1
|
Kóbor A, Janacsek K, Hermann P, Zavecz Z, Varga V, Csépe V, Vidnyánszky Z, Kovács G, Nemeth D. Finding Pattern in the Noise: Persistent Implicit Statistical Knowledge Impacts the Processing of Unpredictable Stimuli. J Cogn Neurosci 2024; 36:1239-1264. [PMID: 38683699 DOI: 10.1162/jocn_a_02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Humans can extract statistical regularities of the environment to predict upcoming events. Previous research recognized that implicitly acquired statistical knowledge remained persistent and continued to influence behavior even when the regularities were no longer present in the environment. Here, in an fMRI experiment, we investigated how the persistence of statistical knowledge is represented in the brain. Participants (n = 32) completed a visual, four-choice, RT task consisting of statistical regularities. Two types of blocks constantly alternated with one another throughout the task: predictable statistical regularities in one block type and unpredictable ones in the other. Participants were unaware of the statistical regularities and their changing distribution across the blocks. Yet, they acquired the statistical regularities and showed significant statistical knowledge at the behavioral level not only in the predictable blocks but also in the unpredictable ones, albeit to a smaller extent. Brain activity in a range of cortical and subcortical areas, including early visual cortex, the insula, the right inferior frontal gyrus, and the right globus pallidus/putamen contributed to the acquisition of statistical regularities. The right insula, inferior frontal gyrus, and hippocampus as well as the bilateral angular gyrus seemed to play a role in maintaining this statistical knowledge. The results altogether suggest that statistical knowledge could be exploited in a relevant, predictable context as well as transmitted to and retrieved in an irrelevant context without a predictable structure.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | - Karolina Janacsek
- Centre of Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, University of Greenwich, United Kingdom
- ELTE Eötvös Loránd University, Hungary
| | - Petra Hermann
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Vera Varga
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Valéria Csépe
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
- University of Pannonia, Hungary
| | - Zoltán Vidnyánszky
- Brain Imaging Centre, HUN-REN Research Centre for Natural Sciences, Hungary
| | | | - Dezso Nemeth
- INSERM, CRNL U1028 UMR5292, France
- ELTE Eötvös Loránd University & HUN-REN Research Centre for Natural Sciences, Hungary
- University of Atlántico Medio, Spain
| |
Collapse
|
2
|
Berger S, Batterink LJ. Children extract a new linguistic rule more quickly than adults. Dev Sci 2024:e13498. [PMID: 38517035 DOI: 10.1111/desc.13498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/19/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
Children achieve better long-term language outcomes than adults. However, it remains unclear whether children actually learn language more quickly than adults during real-time exposure to input-indicative of true superior language learning abilities-or whether this advantage stems from other factors. To examine this issue, we compared the rate at which children (8-10 years) and adults extracted a novel, hidden linguistic rule, in which novel articles probabilistically predicted the animacy of associated nouns (e.g., "gi lion"). Participants categorized these two-word phrases according to a second, explicitly instructed rule over two sessions, separated by an overnight delay. Both children and adults successfully learned the hidden animacy rule through mere exposure to the phrases, showing slower response times and decreased accuracy to occasional phrases that violated the rule. Critically, sensitivity to the hidden rule emerged much more quickly in children than adults; children showed a processing cost for violation trials from very early on in learning, whereas adults did not show reliable sensitivity to the rule until the second session. Children also showed superior generalization of the hidden animacy rule when asked to classify nonword trials (e.g., "gi badupi") according to the hidden animacy rule. Children and adults showed similar retention of the hidden rule over the delay period. These results provide insight into the nature of the critical period for language, suggesting that children have a true advantage over adults in the rate of implicit language learning. Relative to adults, children more rapidly extract hidden linguistic structures during real-time language exposure. RESEARCH HIGHLIGHTS: Children and adults both succeeded in implicitly learning a novel, uninstructed linguistic rule, based solely on exposure to input. Children learned the novel linguistic rules much more quickly than adults. Children showed better generalization performance than adults when asked to apply the novel rule to nonsense words without semantic content. Results provide insight into the nature of critical period effects in language, indicating that children have an advantage over adults in real-time language learning.
Collapse
Affiliation(s)
- Sarah Berger
- Department of Psychology, University of Western Ontario, London, Canada
| | - Laura J Batterink
- Department of Psychology, University of Western Ontario, London, Canada
| |
Collapse
|
3
|
Dyck S, Klaes C. Training-related changes in neural beta oscillations associated with implicit and explicit motor sequence learning. Sci Rep 2024; 14:6781. [PMID: 38514711 PMCID: PMC10958048 DOI: 10.1038/s41598-024-57285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 03/16/2024] [Indexed: 03/23/2024] Open
Abstract
Many motor actions we perform have a sequential nature while learning a motor sequence involves both implicit and explicit processes. In this work, we developed a task design where participants concurrently learn an implicit and an explicit motor sequence across five training sessions, with EEG recordings at sessions 1 and 5. This intra-subject approach allowed us to study training-induced behavioral and neural changes specific to the explicit and implicit components. Based on previous reports of beta power modulations in sensorimotor networks related to sequence learning, we focused our analysis on beta oscillations at motor-cortical sites. On a behavioral level, substantial performance gains were evident early in learning in the explicit condition, plus slower performance gains across training sessions in both explicit and implicit sequence learning. Consistent with the behavioral trends, we observed a training-related increase in beta power in both sequence learning conditions, while the explicit condition displayed stronger beta power suppression during early learning. The initially stronger beta suppression and subsequent increase in beta power specific to the explicit component, correlated with enhanced behavioral performance, possibly reflecting higher cortical excitability. Our study suggests an involvement of motor-cortical beta oscillations in the explicit component of motor sequence learning.
Collapse
Affiliation(s)
- Susanne Dyck
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
| | - Christian Klaes
- Department of Neurotechnology, Medical Faculty, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstrasse 150, 44801, Bochum, Germany.
- Neurosurgery, University hospital Knappschaftskrankenhaus Bochum, In der Schornau 23-25, 44892, Bochum, Germany.
| |
Collapse
|
4
|
Højberg LM, Lundbye-Jensen J, Wienecke J. Visuomotor skill learning in young adults with Down syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 138:104535. [PMID: 37210919 DOI: 10.1016/j.ridd.2023.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Individuals with Down syndrome (DS) have impaired general motor skills compared to typically developed (TD) individuals. AIMS To gain knowledge on how young adults with DS learn and retain new motor skills. METHODS AND PROCEDURES A DS-group (mean age = 23.9 ± 3 years, N = 11), and an age-matched TD-group (mean age 22.8 ± 1.8, N = 14) were recruited. The participants practiced a visuomotor accuracy tracking task (VATT) in seven blocks (10.6 min). Online and offline effects of practice were assessed based on tests of motor performance at baseline immediate and 7-day retention. OUTCOMES AND RESULTS The TD-group performed better than the DS-group on all blocks (all P < 0.001). Both groups improved VATT-performance online from baseline to immediate retention, (all P < 0.001) with no difference in online effect between groups. A significant between-group difference was observed in the offline effect (∆TD - ∆DS, P = 0.04), as the DS-group's performance at 7-day retention was equal to their performance at immediate retention (∆DS, P > 0.05), whereas an offline decrease in performance was found in the TD-group (∆TD, P < 0.001). CONCLUSIONS AND IMPLICATIONS Visuomotor pinch force accuracy is lower for adults with DS compared to TD. However, adults with DS display significant online improvements in performance with motor practice similar to changes observed for TD. Additionally, adults with DS demonstrate offline consolidation following motor learning leading to significant retention effects.
Collapse
Affiliation(s)
- Laurits Munk Højberg
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Wienecke
- Movement & Neuroscience, Department of Nutrition Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
5
|
Békés V, Roberts K, Németh D. Competitive Neurocognitive Processes Following Bereavement. Brain Res Bull 2023; 199:110663. [PMID: 37172799 DOI: 10.1016/j.brainresbull.2023.110663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Bereavement is a common human experience that often involves significant impacts on psychological, emotional and even cognitive functioning. Though various psychological theories have been proposed to conceptualize the grief process, our current understanding of the underlying neurocognitive mechanisms of grief is limited. The present paper proposes a neurocognitive model to understand phenomena in typical grief, which links loss-related reactions to underlying learning and executive processes. We posit that the competitive relationship between the basal ganglia (BG) and circuitry involving the medial temporal lobe (MTL) underlies common cognitive experiences in grief such as a sense of "brain fog." Due to the intense stressor of bereavement, we suggest that these two systems' usually flexible interactive relationship become imbalanced. The resulting temporary dominance of either the BG or the MTL system is then manifested in perceived cognitive changes. Understanding the underlying neurocognitive mechanism in grief could inform ways to best support bereaved individuals.
Collapse
Affiliation(s)
- Vera Békés
- Ferkauf Graduate School of Psychology, Yeshiva University.
| | - Kailey Roberts
- Ferkauf Graduate School of Psychology, Yeshiva University
| | - Dezs Németh
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon, Bron, France; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
6
|
Deleglise A, Donnelly-Kehoe PA, Yeffal A, Jacobacci F, Jovicich J, Amaro E, Armony JL, Doyon J, Della-Maggiore V. Human motor sequence learning drives transient changes in network topology and hippocampal connectivity early during memory consolidation. Cereb Cortex 2023; 33:6120-6131. [PMID: 36587288 DOI: 10.1093/cercor/bhac489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 01/02/2023] Open
Abstract
In the last decade, the exclusive role of the hippocampus in human declarative learning has been challenged. Recently, we have shown that gains in performance observed in motor sequence learning (MSL) during the quiet rest periods interleaved with practice are associated with increased hippocampal activity, suggesting a role of this structure in motor memory reactivation. Yet, skill also develops offline as memory stabilizes after training and overnight. To examine whether the hippocampus contributes to motor sequence memory consolidation, here we used a network neuroscience strategy to track its functional connectivity offline 30 min and 24 h post learning using resting-state functional magnetic resonance imaging. Using a graph-analytical approach we found that MSL transiently increased network modularity, reflected in an increment in local information processing at 30 min that returned to baseline at 24 h. Within the same time window, MSL decreased the connectivity of a hippocampal-sensorimotor network, and increased the connectivity of a striatal-premotor network in an antagonistic manner. Finally, a supervised classification identified a low-dimensional pattern of hippocampal connectivity that discriminated between control and MSL data with high accuracy. The fact that changes in hippocampal connectivity were detected shortly after training supports a relevant role of the hippocampus in early stages of motor memory consolidation.
Collapse
Affiliation(s)
- Alvaro Deleglise
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | | | - Abraham Yeffal
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | - Florencia Jacobacci
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
| | - Jorge Jovicich
- Center for Mind/Brain Sciences, University of Trento, 38068 Trento, Italy
| | - Edson Amaro
- Plataforma de Imagens na Sala de Autopsia (PISA), Instituto de Radiologia, Facultade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Jorge L Armony
- Douglas Mental Health Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada
| | - Valeria Della-Maggiore
- University of Buenos Aires, CONICET, Institute of Physiology and Biophysics (IFIBIO) Bernardo Houssay, Buenos Aires C1121ABG, Argentina
- School of Science and Technology (ECyT), National University of San Martin, B1650 Villa Lynch, Buenos Aires, Argentina
| |
Collapse
|
7
|
Höbler F, Bitan T, Tremblay L, De Nil L. Explicit benefits: Motor sequence acquisition and short-term retention in adults who do and do not stutter. JOURNAL OF FLUENCY DISORDERS 2023; 75:105959. [PMID: 36736073 DOI: 10.1016/j.jfludis.2023.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Motor sequencing skills have been found to distinguish individuals who experience developmental stuttering from those who do not stutter, with these differences extending to non-verbal sequencing behaviour. Previous research has focused on measures of reaction time and practice under externally cued conditions to decipher the motor learning abilities of persons who stutter. Without the confounds of extraneous demands and sensorimotor processing, we investigated motor sequence learning under conditions of explicit awareness and focused practice among adults with persistent development stuttering. Across two consecutive practice sessions, 18 adults who stutter (AWS) and 18 adults who do not stutter (ANS) performed the finger-to-thumb opposition sequencing (FOS) task. Both groups demonstrated significant within-session performance improvements, as evidenced by fast on-line learning of finger sequences on day one. Additionally, neither participant group showed deterioration of their learning gains the following day, indicating a relative stabilization of finger sequencing performance during the off-line period. These findings suggest that under explicit and focused conditions, early motor learning gains and their short-term retention do not differ between AWS and ANS. Additional factors influencing motor sequencing performance, such as task complexity and saturation of learning, are also considered. Further research into explicit motor learning and its generalization following extended practice and follow-up in persons who stutter is warranted. The potential benefits of motor practice generalizability among individuals who stutter and its relevance to supporting treatment outcomes are suggested as future areas of investigation.
Collapse
Affiliation(s)
- Fiona Höbler
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada.
| | - Tali Bitan
- Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Psychology and IIPDM, University of Haifa, Haifa 3498838, Israel
| | - Luc Tremblay
- Faculty of Kinesiology and Physical Education, University of Toronto, Clara Benson Building, 320 Huron St., Room 231, Toronto, ON M5S 3J7, Canada; KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada
| | - Luc De Nil
- Rehabilitation Sciences Institute, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada; Department of Speech-Language Pathology, Temerty Faculty of Medicine, University of Toronto, Rehabilitation Sciences Building, 500 University Avenue, Suite 160, Toronto, ON M5G 1V7, Canada
| |
Collapse
|
8
|
Lukics KS, Lukács Á. Modality, presentation, domain and training effects in statistical learning. Sci Rep 2022; 12:20878. [PMID: 36463280 PMCID: PMC9719496 DOI: 10.1038/s41598-022-24951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/22/2022] [Indexed: 12/07/2022] Open
Abstract
While several studies suggest that the nature and properties of the input have significant effects on statistical learning, they have rarely been investigated systematically. In order to understand how input characteristics and their interactions impact statistical learning, we explored the effects of modality (auditory vs. visual), presentation type (serial vs. simultaneous), domain (linguistic vs. non-linguistic), and training type (random, starting small, starting big) on artificial grammar learning in young adults (N = 360). With serial presentation of stimuli, learning was more effective in the auditory than in the visual modality. However, with simultaneous presentation of visual and serial presentation of auditory stimuli, the modality effect was not present. We found a significant domain effect as well: a linguistic advantage over nonlinguistic material, which was driven by the domain effect in the auditory modality. Overall, the auditory linguistic condition had an advantage over other modality-domain types. Training types did not have any overall effect on learning; starting big enhanced performance only in the case of serial visual presentation. These results show that input characteristics such as modality, presentation type, domain and training type influence statistical learning, and suggest that their effects are also dependent on the specific stimuli and structure to be learned.
Collapse
Affiliation(s)
- Krisztina Sára Lukics
- grid.6759.d0000 0001 2180 0451Department of Cognitive Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-BME Momentum Language Acquisition Research Group, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| | - Ágnes Lukács
- grid.6759.d0000 0001 2180 0451Department of Cognitive Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary ,grid.5018.c0000 0001 2149 4407MTA-BME Momentum Language Acquisition Research Group, Eötvös Loránd Research Network (ELKH), Budapest, Hungary
| |
Collapse
|
9
|
Differences in implicit motor learning between adults who do and do not stutter. Neuropsychologia 2022; 174:108342. [PMID: 35931135 DOI: 10.1016/j.neuropsychologia.2022.108342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
Implicit learning allows us to acquire complex motor skills through repeated exposure to sensory cues and repetition of motor behaviours, without awareness or effort. Implicit learning is also critical to the incremental fine-tuning of the perceptual-motor system. To understand how implicit learning and associated domain-general learning processes may contribute to motor learning differences in people who stutter, we investigated implicit finger-sequencing skills in adults who do (AWS) and do not stutter (ANS) on an Alternating Serial Reaction Time task. Our results demonstrated that, while all participants showed evidence of significant sequence-specific learning in their speed of performance, male AWS were slower and made fewer sequence-specific learning gains than their ANS counterparts. Although there were no learning gains evident in accuracy of performance, AWS performed the implicit learning task more accurately than ANS, overall. These findings may have implications for sex-based differences in the experience of developmental stuttering, for the successful acquisition of complex motor skills during development by individuals who stutter, and for the updating and automatization of speech motor plans during the therapeutic process.
Collapse
|
10
|
Baron LS, Arbel Y. An Implicit-Explicit Framework for Intervention Methods in Developmental Language Disorder. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:1557-1573. [PMID: 35446629 PMCID: PMC9531931 DOI: 10.1044/2022_ajslp-21-00172] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/08/2021] [Accepted: 02/06/2022] [Indexed: 05/29/2023]
Abstract
PURPOSE The growing interest in framing intervention approaches as either implicit or explicit calls for a discussion of what makes intervention approaches engage each of these learning systems, with the goal of achieving a shared framework. This tutorial presents evidence for the interaction between implicit and explicit learning systems, and it highlights the intervention characteristics that promote implicit or explicit learning as well as outcome measures that tap into implicit or explicit knowledge. This framework is then applied to eight common intervention approaches and notable combinations of approaches to unpack their differential engagement of implicit and explicit learning. CONCLUSIONS Many intervention characteristics (e.g., instructions, elicitation techniques, feedback) can be manipulated to move an intervention along the implicit-explicit continuum. Given the bias for using explicit learning strategies that develops throughout childhood and into adulthood, clinicians should be aware that most interventions (even those that promote implicit learning) will engage the explicit learning system. However, increased awareness of the implicit and explicit learning systems and their cognitive demands will allow clinicians to choose the most appropriate intervention for the target behavior.
Collapse
Affiliation(s)
- Lauren S. Baron
- Department of Communication Sciences & Disorders, MGH Institute of Health Professions, Boston, MA
| | - Yael Arbel
- Department of Communication Sciences & Disorders, MGH Institute of Health Professions, Boston, MA
| |
Collapse
|
11
|
Weinberger AB, Green AE. Dynamic development of intuitions and explicit knowledge during implicit learning. Cognition 2021; 222:105008. [PMID: 34979373 DOI: 10.1016/j.cognition.2021.105008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/11/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
Abstract
Implicit learning refers to learning without conscious awareness of the content acquired. Theoretical frameworks of human cognition suggest that intuitions develop based on incomplete perceptions of regularity during implicit learning and, in turn, lead to the development of more explicit, consciously-accessible knowledge. Surprisingly, however, this putative information processing pathway (i.e., implicit learning ➔ intuition ➔ explicit knowledge) has yet to be empirically demonstrated. The present study investigated the relationship between implicit learning, intuitions, and explicit knowledge using a modified Serial Reaction Time Task. Results indicate that intuitions of implicitly-learned patterns emerge prior to the development of explicit knowledge. Moreover, intuition timing and accuracy were significantly associated with accuracy of explicit reports. We did not, however, find that stronger implicit learners developed more accurate intuitions. Our findings suggest a crucial role of intuition in the formation of explicit knowledge from implicit learning.
Collapse
Affiliation(s)
- Adam B Weinberger
- Department of Psychology, Georgetown University, United States of America; Penn Center for Neuroaesthetics, University of Pennsylvania, United States of America.
| | - Adam E Green
- Department of Psychology, Georgetown University, United States of America
| |
Collapse
|
12
|
Farkas BC, Tóth-Fáber E, Janacsek K, Nemeth D. A Process-Oriented View of Procedural Memory Can Help Better Understand Tourette's Syndrome. Front Hum Neurosci 2021; 15:683885. [PMID: 34955784 PMCID: PMC8707288 DOI: 10.3389/fnhum.2021.683885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Tourette's syndrome (TS) is a neurodevelopmental disorder characterized by repetitive movements and vocalizations, also known as tics. The phenomenology of tics and the underlying neurobiology of the disorder have suggested that the altered functioning of the procedural memory system might contribute to its etiology. However, contrary to the robust findings of impaired procedural memory in neurodevelopmental disorders of language, results from TS have been somewhat mixed. We review the previous studies in the field and note that they have reported normal, impaired, and even enhanced procedural performance. These mixed findings may be at least partially be explained by the diversity of the samples in both age and tic severity, the vast array of tasks used, the low sample sizes, and the possible confounding effects of other cognitive functions, such as executive functions, working memory or attention. However, we propose that another often overlooked factor could also contribute to the mixed findings, namely the multiprocess nature of the procedural system itself. We propose that a process-oriented view of procedural memory functions could serve as a theoretical framework to help integrate these varied findings. We discuss evidence suggesting heterogeneity in the neural regions and their functional contributions to procedural memory. Our process-oriented framework can help to deepen our understanding of the complex profile of procedural functioning in TS and atypical development in general.
Collapse
Affiliation(s)
- Bence Cs. Farkas
- LNC, Département d’Études Cognitives, École Normale Supérieure, INSERM, PSL Research University, Paris, France
| | - Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, London, United Kingdom
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
13
|
Dolfen N, Veldman MP, Gann MA, von Leupoldt A, Puts NAJ, Edden RAE, Mikkelsen M, Swinnen S, Schwabe L, Albouy G, King BR. A role for GABA in the modulation of striatal and hippocampal systems under stress. Commun Biol 2021; 4:1033. [PMID: 34475515 PMCID: PMC8413374 DOI: 10.1038/s42003-021-02535-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
Previous research has demonstrated that stress modulates the competitive interaction between the hippocampus and striatum, two structures known to be critically involved in motor sequence learning. These earlier investigations, however, have largely focused on blood oxygen-level dependent (BOLD) responses. No study to date has examined the link between stress, motor learning and levels of striatal and hippocampal gamma-aminobutyric acid (GABA). This knowledge gap is surprising given the known role of GABA in neuroplasticity subserving learning and memory. The current study thus examined: a) the effects of motor learning and stress on striatal and hippocampal GABA levels; and b) how learning- and stress-induced changes in GABA relate to the neural correlates of learning. To do so, fifty-three healthy young adults were exposed to a stressful or non-stressful control intervention before motor sequence learning. Striatal and hippocampal GABA levels were assessed at baseline and post-intervention/learning using magnetic resonance spectroscopy. Regression analyses indicated that stress modulated the link between striatal GABA levels and functional plasticity in both the hippocampus and striatum during learning as measured with fMRI. This study provides evidence for a role of GABA in the stress-induced modulation of striatal and hippocampal systems.
Collapse
Affiliation(s)
- Nina Dolfen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Mareike A Gann
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | | | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| | - Bradley R King
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
14
|
Altered directed connectivity during processing of implicit versus explicit predictive stimuli in Parkinson's disease patients. Brain Cogn 2021; 152:105773. [PMID: 34225173 DOI: 10.1016/j.bandc.2021.105773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/06/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
The study investigated the role of top-down versus bottom-up connectivity, during the processing of implicit or explicit predictive information, in Parkinson's disease (PD). EEG was recorded during the performance of a task, which evaluated the ability to utilize either implicit or explicit predictive contextual information in order to facilitate the detection of predictable versus random targets. Thus, subjects performed an implicit and explicit session, where subjects were either unaware or made aware of a predictive sequence that signals the presentation of a subsequent target, respectively. We evaluated EEG event-related directed connectivity, in PD patients compared with healthy age-matched controls, using phase transfer entropy. PD patients showed increased top-down frontal-parietal connectivity, compared to control subjects, during the processing of the last (most informative) stimulus of the predictive sequence and of random standards, in the implicit and explicit session, respectively. These findings suggest that PD is associated with compensatory top-down connectivity, specifically during the processing of implicit predictive stimuli. During the explicit session, PD patients seem to allocate more attentional resources to non-informative standard stimuli, compared to controls. These connectivity changes shed further light on the cognitive deficits, associated with the processing of predictive contextual information, that are observed in PD patients.
Collapse
|
15
|
Dolfen N, King BR, Schwabe L, Gann MA, Veldman MP, von Leupoldt A, Swinnen SP, Albouy G. Stress Modulates the Balance between Hippocampal and Motor Networks during Motor Memory Processing. Cereb Cortex 2021; 31:1365-1382. [PMID: 33106842 DOI: 10.1093/cercor/bhaa302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/02/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Abstract
The functional interaction between hippocampo- and striato-cortical regions during motor sequence learning is essential to trigger optimal memory consolidation. Based on previous evidence from other memory domains that stress alters the balance between these systems, we investigated whether exposure to stress prior to motor learning modulates motor memory processes. Seventy-two healthy young individuals were exposed to a stressful or nonstressful control intervention prior to training on a motor sequence learning task in a magnetic resonance imaging (MRI) scanner. Consolidation was assessed with an MRI retest after a sleep episode. Behavioral results indicate that stress prior to learning did not influence motor performance. At the neural level, stress induced both a larger recruitment of sensorimotor regions and a greater disengagement of hippocampo-cortical networks during training. Brain-behavior regression analyses showed that while this stress-induced shift from (hippocampo-)fronto-parietal to motor networks was beneficial for initial performance, it was detrimental for consolidation. Our results provide the first experimental evidence that stress modulates the neural networks recruited during motor memory processing and therefore effectively unify concepts and mechanisms from diverse memory fields. Critically, our findings suggest that intersubject variability in brain responses to stress determines the impact of stress on motor learning and subsequent consolidation.
Collapse
Affiliation(s)
- N Dolfen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - B R King
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - L Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - M A Gann
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - M P Veldman
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - A von Leupoldt
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Health Psychology, KU Leuven, Leuven, Belgium
| | - S P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - G Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Potential and efficiency of statistical learning closely intertwined with individuals' executive functions: a mathematical modeling study. Sci Rep 2020; 10:18843. [PMID: 33139784 PMCID: PMC7606401 DOI: 10.1038/s41598-020-75157-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Statistical learning (SL) is essential in enabling humans to extract probabilistic regularities from the world. The ability to accomplish ultimate learning performance with training (i.e., the potential of learning) has been known to be dissociated with performance improvement per amount of learning time (i.e., the efficiency of learning). Here, we quantified the potential and efficiency of SL separately through mathematical modeling and scrutinized how they were affected by various executive functions. Our results showed that a high potential of SL was associated with poor inhibition and good visuo-spatial working memory, whereas high efficiency of SL was closely related to good inhibition and good set-shifting. We unveiled the distinct characteristics of SL in relation to potential and efficiency and their interaction with executive functions.
Collapse
|
17
|
Morgan OP, Slapik MB, Iannuzzelli KG, LaConte SM, Lisinski JM, Nopoulos PC, Cochran AM, Kronemer SI, Rosenthal LS, Marvel CL. The Cerebellum and Implicit Sequencing: Evidence from Cerebellar Ataxia. THE CEREBELLUM 2020; 20:222-245. [PMID: 33123963 DOI: 10.1007/s12311-020-01206-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
The cerebellum recognizes sequences from prior experiences and uses this information to generate internal models that predict future outcomes in a feedforward manner [Front Hum Neurosci 8: 475, 2014; Cortex 47: 137-44, 2011; Cerebellum 7: 611-5, 2008; J Neurosci 26: 9107-16, 2006]. This process has been well documented in the motor domain, but the cerebellum's role in cognitive sequencing, within the context of implicit versus explicit processes, is not well characterized. In this study, we tested individuals with cerebellar ataxia and healthy controls to clarify the role of the cerebellum sequencing using variations on implicit versus explicit and motor versus cognitive demands across five experiments. Converging results across these studies suggest that cerebellar feedforward mechanisms may be necessary for sequencing in the implicit domain only. In the ataxia group, rhythmic tapping, rate of motor learning, and implicit sequence learning were impaired. However, for cognitive sequencing that could be accomplished using explicit strategies, the cerebellar group performed normally, as though they shifted to extra-cerebellar mechanisms to compensate. For example, when cognitive and motor functions relied on cerebellar function simultaneously, the ataxia group's motor function was unaffected, in contrast to that of controls whose motor performance declined as a function of cognitive load. These findings indicated that the cerebellum is not critical for all forms of sequencing per se. Instead, it plays a fundamental role for sequencing within the implicit domain, whether functions are motor or cognitive. Moreover, individuals with cerebellar ataxia are generally able to compensate for cognitive sequencing when explicit strategies are available in order to preserve resources for motor function.
Collapse
Affiliation(s)
- Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mitchell B Slapik
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Stephen M LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Jonathan M Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Peg C Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ashley M Cochran
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sharif I Kronemer
- Interdepartmental Neuroscience Program and the Department of Neurology, Yale University, New Haven, CT, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- , Baltimore, MD, 21205, USA.
| |
Collapse
|
18
|
Guillemin C, Tillmann B. Implicit learning of two artificial grammars. Cogn Process 2020; 22:141-150. [PMID: 33021732 DOI: 10.1007/s10339-020-00996-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/26/2020] [Indexed: 11/25/2022]
Abstract
This study investigated the implicit learning of two artificial systems. Two finite-state grammars were implemented with the same tone set (leading to short melodies) and played by the same timbre in exposure and test phases. The grammars were presented in separate exposure phases, and potentially acquired knowledge was tested with two experimental tasks: a grammar categorization task (Experiment 1) and a grammatical error detection task (Experiment 2). Results showed that participants were able to categorize new items as belonging to one or the other grammar (Experiment 1) and detect grammatical errors in new sequences of each grammar (Experiment 2). Our findings suggest the capacity of intra-modal learning of regularities in the auditory modality and based on stimuli that share the same perceptual properties.
Collapse
Affiliation(s)
- C Guillemin
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Bron, France
- CNRS, UMR5292, INSERM, U1028, Bron, France
- University Lyon 1, Villeurbanne, 69000, France
| | - B Tillmann
- Lyon Neuroscience Research Center, Auditory Cognition and Psychoacoustics Team, Bron, France.
- CNRS, UMR5292, INSERM, U1028, Bron, France.
- University Lyon 1, Villeurbanne, 69000, France.
| |
Collapse
|
19
|
Weinberger AB, Gallagher NM, Warren ZJ, English GA, Moghaddam FM, Green AE. Implicit pattern learning predicts individual differences in belief in God in the United States and Afghanistan. Nat Commun 2020; 11:4503. [PMID: 32908145 PMCID: PMC7481241 DOI: 10.1038/s41467-020-18362-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 08/13/2020] [Indexed: 11/11/2022] Open
Abstract
Most humans believe in a god, but many do not. Differences in belief have profound societal impacts. Anthropological accounts implicate bottom-up perceptual processes in shaping religious belief, suggesting that individual differences in these processes may help explain variation in belief. Here, in findings replicated across socio-religiously disparate samples studied in the U.S. and Afghanistan, implicit learning of patterns/order within visuospatial sequences (IL-pat) in a strongly bottom-up paradigm predict 1) stronger belief in an intervening/ordering god, and 2) increased strength-of-belief from childhood to adulthood, controlling for explicit learning and parental belief. Consistent with research implicating IL-pat as a basis of intuition, and intuition as a basis of belief, mediation models support a hypothesized effect pathway whereby IL-pat leads to intuitions of order which, in turn, lead to belief in ordering gods. The universality and variability of human IL-pat may thus contribute to the global presence and variability of religious belief.
Collapse
Affiliation(s)
- Adam B Weinberger
- Georgetown University, Washington, DC, 20057, USA.
- University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Natalie M Gallagher
- Georgetown University, Washington, DC, 20057, USA
- Northwestern University, Evanston, IL, 60208, USA
| | - Zachary J Warren
- Georgetown University, Washington, DC, 20057, USA
- The Asia Foundation, 1779 Massachusetts Ave NW #815, Washington, DC, 20036, USA
| | - Gwendolyn A English
- Georgetown University, Washington, DC, 20057, USA
- ETH Zurich, 8092, Zurich, CH-8092, Switzerland
| | | | - Adam E Green
- Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
20
|
Beneficial effects of cerebellar tDCS on motor learning are associated with altered putamen-cerebellar connectivity: A simultaneous tDCS-fMRI study. Neuroimage 2020; 223:117363. [PMID: 32919057 DOI: 10.1016/j.neuroimage.2020.117363] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
Non-invasive transcranial stimulation of cerebellum and primary motor cortex (M1) has been shown to enhance motor learning. However, the mechanisms by which stimulation improves learning remain largely unknown. Here, we sought to shed light on the neural correlates of transcranial direct current stimulation (tDCS) during motor learning by simultaneously recording functional magnetic resonance imaging (fMRI). We found that right cerebellar tDCS, but not left M1 tDCS, led to enhanced sequence learning in the serial reaction time task. Performance was also improved following cerebellar tDCS compared to sham in a sequence production task, reflecting superior training effects persisting into the post-training period. These behavioral effects were accompanied by increased learning-specific activity in right M1, left cerebellum lobule VI, left inferior frontal gyrus and right inferior parietal lobule during cerebellar tDCS compared to sham. Despite the lack of group-level changes comparing left M1 tDCS to sham, activity increase in right M1, supplementary motor area, and bilateral middle frontal cortex, under M1 tDCS, was associated with better sequence performance. This suggests that lack of group effects in M1 tDCS relate to inter-individual variability in learning-related activation patterns. We further investigated how tDCS modulates effective connectivity in the cortico-striato-cerebellar learning network. Using dynamic causal modelling, we found altered connectivity patterns during both M1 and cerebellar tDCS when compared to sham. Specifically, during cerebellar tDCS, negative modulation of a connection from putamen to cerebellum was decreased for sequence learning only, effectively leading to decreased inhibition of the cerebellum. These results show specific effects of cerebellar tDCS on functional activity and connectivity in the motor learning network and may facilitate the optimization of motor rehabilitation involving cerebellar non-invasive stimulation.
Collapse
|
21
|
Sequence learning in the human brain: A functional neuroanatomical meta-analysis of serial reaction time studies. Neuroimage 2019; 207:116387. [PMID: 31765803 DOI: 10.1016/j.neuroimage.2019.116387] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Sequence learning underlies numerous motor, cognitive, and social skills. Previous models and empirical investigations of sequence learning in humans and non-human animals have implicated cortico-basal ganglia-cerebellar circuitry as well as other structures. To systematically examine the functional neuroanatomy of sequence learning in humans, we conducted a series of neuroanatomical meta-analyses. We focused on the serial reaction time (SRT) task. This task, which is the most widely used paradigm for probing sequence learning in humans, allows for the rigorous control of visual, motor, and other factors. Controlling for these factors (in sequence-random block contrasts), sequence learning yielded consistent activation only in the basal ganglia, across the striatum (anterior/mid caudate nucleus and putamen) and the globus pallidus. In contrast, when visual, motor, and other factors were not controlled for (in a global analysis with all sequence-baseline contrasts, not just sequence-random contrasts), premotor cortical and cerebellar activation were additionally observed. The study provides solid evidence that, at least as tested with the visuo-motor SRT task, sequence learning in humans relies on the basal ganglia, whereas cerebellar and premotor regions appear to contribute to aspects of the task not related to sequence learning itself. The findings have both basic research and translational implications.
Collapse
|
22
|
Yoshiike T, Honma M, Ikeda H, Kuriyama K. Bright light exposure advances consolidation of motor skill accuracy in humans. Neurobiol Learn Mem 2019; 166:107084. [PMID: 31491556 DOI: 10.1016/j.nlm.2019.107084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 01/06/2023]
Abstract
Light has attracted increasing attention as a critical determinant of memory processing. While sleep selectively consolidates newly encoded memories according to their future relevance, the role of light in human memory consolidation is largely unknown. Here, we report how bright light (BL), provided during encoding, influences online and offline consolidation of motor skill learning. We sought to determine whether relatively slower and faster key-press transitions within individuals were differentially consolidated by BL. Healthy human subjects were briefly exposed to either BL (>8000 lx) or control light (CL; <500 lx) during memory encoding at 13:00 h, when light minimally affects circadian phase-shifting, and were retested 24 h later. The effects of BL on online and offline performance gains were determined by accuracy and speed. BL-exposed subjects showed better overall performance accuracy during training and lower overnight accuracy gains after a subsequent night of sleep than did CL-exposed subjects. BL preferentially improved the initially most difficult individual key-press transitions during practice; these were only improved overnight under CL. By contrast, accuracy during what had been the easiest key-press transitions at the beginning of the experiment was unaffected by light conditions or online/offline learning processes. BL effects were not observed for performance speed, mood, or sleep-wake patterns. Brief BL exposure during training may advance motor memory selection and consolidation that optimally meet individual requirements for potential gains, which would otherwise depend on post-training sleep. This suggests a new way of enhancing brain plasticity to compensate for impaired sleep-dependent memory consolidation in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Takuya Yoshiike
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan.
| | - Motoyasu Honma
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Hiroki Ikeda
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-Ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Kenichi Kuriyama
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
23
|
Greeley B, Seidler RD. Differential effects of left and right prefrontal cortex anodal transcranial direct current stimulation during probabilistic sequence learning. J Neurophysiol 2019; 121:1906-1916. [PMID: 30917064 DOI: 10.1152/jn.00795.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Left and right prefrontal cortex and the primary motor cortex (M1) are activated during learning of motor sequences. Previous literature is mixed on whether prefrontal cortex aids or interferes with sequence learning. The present study investigated the roles of prefrontal cortices and M1 in sequence learning. Participants received anodal transcranial direct current stimulation (tDCS) to right or left prefrontal cortex or left M1 during a probabilistic sequence learning task. Relative to sham, the left prefrontal cortex and M1 tDCS groups exhibited enhanced learning evidenced by shorter response times for pattern trials, but only for individuals who did not gain explicit awareness of the sequence (implicit). Right prefrontal cortex stimulation in participants who did not gain explicit sequence awareness resulted in learning disadvantages evidenced by slower overall response times for pattern trials. These findings indicate that stimulation to left prefrontal cortex or M1 can lead to sequence learning benefits under implicit conditions. In contrast, right prefrontal cortex tDCS had negative effects on sequence learning, with overall impaired reaction time for implicit learners. There was no effect of tDCS on accuracy, and thus our reaction time findings cannot be explained by a speed-accuracy tradeoff. Overall, our findings suggest complex and hemisphere-specific roles of left and right prefrontal cortices in sequence learning. NEW & NOTEWORTHY Prefrontal cortices are engaged in motor sequence learning, but the literature is mixed on whether the prefrontal cortices aid or interfere with learning. In the current study, we used anodal transcranial direct current stimulation to target left or right prefrontal cortex or left primary motor cortex while participants performed a probabilistic sequence learning task. We found that left prefrontal and motor cortex stimulation enhanced implicit learning whereas right prefrontal stimulation negatively impacted performance.
Collapse
Affiliation(s)
- Brian Greeley
- School of Kinesiology, University of Michigan , Ann Arbor, Michigan.,Department of Psychology, University of Michigan , Ann Arbor, Michigan
| | - Rachael D Seidler
- School of Kinesiology, University of Michigan , Ann Arbor, Michigan.,Department of Psychology, University of Michigan , Ann Arbor, Michigan.,Department of Applied Physiology and Kinesiology, University of Florida , Gainesville, Florida
| |
Collapse
|
24
|
Batterink LJ, Paller KA, Reber PJ. Understanding the Neural Bases of Implicit and Statistical Learning. Top Cogn Sci 2019; 11:482-503. [PMID: 30942536 DOI: 10.1111/tops.12420] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 11/20/2018] [Accepted: 03/07/2019] [Indexed: 11/29/2022]
Abstract
Both implicit learning and statistical learning focus on the ability of learners to pick up on patterns in the environment. It has been suggested that these two lines of research may be combined into a single construct of "implicit statistical learning." However, by comparing the neural processes that give rise to implicit versus statistical learning, we may determine the extent to which these two learning paradigms do indeed describe the same core mechanisms. In this review, we describe current knowledge about neural mechanisms underlying both implicit learning and statistical learning, highlighting converging findings between these two literatures. A common thread across all paradigms is that learning is supported by interactions between the declarative and nondeclarative memory systems of the brain. We conclude by discussing several outstanding research questions and future directions for each of these two research fields. Moving forward, we suggest that the two literatures may interface by defining learning according to experimental paradigm, with "implicit learning" reserved as a specific term to denote learning without awareness, which may potentially occur across all paradigms. By continuing to align these two strands of research, we will be in a better position to characterize the neural bases of both implicit and statistical learning, ultimately improving our understanding of core mechanisms that underlie a wide variety of human cognitive abilities.
Collapse
Affiliation(s)
- Laura J Batterink
- Department of Psychology, Brain and Mind Institute, Western University.,Department of Psychology, Northwestern University
| | - Ken A Paller
- Department of Psychology, Northwestern University
| | - Paul J Reber
- Department of Psychology, Northwestern University
| |
Collapse
|
25
|
|
26
|
Simor P, Zavecz Z, Horváth K, Éltető N, Török C, Pesthy O, Gombos F, Janacsek K, Nemeth D. Deconstructing Procedural Memory: Different Learning Trajectories and Consolidation of Sequence and Statistical Learning. Front Psychol 2019; 9:2708. [PMID: 30687169 PMCID: PMC6333905 DOI: 10.3389/fpsyg.2018.02708] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Procedural learning is a fundamental cognitive function that facilitates efficient processing of and automatic responses to complex environmental stimuli. Here, we examined training-dependent and off-line changes of two sub-processes of procedural learning: namely, sequence learning and statistical learning. Whereas sequence learning requires the acquisition of order-based relationships between the elements of a sequence, statistical learning is based on the acquisition of probabilistic associations between elements. Seventy-eight healthy young adults (58 females and 20 males) completed the modified version of the Alternating Serial Reaction Time task that was designed to measure Sequence and Statistical Learning simultaneously. After training, participants were randomly assigned to one of three conditions: active wakefulness, quiet rest, or daytime sleep. We examined off-line changes in Sequence and Statistical Learning as well as further improvements after extended practice. Performance in Sequence Learning increased during training, while Statistical Learning plateaued relatively rapidly. After the off-line period, both the acquired sequence and statistical knowledge was preserved, irrespective of the vigilance state (awake, quiet rest or sleep). Sequence Learning further improved during extended practice, while Statistical Learning did not. Moreover, within the sleep group, cortical oscillations and sleep spindle parameters showed differential associations with Sequence and Statistical Learning. Our findings can contribute to a deeper understanding of the dynamic changes of multiple parallel learning and consolidation processes that occur during procedural memory formation.
Collapse
Affiliation(s)
- Peter Simor
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Zsofia Zavecz
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Horváth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Noémi Éltető
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Csenge Török
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya Pesthy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
- MTA-PPKE Adolescent Development Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE NAP Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| |
Collapse
|
27
|
Zwart FS, Vissers CT, Kessels RP, Maes JH. Implicit learning seems to come naturally for children with autism, but not for children with specific language impairment: Evidence from behavioral and ERP data. Autism Res 2018; 11:1050-1061. [PMID: 29676529 PMCID: PMC6120494 DOI: 10.1002/aur.1954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/05/2018] [Accepted: 03/18/2018] [Indexed: 12/22/2022]
Abstract
Autism spectrum disorder (ASD) and specific language impairment (SLI) are two neurodevelopmental disorders characterized by deficits in verbal and nonverbal communication skills. These skills are thought to develop largely through implicit-or automatic-learning mechanisms. The aim of the current paper was to investigate the role of implicit learning abilities in the atypical development of communication skills in ASD and SLI. In the current study, we investigated Response Times (RTs) and Event Related Potentials (ERPs) during implicit learning on a Serial Reaction Time (SRT) task in a group of typically developing (TD) children (n = 17), a group of autistic children (n = 16), and a group of children with SLI (n = 13). Findings suggest that learning in both ASD and SLI are similar to that in TD. However, electrophysiological findings suggest that autistic children seem to rely mainly on more automatic processes (as reflected by an N2b component), whereas the children with SLI seem to rely on more controlled processes (as reflected by a P3 component). The TD children appear to use a combination of both learning mechanisms. These findings suggest that clinical interventions should aim at compensating for an implicit learning deficit in children with SLI, but not in children with ASD. Future research should focus on developmental differences in implicit learning and related neural correlates in TD, ASD, and SLI. Autism Res 2018, 11: 1050-1061. © 2018 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. LAY SUMMARY Autism and Specific Language Impairment (SLI) are two disorders characterized by problems in social communication and language. Social communication and language are believed to be learned in an automatic way. This is called "implicit learning." We have found that implicit learning is intact in autism. However, in SLI there seems different brain activity during implicit learning. Maybe children with SLI learn differently, and maybe this different learning makes it more difficult for them to learn language.
Collapse
Affiliation(s)
- Fenny S. Zwart
- Donders Institute for Brain Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| | - Constance Th.W.M. Vissers
- Behavioural Science InstituteNijmegenThe Netherlands
- Royal Dutch KentalisSint‐MichielsgestelThe Netherlands
| | - Roy P.C. Kessels
- Donders Institute for Brain Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
- Department of Medical PsychologyRadboud University Medical CenterNijmegenThe Netherlands
- Vincent van Gogh Institute for PsychiatryVenrayThe Netherlands
| | - Joseph H.R. Maes
- Donders Institute for Brain Cognition and Behaviour, Radboud UniversityNijmegenThe Netherlands
| |
Collapse
|
28
|
Lin CHJ, Yang HC, Knowlton BJ, Wu AD, Iacoboni M, Ye YL, Huang SL, Chiang MC. Contextual interference enhances motor learning through increased resting brain connectivity during memory consolidation. Neuroimage 2018; 181:1-15. [PMID: 29966717 DOI: 10.1016/j.neuroimage.2018.06.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023] Open
Abstract
Increasing contextual interference (CI) during practice benefits learning, making it a desirable difficulty. For example, interleaved practice (IP) of motor sequences is generally more difficult than repetitive practice (RP) during practice but leads to better learning. Here we investigated whether CI in practice modulated resting-state functional connectivity during consolidation. 26 healthy adults (11 men/15 women, age = 23.3 ± 1.3 years) practiced two sets of three sequences in an IP or RP condition over 2 days, followed by a retention test on Day 5 to evaluate learning. On each practice day, functional magnetic resonance imaging (fMRI) data were acquired during practice and also in a resting state immediately after practice. The resting-state fMRI data were processed using independent component analysis (ICA) followed by functional connectivity analysis, showing that IP on Day 1 led to greater resting connectivity than RP between the left premotor cortex and left dorsolateral prefrontal cortex (DLPFC), bilateral posterior cingulate cortices, and bilateral inferior parietal lobules. Moreover, greater resting connectivity after IP than RP on Day 1, between the left premotor cortex and the hippocampus, amygdala, putamen, and thalamus on the right, and the cerebellum, was associated with better learning following IP. Mediation analysis further showed that the association between enhanced resting premotor-hippocampal connectivity on Day 1 and better retention performance following IP was mediated by greater task-related functional activation during IP on Day 2. Our findings suggest that the benefit of CI to motor learning is likely through enhanced resting premotor connectivity during the early phase of consolidation.
Collapse
Affiliation(s)
- Chien-Ho Janice Lin
- Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, 112, Taiwan; Yeong-An Orthopedic and Physical Therapy Clinic, Taipei, 112, Taiwan.
| | - Ho-Ching Yang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Barbara J Knowlton
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA.
| | - Allan D Wu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA; Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, 90095, USA.
| | - Marco Iacoboni
- Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, CA, 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 90095, USA.
| | - Yu-Ling Ye
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, 613, Taiwan.
| | - Shin-Leh Huang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| | - Ming-Chang Chiang
- Department of Biomedical Engineering, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
29
|
Hartwigsen G, Neef NE, Camilleri JA, Margulies DS, Eickhoff SB. Functional Segregation of the Right Inferior Frontal Gyrus: Evidence From Coactivation-Based Parcellation. Cereb Cortex 2018; 29:1532-1546. [DOI: 10.1093/cercor/bhy049] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nicole E Neef
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Julia A Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
30
|
Amer T, Campbell KL, Hasher L. Cognitive Control As a Double-Edged Sword. Trends Cogn Sci 2018; 20:905-915. [PMID: 27863886 DOI: 10.1016/j.tics.2016.10.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/22/2016] [Accepted: 10/04/2016] [Indexed: 01/16/2023]
Abstract
Cognitive control, the ability to limit attention to goal-relevant information, aids performance on a wide range of laboratory tasks. However, there are many day-to-day functions which require little to no control and others which even benefit from reduced control. We review behavioral and neuroimaging evidence demonstrating that reduced control can enhance the performance of both older and, under some circumstances, younger adults. Using healthy aging as a model, we demonstrate that decreased cognitive control benefits performance on tasks ranging from acquiring and using environmental information to generating creative solutions to problems. Cognitive control is thus a double-edged sword - aiding performance on some tasks when fully engaged, and many others when less engaged.
Collapse
Affiliation(s)
- Tarek Amer
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Toronto, ON, Canada
| | - Karen L Campbell
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Lynn Hasher
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Toronto, ON, Canada.
| |
Collapse
|
31
|
Deroost N, Coomans D. Is sequence awareness mandatory for perceptual sequence learning: An assessment using a pure perceptual sequence learning design. Acta Psychol (Amst) 2018; 183:58-65. [PMID: 29331549 DOI: 10.1016/j.actpsy.2018.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 11/26/2022] Open
Abstract
We examined the role of sequence awareness in a pure perceptual sequence learning design. Participants had to react to the target's colour that changed according to a perceptual sequence. By varying the mapping of the target's colour onto the response keys, motor responses changed randomly. The effect of sequence awareness on perceptual sequence learning was determined by manipulating the learning instructions (explicit versus implicit) and assessing the amount of sequence awareness after the experiment. In the explicit instruction condition (n = 15), participants were instructed to intentionally search for the colour sequence, whereas in the implicit instruction condition (n = 15), they were left uninformed about the sequenced nature of the task. Sequence awareness after the sequence learning task was tested by means of a questionnaire and the process-dissociation-procedure. The results showed that the instruction manipulation had no effect on the amount of perceptual sequence learning. Based on their report to have actively applied their sequence knowledge during the experiment, participants were subsequently regrouped in a sequence strategy group (n = 14, of which 4 participants from the implicit instruction condition and 10 participants from the explicit instruction condition) and a no-sequence strategy group (n = 16, of which 11 participants from the implicit instruction condition and 5 participants from the explicit instruction condition). Only participants of the sequence strategy group showed reliable perceptual sequence learning and sequence awareness. These results indicate that perceptual sequence learning depends upon the continuous employment of strategic cognitive control processes on sequence knowledge. Sequence awareness is suggested to be a necessary but not sufficient condition for perceptual learning to take place.
Collapse
|
32
|
Hall J, Owen Van Horne A, McGregor KK, Farmer T. Distributional Learning in College Students With Developmental Language Disorder. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2017; 60:3270-3283. [PMID: 29114746 PMCID: PMC5945081 DOI: 10.1044/2017_jslhr-l-17-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/01/2017] [Accepted: 07/11/2017] [Indexed: 06/01/2023]
Abstract
Purpose This study examined whether college students with developmental language disorder (DLD) could use distributional information in an artificial language to learn about grammatical category membership in a way similar to their typically developing (TD) peers. Method Seventeen college students with DLD and 17 TD college students participated in this task. We used an artificial grammar in which certain combinations of words never occurred during training. At test, participants had to use knowledge of category membership to determine which combinations were allowable in the grammar, even though they had not been heard. Results College students with DLD performed similarly to TD peers in distinguishing grammatical from ungrammatical combinations. Conclusion Differences in ratings between grammatical and ungrammatical items in this task suggest that college students with DLD can form grammatical categories from novel input and more broadly use distributional information.
Collapse
|
33
|
Smalle EHM, Panouilleres M, Szmalec A, Möttönen R. Language learning in the adult brain: disrupting the dorsolateral prefrontal cortex facilitates word-form learning. Sci Rep 2017; 7:13966. [PMID: 29070879 PMCID: PMC5656634 DOI: 10.1038/s41598-017-14547-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/12/2017] [Indexed: 11/09/2022] Open
Abstract
Adults do not learn languages as easily as children do. It has been hypothesized that the late-developing prefrontal cortex that supports executive functions competes with procedural learning mechanisms that are important for language learning. To address this hypothesis, we tested whether a temporary neural disruption of the left Dorsolateral Prefrontal Cortex (DLPFC) can improve implicit, procedural learning of word-forms in adults. Young adults were presented with repeating audio-visual sequences of syllables for immediate serial recall in a Hebb repetition learning task that simulates word-form learning. Inhibitory theta-burst Transcranial Magnetic Stimulation was applied to the left DLPFC or to the control site before the Hebb task. The DLPFC-disrupted group showed enhanced learning of the novel phonological sequences relative to the control group. Moreover, learning was negatively correlated with executive functions that rely on the DLPFC in the control group, but not in the DLPFC-disrupted group. The results support the hypothesis that a mature prefrontal cortex competes with implicit learning of word-forms. The findings provide new insight into the competition between brain mechanisms that contribute to language learning in the adult brain.
Collapse
Affiliation(s)
- Eleonore H M Smalle
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Muriel Panouilleres
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Arnaud Szmalec
- Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Riikka Möttönen
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom.,School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
34
|
Zwart FS, Vissers CTWM, Kessels RPC, Maes JHR. Procedural learning across the lifespan: A systematic review with implications for atypical development. J Neuropsychol 2017; 13:149-182. [DOI: 10.1111/jnp.12139] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Fenny S. Zwart
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
| | - Constance Th. W. M. Vissers
- Behavioural Science Institute; Nijmegen The Netherlands
- Royal Dutch Kentalis; Sint-Michielsgestel The Netherlands
| | - Roy P. C. Kessels
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
- Department of Medical Psychology; Radboud University Medical Center; Nijmegen The Netherlands
- Vincent van Gogh Institute for Psychiatry; Venray The Netherlands
| | - Joseph H. R. Maes
- Donders Institute for Brain Cognition and Behaviour; Radboud University; Nijmegen The Netherlands
| |
Collapse
|
35
|
King BR, Hoedlmoser K, Hirschauer F, Dolfen N, Albouy G. Sleeping on the motor engram: The multifaceted nature of sleep-related motor memory consolidation. Neurosci Biobehav Rev 2017; 80:1-22. [DOI: 10.1016/j.neubiorev.2017.04.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022]
|
36
|
Lawson RR, Gayle JO, Wheaton LA. Novel behavioral indicator of explicit awareness reveals temporal course of frontoparietal neural network facilitation during motor learning. PLoS One 2017; 12:e0175176. [PMID: 28410404 PMCID: PMC5391991 DOI: 10.1371/journal.pone.0175176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/21/2017] [Indexed: 11/29/2022] Open
Abstract
Deficits in sequential motor learning have been observed in many patient populations. Having an understanding of the individual neural progression associated with sequential learning in healthy individuals may provide valuable insights for effective interventions with these patients. Due to individual variability in motor skill acquisition, the temporal course of such learning will be vary, suggesting a need for a more individualized approach. Knowing when a subject becomes aware of movement patterns may provide a marker with which to identify each individual’s learning time course. To avoid interfering with the incidental nature of discovery during learning, such an indicator requires an indirect, behaviorally-based approach. In Part I, our study aimed to identify a reliable behavioral indicator predictive of the presence of incidental explicit awareness in a sequential motor learning task. Part II, utilized the predictive indicator and EEG to provide neural validation of perceptual processing changes temporally correlated with the indicator. Results of Part I provide a reliable predictive indicator for the timing of explicit awareness development. Results from Part II demonstrates strong classification reliability, as well as a significant neural correlation with behavior for subjects developing awareness (EXP), not observed with subjects without awareness (NOEXP). Additionally, a temporal correlation of peak activation between neural regions was noted over frontoparietal regions, suggesting that the incidental discovery of motor patterns may involve a facilitative network during awareness development. The proposed indicator provides a tool in which to further examine potential impacts of awareness associated with incidental, or exploratory, motor learning, while the individual nature of the indicator provides a tool for monitoring progress in rehabilitative, exploratory motor learning paradigms.
Collapse
Affiliation(s)
- Regan R. Lawson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Jordan O. Gayle
- School of Psychology, Morehouse College, Atlanta, Georgia, United States of America
| | - Lewis A. Wheaton
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Thiessen ED, Girard S, Erickson LC. Statistical learning and the critical period: how a continuous learning mechanism can give rise to discontinuous learning. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 7:276-88. [DOI: 10.1002/wcs.1394] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Erik D. Thiessen
- Department of Psychology; Carnegie Mellon University; Pittsburgh PA USA
| | - Sandrine Girard
- Department of Psychology; Carnegie Mellon University; Pittsburgh PA USA
| | - Lucy C. Erickson
- Department of Psychology; Carnegie Mellon University; Pittsburgh PA USA
| |
Collapse
|
38
|
Caljouw SR, Veldkamp R, Lamoth CJC. Implicit and Explicit Learning of a Sequential Postural Weight-Shifting Task in Young and Older Adults. Front Psychol 2016; 7:733. [PMID: 27252670 PMCID: PMC4877372 DOI: 10.3389/fpsyg.2016.00733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/02/2016] [Indexed: 01/25/2023] Open
Abstract
Sequence-specific postural motor learning in a target-directed weight-shifting task in 12 older and 12 young participants was assessed. In the implicit sequence learning condition participants performed a concurrent spatial cognitive task and in the two explicit conditions participants were required to discover the sequence order either with or without the concurrent cognitive task. Participants moved a cursor on the screen from the center location to one of the target locations projected in a semi-circle and back by shifting their center of pressure (CoP) on force plates. During the training the targets appeared in a simple fixed 5-target sequence. Plan-based control (i.e., direction of the CoP displacement in the first part of the target-directed movement) improved by anticipating the sequence order in the implicit condition but not in the explicit dual task condition. Only the young participants were able to use the explicit knowledge of the sequence structure to improve the directional error as indicated by a significant decrease in directional error over practice and an increase in directional error with sequence removal in the explicit single task condition. Time spent in the second part of the movement trajectory to stabilize the cursor on the target location improved over training in both the implicit and explicit sequence learning conditions, for both age groups. These results might indicate that an implicit motor learning method, which holds back explicit awareness of task relevant features, may be desirable for improving plan-based motor control in older adults.
Collapse
Affiliation(s)
- Simone R Caljouw
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen Netherlands
| | - Renee Veldkamp
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen Netherlands
| | - Claudine J C Lamoth
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen Netherlands
| |
Collapse
|
39
|
Shea N, Frith CD. Dual-process theories and consciousness: the case for 'Type Zero' cognition. Neurosci Conscious 2016; 2016:niw005. [PMID: 30109126 PMCID: PMC6084555 DOI: 10.1093/nc/niw005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 11/15/2022] Open
Abstract
A step towards a theory of consciousness would be to characterize the effect of consciousness on information processing. One set of results suggests that the effect of consciousness is to interfere with computations that are optimally performed non-consciously. Another set of results suggests that conscious, system 2 processing is the home of norm-compliant computation. This is contrasted with system 1 processing, thought to be typically unconscious, which operates with useful but error-prone heuristics. These results can be reconciled by separating out two different distinctions: between conscious and non-conscious representations, on the one hand, and between automatic and deliberate processes, on the other. This pair of distinctions is used to illuminate some existing experimental results and to resolve the puzzle about whether consciousness helps or hinders accurate information processing. This way of resolving the puzzle shows the importance of another category, which we label 'type 0 cognition', characterized by automatic computational processes operating on non-conscious representations.
Collapse
Affiliation(s)
- Nicholas Shea
- Department of Philosophy, King’s College London, Strand, London, WC2R 2LS, UK
| | - Chris D. Frith
- Wellcome Trust Centre for NeuroImaging at UCL, University College London, 12 Queen Square London, WC1N 3BG, UK and
- Professorial Fellow, Institute of Philosophy, University of London, Senate House, Malet Street, London, WC1E 7HU, UK
| |
Collapse
|
40
|
Hsieh LT, Ranganath C. Cortical and subcortical contributions to sequence retrieval: Schematic coding of temporal context in the neocortical recollection network. Neuroimage 2015. [PMID: 26209802 DOI: 10.1016/j.neuroimage.2015.07.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Episodic memory entails the ability to remember what happened when. Although the available evidence indicates that the hippocampus plays a role in structuring serial order information during retrieval of event sequences, information processed in the hippocampus must be conveyed to other cortical and subcortical areas in order to guide behavior. However, the extent to which other brain regions contribute to the temporal organization of episodic memory remains unclear. Here, we examined multivoxel activity pattern changes during retrieval of learned and random object sequences, focusing on a neocortical "core recollection network" that includes the medial prefrontal cortex, retrosplenial cortex, and angular gyrus, as well as on striatal areas including the caudate nucleus and putamen that have been implicated in processing of sequence information. The results demonstrate that regions of the core recollection network carry information about temporal positions within object sequences, irrespective of object information. This schematic coding of temporal information is in contrast to the putamen, which carried information specific to objects in learned sequences, and the caudate, which carried information about objects, irrespective of sequence context. Our results suggest a role for the cortical recollection network in the representation of temporal structure of events during episodic retrieval, and highlight the possible mechanisms by which the striatal areas may contribute to this process. More broadly, the results indicate that temporal sequence retrieval is a useful paradigm for dissecting the contributions of specific brain regions to episodic memory.
Collapse
Affiliation(s)
- Liang-Tien Hsieh
- Center for Neuroscience, University of California at Davis, 1544 Newton Court, Davis, CA 95618, USA; Department of Psychology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Charan Ranganath
- Center for Neuroscience, University of California at Davis, 1544 Newton Court, Davis, CA 95618, USA; Department of Psychology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
41
|
Andric M, Hasson U. Global features of functional brain networks change with contextual disorder. Neuroimage 2015; 117:103-13. [PMID: 25988223 PMCID: PMC4528071 DOI: 10.1016/j.neuroimage.2015.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022] Open
Abstract
It is known that features of stimuli in the environment affect the strength of functional connectivity in the human brain. However, investigations to date have not converged in determining whether these also impact functional networks' global features, such as modularity strength, number of modules, partition structure, or degree distributions. We hypothesized that one environmental attribute that may strongly impact global features is the temporal regularity of the environment, as prior work indicates that differences in regularity impact regions involved in sensory, attentional and memory processes. We examined this with an fMRI study, in which participants passively listened to tonal series that had identical physical features and differed only in their regularity, as defined by the strength of transition structure between tones. We found that series-regularity induced systematic changes to global features of functional networks, including modularity strength, number of modules, partition structure, and degree distributions. In tandem, we used a novel node-level analysis to determine the extent to which brain regions maintained their within-module connectivity across experimental conditions. This analysis showed that primary sensory regions and those associated with default-mode processes are most likely to maintain their within-module connectivity across conditions, whereas prefrontal regions are least likely to do so. Our work documents a significant capacity for global-level brain network reorganization as a function of context. These findings suggest that modularity and other core, global features, while likely constrained by white-matter structural brain connections, are not completely determined by them. We examined global features of whole-brain functional connectivity to inputs with varying disorder. Modularity, module numbers, and partition similarity varied with input disorder. Default-mode and sensory brain regions were least impacted by the manipulation.
Collapse
Affiliation(s)
- Michael Andric
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, Rovereto, TN, Italy.
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, Rovereto, TN, Italy; Department of Psychology and Cognitive Sciences, The University of Trento, Rovereto, TN, Italy
| |
Collapse
|
42
|
Nastase SA, Iacovella V, Davis B, Hasson U. Connectivity in the human brain dissociates entropy and complexity of auditory inputs. Neuroimage 2015; 108:292-300. [PMID: 25536493 PMCID: PMC4334666 DOI: 10.1016/j.neuroimage.2014.12.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 01/20/2023] Open
Abstract
Complex systems are described according to two central dimensions: (a) the randomness of their output, quantified via entropy; and (b) their complexity, which reflects the organization of a system's generators. Whereas some approaches hold that complexity can be reduced to uncertainty or entropy, an axiom of complexity science is that signals with very high or very low entropy are generated by relatively non-complex systems, while complex systems typically generate outputs with entropy peaking between these two extremes. In understanding their environment, individuals would benefit from coding for both input entropy and complexity; entropy indexes uncertainty and can inform probabilistic coding strategies, whereas complexity reflects a concise and abstract representation of the underlying environmental configuration, which can serve independent purposes, e.g., as a template for generalization and rapid comparisons between environments. Using functional neuroimaging, we demonstrate that, in response to passively processed auditory inputs, functional integration patterns in the human brain track both the entropy and complexity of the auditory signal. Connectivity between several brain regions scaled monotonically with input entropy, suggesting sensitivity to uncertainty, whereas connectivity between other regions tracked entropy in a convex manner consistent with sensitivity to input complexity. These findings suggest that the human brain simultaneously tracks the uncertainty of sensory data and effectively models their environmental generators.
Collapse
Affiliation(s)
- Samuel A Nastase
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, 38123 Mattarello, Italy; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Vittorio Iacovella
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, 38123 Mattarello, Italy
| | - Ben Davis
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, 38123 Mattarello, Italy
| | - Uri Hasson
- Center for Mind/Brain Sciences (CIMeC), The University of Trento, 38123 Mattarello, Italy; Department of Psychology and Cognitive Sciences, The University of Trento, 38122 Trento, Italy
| |
Collapse
|
43
|
Janacsek K, Ambrus GG, Paulus W, Antal A, Nemeth D. Right Hemisphere Advantage in Statistical Learning: Evidence From a Probabilistic Sequence Learning Task. Brain Stimul 2015; 8:277-82. [DOI: 10.1016/j.brs.2014.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 11/28/2022] Open
|
44
|
|
45
|
When it hurts (and helps) to try: the role of effort in language learning. PLoS One 2014; 9:e101806. [PMID: 25047901 PMCID: PMC4105409 DOI: 10.1371/journal.pone.0101806] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Compared to children, adults are bad at learning language. This is counterintuitive; adults outperform children on most measures of cognition, especially those that involve effort (which continue to mature into early adulthood). The present study asks whether these mature effortful abilities interfere with language learning in adults and further, whether interference occurs equally for aspects of language that adults are good (word-segmentation) versus bad (grammar) at learning. Learners were exposed to an artificial language comprised of statistically defined words that belong to phonologically defined categories (grammar). Exposure occurred under passive or effortful conditions. Passive learners were told to listen while effortful learners were instructed to try to 1) learn the words, 2) learn the categories, or 3) learn the category-order. Effortful learners showed an advantage for learning words while passive learners showed an advantage for learning the categories. Effort can therefore hurt the learning of categories.
Collapse
|
46
|
Abstract
Previous studies have reported functionally localized changes in resting-state brain activity following a short period of motor learning, but their relationship with memory consolidation and their dependence on the form of learning is unclear. We investigate these questions with implicit or explicit variants of the serial reaction time task (SRTT). fMRI resting-state functional connectivity was measured in human subjects before the tasks, and 0.1, 0.5, and 6 h after learning. There was significant improvement in procedural skill in both groups, with the group learning under explicit conditions showing stronger initial acquisition, and greater improvement at the 6 h retest. Immediately following acquisition, this group showed enhanced functional connectivity in networks including frontal and cerebellar areas and in the visual cortex. Thirty minutes later, enhanced connectivity was observed between cerebellar nuclei, thalamus, and basal ganglia, whereas at 6 h there was enhanced connectivity in a sensory-motor cortical network. In contrast, immediately after acquisition under implicit conditions, there was increased connectivity in a network including precentral and sensory-motor areas, whereas after 30 min a similar cerebello-thalamo-basal ganglionic network was seen as in explicit learning. Finally, 6 h after implicit learning, we found increased connectivity in medial temporal cortex, but reduction in precentral and sensory-motor areas. Our findings are consistent with predictions that two variants of the SRTT task engage dissociable functional networks, although there are also networks in common. We also show a converging and diverging pattern of flux between prefrontal, sensory-motor, and parietal areas, and subcortical circuits across a 6 h consolidation period.
Collapse
|
47
|
Dynamic neural network reorganization associated with second language vocabulary acquisition: a multimodal imaging study. J Neurosci 2013; 33:13663-72. [PMID: 23966688 DOI: 10.1523/jneurosci.0410-13.2013] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It remains unsettled whether human language relies exclusively on innately privileged brain structure in the left hemisphere or is more flexibly shaped through experiences, which induce neuroplastic changes in potentially relevant neural circuits. Here we show that learning of second language (L2) vocabulary and its cessation can induce bidirectional changes in the mirror-reverse of the traditional language areas. A cross-sectional study identified that gray matter volume in the inferior frontal gyrus pars opercularis (IFGop) and connectivity of the IFGop with the caudate nucleus and the superior temporal gyrus/supramarginal (STG/SMG), predominantly in the right hemisphere, were positively correlated with L2 vocabulary competence. We then implemented a cohort study involving 16 weeks of L2 training in university students. Brain structure before training did not predict the later gain in L2 ability. However, training intervention did increase IFGop volume and reorganization of white matter including the IFGop-caudate and IFGop-STG/SMG pathways in the right hemisphere. These "positive" plastic changes were correlated with the gain in L2 ability in the trained group but were not observed in the control group. We propose that the right hemispheric network can be reorganized into language-related areas through use-dependent plasticity in young adults, reflecting a repertoire of flexible reorganization of the neural substrates responding to linguistic experiences.
Collapse
|
48
|
Albouy G, King BR, Maquet P, Doyon J. Hippocampus and striatum: Dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus 2013; 23:985-1004. [DOI: 10.1002/hipo.22183] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Geneviève Albouy
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| | - Bradley R. King
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège; Liège Belgium
| | - Julien Doyon
- Functional Neuroimaging Unit, C.R.I.U.G.M.; Montreal Quebec Canada
- Department of Psychology; University of Montreal; Montreal Quebec Canada
| |
Collapse
|
49
|
Abstract
Syntax is the core computational component of language. A longstanding idea about syntactic processing is that it is generally not available to conscious access, operating autonomously and automatically. However, there is little direct neurocognitive evidence on this issue. By measuring event-related potentials while human observers performed a novel cross-modal distraction task, we demonstrated that syntactic violations that were not consciously detected nonetheless produced a characteristic early neural response pattern, and also significantly delayed reaction times to a concurrent task. This early neural response was distinct from later neural activity that was observed only to syntactic violations that were consciously detected. These findings provide direct evidence that the human brain reacts to violations of syntax even when these violations are not consciously detected, indicating that even highly complex computational processes such as syntactic processing can occur outside the narrow window of conscious awareness.
Collapse
|
50
|
Csábi E, Benedek P, Janacsek K, Katona G, Nemeth D. Sleep disorder in childhood impairs declarative but not nondeclarative forms of learning. J Clin Exp Neuropsychol 2013; 35:677-85. [PMID: 23848557 DOI: 10.1080/13803395.2013.815693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A large amount of studies have investigated the association between sleep and memory systems. However, remarkably little is known of the effect of sleep disorders on declarative and nondeclarative memory for children. In the present study we examined the effects of sleep disorders on different aspects of memory functions by testing children with sleep-disordered breathing (SDB), which is characterized by disrupted sleep patterns. We used "The War of the Ghosts" test to measure declarative memory and the Alternating Serial Reaction Time (ASRT) task. This enabled us to measure two aspects of nondeclarative memory--general skill learning and sequence-specific learning--separately. Ten children with SDB and 10 healthy controls participated in this study. Our data showed dissociation between declarative and nondeclarative memory in children with SDB. They showed impaired declarative memory, while the sequence-specific and general skill learning was similar to that of healthy controls, in spite of sleep disruption. Our findings suggest that sleep-disordered breathing affects declarative and nondeclarative memory differently in children. Moreover, these findings imply that the disrupted sleep pattern influences the more attention-demanding and cortical structure-guided explicit processes, while the less attention-demanding implicit processes mediated by subcortical structures are preserved.
Collapse
Affiliation(s)
- Eszter Csábi
- a Institute of Psychology, University of Szeged , Szeged , Hungary
| | | | | | | | | |
Collapse
|