1
|
Tong R, Su S, Liang Y, Li C, Sun L, Zhang X. Functional Connectivity Encodes Sound Locations by Lateralization Angles. Neurosci Bull 2025; 41:261-271. [PMID: 39470972 PMCID: PMC11794782 DOI: 10.1007/s12264-024-01312-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/16/2024] [Indexed: 11/01/2024] Open
Abstract
The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment. Previous studies have suggested that there is an auditory "where" pathway in the cortex for processing sound locations. The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding, in which each unilateral region is activated by sounds coming from the contralateral hemifield. However, it is still unclear how these regions interact with each other to form a unified representation of the auditory space. In the present study, we investigated whether functional connectivity in the auditory "where" pathway encoded sound locations during passive listening. Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations (-90°, -45°, 0°, 45°, 90°). We were able to decode sound locations from the functional connectivity patterns of the "where" pathway. Furthermore, we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline. In addition, whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles. Overall, our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns, which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.
Collapse
Affiliation(s)
- Renjie Tong
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, 100069, China
| | - Shaoyi Su
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, 100069, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, 100069, China
| | - Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, 100069, China.
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Beijing, 100069, China.
| |
Collapse
|
2
|
Wang X, Nie S, Wen Y, Zhao Z, Li J, Wang N, Zhang J. Age-related differences in auditory spatial processing revealed by acoustic change complex. Front Hum Neurosci 2024; 18:1342931. [PMID: 38681742 PMCID: PMC11045960 DOI: 10.3389/fnhum.2024.1342931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives The auditory spatial processing abilities mature throughout childhood and degenerate in older adults. This study aimed to compare the differences in onset cortical auditory evoked potentials (CAEPs) and location-evoked acoustic change complex (ACC) responses among children, adults, and the elderly and to investigate the impact of aging and development on ACC responses. Design One hundred and seventeen people were recruited in the study, including 57 typically-developed children, 30 adults, and 30 elderlies. The onset-CAEP evoked by white noise and ACC by sequential changes in azimuths were recorded. Latencies and amplitudes as a function of azimuths were analyzed using the analysis of variance, Pearson correlation analysis, and multiple linear regression model. Results The ACC N1'-P2' amplitudes and latencies in adults, P1'-N1' amplitudes in children, and N1' amplitudes and latencies in the elderly were correlated with angles of shifts. The N1'-P2' and P2' amplitudes decreased in the elderly compared to adults. In Children, the ACC P1'-N1' responses gradually differentiated into the P1'-N1'-P2' complex. Multiple regression analysis showed that N1'-P2' amplitudes (R2 = 0.33) and P2' latencies (R2 = 0.18) were the two most variable predictors in adults, while in the elderly, N1' latencies (R2 = 0.26) explained most variances. Although the amplitudes of onset-CAEP differed at some angles, it could not predict angle changes as effectively as ACC responses. Conclusion The location-evoked ACC responses varied among children, adults, and the elderly. The N1'-P2' amplitudes and P2' latencies in adults and N1' latencies in the elderly explained most variances of changes in spatial position. The differentiation of the N1' waveform was observed in children. Further research should be conducted across all age groups, along with behavioral assessments, to confirm the relationship between aging and immaturity in objective ACC responses and poorer subjective spatial performance. Significance ACCs evoked by location changes were assessed in adults, children, and the elderly to explore the impact of aging and development on these differences.
Collapse
Affiliation(s)
| | | | | | | | | | - Ningyu Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Juan Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Wu J, Nie S, Li C, Wang X, Peng Y, Shang J, Diao L, Ding H, Si Q, Wang S, Tong R, Li Y, Sun L, Zhang J. Sound-localization-related activation and functional connectivity of dorsal auditory pathway in relation to demographic, cognitive, and behavioral characteristics in age-related hearing loss. Front Neurosci 2024; 18:1353413. [PMID: 38562303 PMCID: PMC10982313 DOI: 10.3389/fnins.2024.1353413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Background Patients with age-related hearing loss (ARHL) often struggle with tracking and locating sound sources, but the neural signature associated with these impairments remains unclear. Materials and methods Using a passive listening task with stimuli from five different horizontal directions in functional magnetic resonance imaging, we defined functional regions of interest (ROIs) of the auditory "where" pathway based on the data of previous literatures and young normal hearing listeners (n = 20). Then, we investigated associations of the demographic, cognitive, and behavioral features of sound localization with task-based activation and connectivity of the ROIs in ARHL patients (n = 22). Results We found that the increased high-level region activation, such as the premotor cortex and inferior parietal lobule, was associated with increased localization accuracy and cognitive function. Moreover, increased connectivity between the left planum temporale and left superior frontal gyrus was associated with increased localization accuracy in ARHL. Increased connectivity between right primary auditory cortex and right middle temporal gyrus, right premotor cortex and left anterior cingulate cortex, and right planum temporale and left lingual gyrus in ARHL was associated with decreased localization accuracy. Among the ARHL patients, the task-dependent brain activation and connectivity of certain ROIs were associated with education, hearing loss duration, and cognitive function. Conclusion Consistent with the sensory deprivation hypothesis, in ARHL, sound source identification, which requires advanced processing in the high-level cortex, is impaired, whereas the right-left discrimination, which relies on the primary sensory cortex, is compensated with a tendency to recruit more resources concerning cognition and attention to the auditory sensory cortex. Overall, this study expanded our understanding of the neural mechanisms contributing to sound localization deficits associated with ARHL and may serve as a potential imaging biomarker for investigating and predicting anomalous sound localization.
Collapse
Affiliation(s)
- Junzhi Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shuai Nie
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ye Peng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiaqi Shang
- Center of Clinical Hearing, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Linan Diao
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongping Ding
- College of Special Education, Binzhou Medical University, Yantai, Shandong, China
| | - Qian Si
- School of Cyber Science and Technology, Beihang University, Beijing, China
| | - Songjian Wang
- Key Laboratory of Otolaryngology, Head and Neck Surgery, Ministry of Education, Beijing Institute of Otolaryngology, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Renjie Tong
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yutang Li
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Liwei Sun
- School of Biomedical Engineering, Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Juan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Lawrence A, Carvajal M, Ormsby J. Beyond Broca's and Wernicke's: Functional Mapping of Ancillary Language Centers Prior to Brain Tumor Surgery. Tomography 2023; 9:1254-1275. [PMID: 37489468 PMCID: PMC10366753 DOI: 10.3390/tomography9040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Functional MRI is a well-established tool used for pre-surgical planning to help the neurosurgeon have a roadmap of critical functional areas that should be avoided, if possible, during surgery to minimize morbidity for patients with brain tumors (though this also has applications for surgical resection of epileptogenic tissue and vascular lesions). This article reviews the locations of secondary language centers within the brain along with imaging findings to help improve our confidence in our knowledge on language lateralization. Brief overviews of these language centers and their contributions to the language networks will be discussed. These language centers include primary language centers of "Broca's Area" and "Wernicke's Area". However, there are multiple secondary language centers such as the dorsal lateral prefrontal cortex (DLPFC), frontal eye fields, pre- supplemental motor area (pre-SMA), Basal Temporal Language Area (BTLA), along with other areas of activation. Knowing these foci helps to increase self-assurance when discussing the nature of laterality with the neurosurgeon. By knowing secondary language centers for language lateralization, via fMRI, one can feel confident on providing neurosurgeon colleagues with appropriate information on the laterality of language in preparation for surgery.
Collapse
Affiliation(s)
- Ashley Lawrence
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Michael Carvajal
- Center for Neuropsychological Services, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| | - Jacob Ormsby
- Department of Radiology, University of New Mexico, MSC 10 5530 1 University of New Mexico, Albuquerque, NM 87131-5001, USA
| |
Collapse
|