCID: PMC10485573 DOI: 10.1111/joa.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
The human cerebral cortex is highly convoluted forming patterns of gyri separated by sulci. The cerebral sulci and gyri are fundamental in cortical anatomy as well as neuroimage processing and analysis. Narrow and deep cerebral sulci are not fully discernible either on the cortical or white matter surface. To cope with this limitation, I propose a new sulci presentation method that employs the inner cortical surface for sulci examination from the inside of the cerebrum. The method has four steps, construct the cortical surface, segment and label the sulci, dissect (open) the cortical surface, and explore the fully exposed sulci from the inside. The inside sulcal maps are created for the left and right lateral, left and right medial, and basal hemispheric surfaces with the sulci parcellated by color and labeled. These three-dimensional sulcal maps presented here are probably the first of this kind created. The proposed method demonstrates the full course and depths of sulci, including narrow, deep, and/or convoluted sulci, which has an educational value and facilitates their quantification. In particular, it provides a straightforward identification of sulcal pits which are valuable markers in studying neurologic disorders. It enhances the visibility of sulci variations by exposing branches, segments, and inter-sulcal continuity. The inside view also clearly demonstrates the sulcal wall skewness along with its variability and enables its assessment. Lastly, this method exposes the sulcal 3-hinges introduced here.
Collapse
|
8
|
Wang Q, Zhao S, Liu T, Han J, Liu C. Temporal fingerprints of cortical gyrification in marmosets and humans. Cereb Cortex 2023; 33:9802-9814. [PMID: 37434368 PMCID: PMC10656951 DOI: 10.1093/cercor/bhad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/13/2023] Open
Abstract
Recent neuroimaging studies in humans have reported distinct temporal dynamics of gyri and sulci, which may be associated with putative functions of cortical gyrification. However, the complex folding patterns of the human cortex make it difficult to explain temporal patterns of gyrification. In this study, we used the common marmoset as a simplified model to examine the temporal characteristics and compare them with the complex gyrification of humans. Using a brain-inspired deep neural network, we obtained reliable temporal-frequency fingerprints of gyri and sulci from the awake rs-fMRI data of marmosets and humans. Notably, the temporal fingerprints of one region successfully classified the gyrus/sulcus of another region in both marmosets and humans. Additionally, the temporal-frequency fingerprints were remarkably similar in both species. We then analyzed the resulting fingerprints in several domains and adopted the Wavelet Transform Coherence approach to characterize the gyro-sulcal coupling patterns. In both humans and marmosets, sulci exhibited higher frequency bands than gyri, and the two were temporally coupled within the same range of phase angles. This study supports the notion that gyri and sulci possess unique and evolutionarily conserved features that are consistent across functional areas, and advances our understanding of the functional role of cortical gyrification.
Collapse
Affiliation(s)
- Qiyu Wang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, United States
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Cirong Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
9
|
Liu K, Li Q, Yao L, Guo X. The Coupled Representation of Hierarchical Features for Mild Cognitive Impairment and Alzheimer's Disease Classification. Front Neurosci 2022; 16:902528. [PMID: 35720713 PMCID: PMC9205193 DOI: 10.3389/fnins.2022.902528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Structural magnetic resonance imaging (MRI) features have played an increasingly crucial role in discriminating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from normal controls (NC). However, the large number of structural MRI studies only extracted low-level neuroimaging features or simply concatenated multitudinous features while ignoring the interregional covariate information. The appropriate representation and integration of multilevel features will be preferable for the precise discrimination in the progression of AD. In this study, we proposed a novel inter-coupled feature representation method and built an integration model considering the two-level (the regions of interest (ROI) level and the network level) coupled features based on structural MRI data. For the intra-coupled interactions about the network-level features, we performed the ROI-level (intra- and inter-) coupled interaction within each network by feature expansion and coupling learning. For the inter-coupled interaction of the network-level features, we measured the coupled relationships among different networks via Canonical correlation analysis. We evaluated the classification performance using coupled feature representations on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results showed that the coupled integration model with hierarchical features achieved the optimal classification performance with an accuracy of 90.44% for AD and NC groups, with an accuracy of 87.72% for the MCI converter (MCI-c) and MCI non-converter (MCI-nc) groups. These findings suggested that our two-level coupled interaction representation of hierarchical features has been the effective means for the precise discrimination of MCI-c from MCI-nc groups and, therefore, helpful in the characterization of different AD courses.
Collapse
Affiliation(s)
- Ke Liu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Engineering Research Center of Intelligent Technology and Educational Application, Beijing Normal University, Beijing, China
| | - Qing Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Engineering Research Center of Intelligent Technology and Educational Application, Beijing Normal University, Beijing, China
| | - Xiaojuan Guo
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
- Engineering Research Center of Intelligent Technology and Educational Application, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|