1
|
Kelsey C, Kamenetskiy A, Mulligan K, Tiras C, Kent M, Bayet L, Richards J, Enlow MB, Nelson CA. Forming Connections: Functional Brain Connectivity is Associated With Executive Functioning Abilities in Early Childhood. Dev Sci 2025; 28:e13604. [PMID: 39740229 PMCID: PMC11753531 DOI: 10.1111/desc.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Functional magnetic resonance imaging (fMRI) studies with adults provide evidence that functional brain networks, including the default mode network and frontoparietal network, underlie executive functioning (EF). However, given the challenges of using fMRI with infants and young children, little work has assessed the developmental trajectories of these networks or their associations with EF at key developmental stages. More recently, functional near-infrared spectroscopy (fNIRS) has emerged as a promising neuroimaging tool which can provide information on cortical functional networks and can be more easily implemented with young children. Children (N = 207; n = 116 male; n = 167 White) had fNIRS data recorded at infancy, 3, 5, and 7 years of age while watching a 2-min nonsocial video. At 3, 5, and 7 years, children completed behavioral assessments and parents completed questionnaires to assess child EF abilities. Results showed that, although early functional brain network connectivity was not associated with later functional brain connectivity, EF was concurrently and longitudinally associated with functional connectivity levels in both networks. Overall, these results inform the understanding of early emerging neural underpinnings of regulatory abilities and point to considerable change in the composition of functional brain networks and a conservation of function across development.
Collapse
Affiliation(s)
- Caroline Kelsey
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Adelia Kamenetskiy
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Kaitlin Mulligan
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
| | - Carly Tiras
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Michaela Kent
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Laurie Bayet
- Department of Neuroscience, American University, Washington, DC, United States
| | - John Richards
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Michelle Bosquet Enlow
- Department of Psychiatry and Behavioral Sciences, Boston Children’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Charles A. Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Harvard Graduate School of Education, Cambridge, MA, United States
| |
Collapse
|
2
|
Zhang H, Zeng W, Li Y, Deng J, Wei B. BGCSL: An unsupervised framework reveals the underlying structure of large-scale whole-brain functional connectivity networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108573. [PMID: 39756074 DOI: 10.1016/j.cmpb.2024.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/11/2024] [Accepted: 12/22/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AND OBJECTIVE Inferring large-scale brain networks from functional magnetic resonance imaging (fMRI) provides more detailed and richer connectivity information, which is critical for gaining insight into brain structure and function and for predicting clinical phenotypes. However, as the number of network nodes increases, most existing methods suffer from the following limitations: (1) Traditional shallow models often struggle to estimate large-scale brain networks. (2) Existing deep graph structure learning models rely on downstream tasks and labels. (3) They rely on sparse postprocessing operations. To overcome these limitations, this paper proposes a novel framework for revealing large-scale functional brain connectivity networks through graph contrastive structure learning, called BGCSL. METHODS Unlike traditional supervised graph structure learning methods, this framework does not rely on labeled information. It consists of two important modules: sparse graph structure learner and graph contrastive learning (GCL). It employs dynamic augmentation in GCL to train a sparse graph structure learner, enabling it to capture the intrinsic structure of the data. RESULTS We conducted extensive experiments on 12 synthetic datasets and 2 public functional magnetic resonance imaging datasets, demonstrating the effectiveness of our proposed framework. In the synthetic datasets, particularly in cases where node features are insufficient, BGCSL still maintains state-of-the-art performance. More importantly, on the ABIDE-I and HCP-rest datasets, BGCSL improved the downstream task performance of GCN-based models, including the original GCN, dGCN, and ContrastPool, to varying degrees. CONCLUSION Our proposed method holds significant potential as a valuable reference for future large-scale brain network estimation and representation and is conducive to supporting the exploration of more fine-grained biomarkers.
Collapse
Affiliation(s)
- Hua Zhang
- Shanghai Maritime University, Shanghai 201306, China.
| | - Weiming Zeng
- Shanghai Maritime University, Shanghai 201306, China.
| | - Ying Li
- Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jin Deng
- South China Agricultural University, Guangzhou 510642, China.
| | - Boyang Wei
- Shanghai Maritime University, Shanghai 201306, China.
| |
Collapse
|
3
|
Gell M, Eickhoff SB, Omidvarnia A, Küppers V, Patil KR, Satterthwaite TD, Müller VI, Langner R. How measurement noise limits the accuracy of brain-behaviour predictions. Nat Commun 2024; 15:10678. [PMID: 39668158 PMCID: PMC11638260 DOI: 10.1038/s41467-024-54022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/30/2024] [Indexed: 12/14/2024] Open
Abstract
Major efforts in human neuroimaging strive to understand individual differences and find biomarkers for clinical applications by predicting behavioural phenotypes from brain imaging data. To identify generalisable and replicable brain-behaviour prediction models, sufficient measurement reliability is essential. However, the selection of prediction targets is predominantly guided by scientific interest or data availability rather than psychometric considerations. Here, we demonstrate the impact of low reliability in behavioural phenotypes on out-of-sample prediction performance. Using simulated and empirical data from four large-scale datasets, we find that reliability levels common across many phenotypes can markedly limit the ability to link brain and behaviour. Next, using 5000 participants from the UK Biobank, we show that only highly reliable data can fully benefit from increasing sample sizes from hundreds to thousands of participants. Our findings highlight the importance of measurement reliability for identifying meaningful brain-behaviour associations from individual differences and underscore the need for greater emphasis on psychometrics in future research.
Collapse
Affiliation(s)
- Martin Gell
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronika I Müller
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Li Z, Zhao Y, Hu Y, Li Y, Zhang K, Gao Z, Tan L, Jia H, Cong J, Liu H, Li X, Cao A, Cui Z, Zhao C. Transcranial low-level laser stimulation in the near-infrared-II region (1064 nm) for brain safety in healthy humans. Brain Stimul 2024; 17:1307-1316. [PMID: 39622433 DOI: 10.1016/j.brs.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The use of near-infrared lasers for transcranial photobiomodulation (tPBM) offers a non-invasive method for influencing brain activity and is beneficial for various neurological conditions. However, comprehensive quantitative studies on its safety are lacking. OBJECTIVE This study aims to investigate the safety of 1064-nm laser-based tPBM across brain structure, brain function, neural damage, cognitive ability and tolerance. METHODS We employed a multimodal approach, using magnetic resonance imaging (MRI), electroencephalogram (EEG), biochemical analyses, and cognitive testing to quantitatively assess the potential adverse effects of tPBM on brain structure or function, neurons, glial cells, and executive function (EF). Additionally, a detailed questionnaire was used to evaluate subjective tolerance. RESULTS At the whole-brain structural level, no significant variations in gray matter, white matter, or cerebrospinal fluid volume or density were observed as a result of tPBM. There was no increase in neuron-specific enolase (NSE) or S100β levels suggesting no neuronal damage, but an unexpected significant reduction in NSE was detected which requires further study to assess its implications. EEG, analyzed through power spectra and expert evaluation, revealed no potential disease-inducing effects. A series of cognitive tests demonstrated no impairment in any of the EF components. Furthermore, the questionnaire data revealed minimal discomfort across fatigue, itching, pain, burning, warmth, dizziness, and drowsiness. CONCLUSIONS Our data indicate that 1064 nm laser tPBM does not induce adverse effects on brain structure or function, nor does it impair cognitive abilities. tPBM is safe for specific parameters, highlighting its good tolerability.
Collapse
Affiliation(s)
- Zhilin Li
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yongheng Zhao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Yiqing Hu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Yang Li
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Keyao Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, 116024, China
| | - Zhibing Gao
- National Center for Mental Health, Beijing, 100029, China
| | - Lirou Tan
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China; Chinese Institute for Brain Research, Beijing, 102206, China; College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Jing Cong
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Hanli Liu
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Xiaoli Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Aihua Cao
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| | - Zaixu Cui
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China; Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Chenguang Zhao
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 102206, China; Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
5
|
Sassenberg TA, Safron A, DeYoung CG. Stable individual differences from dynamic patterns of function: brain network flexibility predicts openness/intellect, intelligence, and psychoticism. Cereb Cortex 2024; 34:bhae391. [PMID: 39329360 DOI: 10.1093/cercor/bhae391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
A growing understanding of the nature of brain function has led to increased interest in interpreting the properties of large-scale brain networks. Methodological advances in network neuroscience provide means to decompose these networks into smaller functional communities and measure how they reconfigure over time as an index of their dynamic and flexible properties. Recent evidence has identified associations between flexibility and a variety of traits pertaining to complex cognition including creativity and working memory. The present study used measures of dynamic resting-state functional connectivity in data from the Human Connectome Project (n = 994) to test associations with Openness/Intellect, general intelligence, and psychoticism, three traits that involve flexible cognition. Using a machine-learning cross-validation approach, we identified reliable associations of intelligence with cohesive flexibility of parcels in large communities across the cortex, of psychoticism with disjoint flexibility, and of Openness/Intellect with overall flexibility among parcels in smaller communities. These findings are reasonably consistent with previous theories of the neural correlates of these traits and help to expand on previous associations of behavior with dynamic functional connectivity, in the context of broad personality dimensions.
Collapse
Affiliation(s)
- Tyler A Sassenberg
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, United States
| | - Adam Safron
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, United States
- Institute for Advanced Consciousness Studies, 2811 Wilshire Boulevard, Santa Monica, CA 90403, United States
- Cognitive Science Program, Indiana University, 1001 East 10th Street, Bloomington, IN 47405, United States
- Kinsey Institute, Indiana University, 150 South Woodlawn Avenue, Bloomington, IN 47405, United States
| | - Colin G DeYoung
- Department of Psychology, University of Minnesota, 75 East River Parkway, Minneapolis, MN 55455, United States
| |
Collapse
|
6
|
Kraljević N, Langner R, Küppers V, Raimondo F, Patil KR, Eickhoff SB, Müller VI. Network and state specificity in connectivity-based predictions of individual behavior. Hum Brain Mapp 2024; 45:e26753. [PMID: 38864353 PMCID: PMC11167405 DOI: 10.1002/hbm.26753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
Predicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.
Collapse
Affiliation(s)
- Nevena Kraljević
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Federico Raimondo
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Kaustubh R. Patil
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| | - Veronika I. Müller
- Institute of Systems Neuroscience, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
- Institute of Neuroscience and Medicine (INM‐7: Brain and Behaviour)Research Centre JülichJülichGermany
| |
Collapse
|
7
|
Li X, Ng KK, Wong JJY, Zhou JH, Yow WQ. Brain gray matter morphometry relates to onset age of bilingualism and theory of mind in young and older adults. Sci Rep 2024; 14:3193. [PMID: 38326334 PMCID: PMC10850089 DOI: 10.1038/s41598-023-48710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/29/2023] [Indexed: 02/09/2024] Open
Abstract
Lifelong bilingualism may result in neural reserve against decline not only in the general cognitive domain, but also in social cognitive functioning. In this study, we show the brain structural correlates that are associated with second language age of acquisition (L2AoA) and theory of mind (the ability to reason about mental states) in normal aging. Participants were bilingual adults (46 young, 50 older) who completed a theory-of-mind task battery, a language background questionnaire, and an anatomical MRI scan to obtain cortical morphometric features (i.e., gray matter volume, thickness, and surface area). Findings indicated a theory-of-mind decline in older adults compared to young adults, controlling for education and general cognition. Importantly, earlier L2AoA and better theory-of-mind performance were associated with larger volume, higher thickness, and larger surface area in the bilateral temporal, medial temporal, superior parietal, and prefrontal brain regions. These regions are likely to be involved in mental representations, language, and cognitive control. The morphometric association with L2AoA in young and older adults were comparable, but its association with theory of mind was stronger in older adults than young adults. The results demonstrate that early bilingual acquisition may provide protective benefits to intact theory-of-mind abilities against normal age-related declines.
Collapse
Affiliation(s)
- Xiaoqian Li
- Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joey Ju Yu Wong
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - W Quin Yow
- Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore.
| |
Collapse
|
8
|
Kraljević N, Langner R, Küppers V, Raimondo F, Patil KR, Eickhoff SB, Müller VI. Network and State Specificity in Connectivity-Based Predictions of Individual Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540387. [PMID: 37215048 PMCID: PMC10197703 DOI: 10.1101/2023.05.11.540387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Predicting individual behavior from brain functional connectivity (FC) patterns can contribute to our understanding of human brain functioning. This may apply in particular if predictions are based on features derived from circumscribed, a priori defined functional networks, which improves interpretability. Furthermore, some evidence suggests that task-based FC data may yield more successful predictions of behavior than resting-state FC data. Here, we comprehensively examined to what extent the correspondence of functional network priors and task states with behavioral target domains influences the predictability of individual performance in cognitive, social, and affective tasks. To this end, we used data from the Human Connectome Project for large-scale out-of-sample predictions of individual abilities in working memory (WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared error and coefficient of determination to evaluate model fit revealed that predictive performance was rather poor overall. Predictions from whole-brain FC were slightly better than those from FC in task-specific networks, and a slight benefit of predictions based on FC from task versus resting state was observed for performance in the WM domain. Beyond that, we did not find any significant effects of a correspondence of network, task state, and performance domains. Together, these results suggest that multivariate FC patterns during both task and resting states contain rather little information on individual performance levels, calling for a reconsideration of how the brain mediates individual differences in mental abilities.
Collapse
Affiliation(s)
- Nevena Kraljević
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Federico Raimondo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| | - Veronika I Müller
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf
| |
Collapse
|
9
|
Heckner MK, Cieslik EC, Paas Oliveros LK, Eickhoff SB, Patil KR, Langner R. Predicting executive functioning from brain networks: modality specificity and age effects. Cereb Cortex 2023; 33:10997-11009. [PMID: 37782935 PMCID: PMC10646699 DOI: 10.1093/cercor/bhad338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023] Open
Abstract
Healthy aging is associated with structural and functional network changes in the brain, which have been linked to deterioration in executive functioning (EF), while their neural implementation at the individual level remains unclear. As the biomarker potential of individual resting-state functional connectivity (RSFC) patterns has been questioned, we investigated to what degree individual EF abilities can be predicted from the gray-matter volume (GMV), regional homogeneity, fractional amplitude of low-frequency fluctuations (fALFF), and RSFC within EF-related, perceptuo-motor, and whole-brain networks in young and old adults. We examined whether the differences in out-of-sample prediction accuracy were modality-specific and depended on age or task-demand levels. Both uni- and multivariate analysis frameworks revealed overall low prediction accuracies and moderate-to-weak brain-behavior associations (R2 < 0.07, r < 0.28), further challenging the idea of finding meaningful markers for individual EF performance with the metrics used. Regional GMV, well linked to overall atrophy, carried the strongest information about individual EF differences in older adults, whereas fALFF, measuring functional variability, did so for younger adults. Our study calls for future research analyzing more global properties of the brain, different task-states and applying adaptive behavioral testing to result in sensitive predictors for young and older adults, respectively.
Collapse
Affiliation(s)
- Marisa K Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Lya K Paas Oliveros
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
10
|
Paas Oliveros LK, Cieslik EC, Pieczykolan A, Pläschke RN, Eickhoff SB, Langner R. Brain functional characterization of response-code conflict in dual-tasking and its modulation by age. Cereb Cortex 2023; 33:10155-10180. [PMID: 37540164 PMCID: PMC10502578 DOI: 10.1093/cercor/bhad273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Crosstalk between conflicting response codes contributes to interference in dual-tasking, an effect exacerbated in advanced age. Here, we investigated (i) brain activity correlates of such response-code conflicts, (ii) activity modulations by individual dual-task performance and related cognitive abilities, (iii) task-modulated connectivity within the task network, and (iv) age-related differences in all these aspects. Young and older adults underwent fMRI while responding to the pitch of tones through spatially mapped speeded button presses with one or two hands concurrently. Using opposing stimulus-response mappings between hands, we induced conflict between simultaneously activated response codes. These response-code conflicts elicited activation in key regions of the multiple-demand network. While thalamic and parietal areas of the conflict-related network were modulated by attentional, working-memory and task-switching abilities, efficient conflict resolution in dual-tasking mainly relied on increasing supplementary motor activity. Older adults showed non-compensatory hyperactivity in left superior frontal gyrus, and higher right premotor activity was modulated by working-memory capacity. Finally, connectivity between premotor or parietal seed regions and the conflict-sensitive network was neither conflict-specific nor age-sensitive. Overall, resolving dual-task response-code conflict recruited substantial parts of the multiple-demand network, whose activity and coupling, however, were only little affected by individual differences in task performance or age.
Collapse
Affiliation(s)
- Lya K Paas Oliveros
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Edna C Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Aleks Pieczykolan
- Rheinische Fachhochschule – University of Applied Sciences, Cologne 50923, Germany
| | - Rachel N Pläschke
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|