1
|
Haslacher D, Narang A, Sokoliuk R, Cavallo A, Reber P, Nasr K, Santarnecchi E, Soekadar SR. In vivo phase-dependent enhancement and suppression of human brain oscillations by transcranial alternating current stimulation (tACS). Neuroimage 2023:120187. [PMID: 37230205 DOI: 10.1016/j.neuroimage.2023.120187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Transcranial alternating current stimulation (tACS) can influence perception and behavior, with recent evidence also highlighting its potential impact in clinical settings, but its underlying mechanisms are poorly understood. Behavioral and indirect physiological evidence indicates that phase-dependent constructive and destructive interference between the applied electric field and brain oscillations at the stimulation frequency may play an important role, but in vivo validation during stimulation was unfeasible because stimulation artifacts impede single-trial assessment of brain oscillations during tACS. Here, we attenuated stimulation artifacts to provide evidence for phase-dependent enhancement and suppression of visually evoked steady state responses (SSR) during amplitude-modulated tACS (AM-tACS). We found that AM-tACS enhanced and suppressed SSR by 5.77 ± 2.95 %, while it enhanced and suppressed corresponding visual perception by 7.99 ± 5.15 %. While not designed to investigate the underlying mechanisms of this effect, our study suggests feasibility and superiority of phase-locked (closed-loop) AM-tACS over conventional (open-loop) AM-tACS to purposefully enhance or suppress brain oscillations at specific frequencies.
Collapse
Affiliation(s)
- David Haslacher
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Asmita Narang
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Rodika Sokoliuk
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alessia Cavallo
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Philipp Reber
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Khaled Nasr
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program & Network Control Laboratory, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Surjo R Soekadar
- Clinical Neurotechnology Lab, Neuroscience Research Center (NWFZ), Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany..
| |
Collapse
|
2
|
Wang L, Han D, Qian B, Zhang Z, Zhang Z, Liu Z. The Validity of Steady-State Visual Evoked Potentials as Attention Tags and Input Signals: A Critical Perspective of Frequency Allocation and Number of Stimuli. Brain Sci 2020; 10:brainsci10090616. [PMID: 32906625 PMCID: PMC7563221 DOI: 10.3390/brainsci10090616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 01/23/2023] Open
Abstract
Steady-state visual evoked potential (SSVEP) is a periodic response to a repetitive visual stimulus at a specific frequency. Currently, SSVEP is widely treated as an attention tag in cognitive activities and is used as an input signal for brain-computer interfaces (BCIs). However, whether SSVEP can be used as a reliable indicator has been a controversial issue. We focused on the independence of SSVEP from frequency allocation and number of stimuli. First, a cue-target paradigm was adopted to examine the interaction between SSVEPs evoked by two stimuli with different frequency allocations under different attention conditions. Second, we explored whether signal strength and the performance of SSVEP-based BCIs were affected by the number of stimuli. The results revealed that no significant interaction of SSVEP responses appeared between attended and unattended stimuli under various frequency allocations, regardless of their appearance in the fundamental or second-order harmonic. The amplitude of SSVEP suffered no significant gain or loss under different numbers of stimuli, but the performance of SSVEP-based BCIs varied along with duration of stimuli; that is, the recognition rate was not affected by the number of stimuli when the duration of stimuli was long enough, while the information transfer rate (ITR) presented the opposite trend. It can be concluded that SSVEP is a reliable tool for marking and monitoring multiple stimuli simultaneously in cognitive studies, but much caution should be taken when choosing a suitable duration and the number of stimuli, in order to achieve optimal utility of BCIs in the future.
Collapse
Affiliation(s)
- Lu Wang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; (L.W.); (D.H.); (B.Q.); (Z.Z.)
| | - Dan Han
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; (L.W.); (D.H.); (B.Q.); (Z.Z.)
| | - Binbin Qian
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; (L.W.); (D.H.); (B.Q.); (Z.Z.)
| | - Zhenhao Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; (L.W.); (D.H.); (B.Q.); (Z.Z.)
| | - Zhijun Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310028, China; (L.W.); (D.H.); (B.Q.); (Z.Z.)
- Correspondence: ; Tel.: +86-571-88273337
| | - Zhifang Liu
- Department of Psychology and Special Education, Hangzhou Normal University, Hangzhou 311121, China;
| |
Collapse
|
3
|
Davidson MJ, Graafsma IL, Tsuchiya N, van Boxtel J. A multiple-response frequency-tagging paradigm measures graded changes in consciousness during perceptual filling-in. Neurosci Conscious 2020; 2020:niaa002. [PMID: 32296545 PMCID: PMC7151726 DOI: 10.1093/nc/niaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 02/20/2020] [Indexed: 11/14/2022] Open
Abstract
Perceptual filling-in (PFI) occurs when a physically present visual target disappears from conscious perception, with its location filled-in by the surrounding visual background. These perceptual changes are complete, near instantaneous, and can occur for multiple separate locations simultaneously. Here, we show that contrasting neural activity during the presence or absence of multi-target PFI can complement other findings from multistable phenomena to reveal the neural correlates of consciousness (NCC). We presented four peripheral targets over a background dynamically updating at 20 Hz. While participants reported on target disappearances/reappearances via button press/release, we tracked neural activity entrained by the background during PFI using steady-state visually evoked potentials (SSVEPs) recorded in the electroencephalogram. We found background SSVEPs closely correlated with subjective report, and increased with an increasing amount of PFI. Unexpectedly, we found that as the number of filled-in targets increased, the duration of target disappearances also increased, suggesting that facilitatory interactions exist between targets in separate visual quadrants. We also found distinct spatiotemporal correlates for the background SSVEP harmonics. Prior to genuine PFI, the response at the second harmonic (40 Hz) increased before the first (20 Hz), which we tentatively link to an attentional effect, while no such difference between harmonics was observed for physically removed stimuli. These results demonstrate that PFI can be used to study multi-object perceptual suppression when frequency-tagging the background of a visual display, and because there are distinct neural correlates for endogenously and exogenously induced changes in consciousness, that it is ideally suited to study the NCC.
Collapse
Affiliation(s)
- Matthew J Davidson
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Irene L Graafsma
- Department of Psychology, University of Amsterdam, Amsterdam 1001 NK, the Netherlands.,Department of Cognitive Science, Macquarie University, Sydney, Australia.,Center for Language and Cognition Groningen (CLCG), University of Groningen, the Netherlands
| | - Naotsugu Tsuchiya
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan.,Advanced Telecommunications Research Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| | - Jeroen van Boxtel
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Department of Psychology, Faculty of Health, University of Canberra, Canberra, Australia
| |
Collapse
|
4
|
Batterink LJ, Paller KA. Statistical learning of speech regularities can occur outside the focus of attention. Cortex 2019; 115:56-71. [PMID: 30771622 DOI: 10.1016/j.cortex.2019.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/06/2018] [Accepted: 01/10/2019] [Indexed: 11/19/2022]
Abstract
Statistical learning, the process of extracting regularities from the environment, plays an essential role in many aspects of cognition, including speech segmentation and language acquisition. A key component of statistical learning in a linguistic context is the perceptual binding of adjacent individual units (e.g., syllables) into integrated composites (e.g., multisyllabic words). A second, conceptually dissociable component of statistical learning is the memory storage of these integrated representations. Here we examine whether these two dissociable components of statistical learning are differentially impacted by top-down, voluntary attentional resources. Learners' attention was either focused towards or diverted from a speech stream made up of repeating nonsense words. Building on our previous findings, we quantified the online perceptual binding of individual syllables into component words using an EEG-based neural entrainment measure. Following exposure, statistical learning was assessed using offline tests, sensitive to both perceptual binding and memory storage. Neural measures verified that our manipulation of selective attention successfully reduced limited-capacity resources to the speech stream. Diverting attention away from the speech stream did not alter neural entrainment to the component words or post-exposure familiarity ratings, but did impact performance on an indirect reaction-time based memory test. We conclude that theoretically dissociable components of statistically learning are differentially impacted by attention and top-down processing resources. A reduction in attention to the speech stream may impede memory storage of the component words. In contrast, the moment-by-moment perceptual binding of speech regularities can occur even while learners' attention is focused on a demanding concurrent task, and we found no evidence that selective attention modulates this process. These results suggest that learners can acquire basic statistical properties of language without directly focusing on the speech input, potentially opening up previously overlooked opportunities for language learning, particularly in adult learners.
Collapse
Affiliation(s)
- Laura J Batterink
- Western University, Department of Psychology, Brain & Mind Institute, London, ON, Canada; Northwestern University, Department of Psychology, Evanston, IL, USA.
| | - Ken A Paller
- Northwestern University, Department of Psychology, Evanston, IL, USA.
| |
Collapse
|
5
|
Towards building a more complex view of the lateral geniculate nucleus: Recent advances in understanding its role. Prog Neurobiol 2017. [DOI: 10.1016/j.pneurobio.2017.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Batterink LJ, Paller KA. Online neural monitoring of statistical learning. Cortex 2017; 90:31-45. [PMID: 28324696 DOI: 10.1016/j.cortex.2017.02.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/17/2016] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
The extraction of patterns in the environment plays a critical role in many types of human learning, from motor skills to language acquisition. This process is known as statistical learning. Here we propose that statistical learning has two dissociable components: (1) perceptual binding of individual stimulus units into integrated composites and (2) storing those integrated representations for later use. Statistical learning is typically assessed using post-learning tasks, such that the two components are conflated. Our goal was to characterize the online perceptual component of statistical learning. Participants were exposed to a structured stream of repeating trisyllabic nonsense words and a random syllable stream. Online learning was indexed by an EEG-based measure that quantified neural entrainment at the frequency of the repeating words relative to that of individual syllables. Statistical learning was subsequently assessed using conventional measures in an explicit rating task and a reaction-time task. In the structured stream, neural entrainment to trisyllabic words was higher than in the random stream, increased as a function of exposure to track the progression of learning, and predicted performance on the reaction time (RT) task. These results demonstrate that monitoring this critical component of learning via rhythmic EEG entrainment reveals a gradual acquisition of knowledge whereby novel stimulus sequences are transformed into familiar composites. This online perceptual transformation is a critical component of learning.
Collapse
Affiliation(s)
- Laura J Batterink
- Northwestern University, Department of Psychology, Evanston, IL, USA.
| | - Ken A Paller
- Northwestern University, Department of Psychology, Evanston, IL, USA
| |
Collapse
|
7
|
Andersen SK, Müller MM. Driving steady-state visual evoked potentials at arbitrary frequencies using temporal interpolation of stimulus presentation. BMC Neurosci 2015; 16:95. [PMID: 26690632 PMCID: PMC4687115 DOI: 10.1186/s12868-015-0234-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/29/2015] [Indexed: 12/04/2022] Open
Abstract
Background
Steady-state visual evoked potentials have been utilized widely in basic and applied research in recent years. These oscillatory responses of the visual cortex are elicited by flickering stimuli. They have the same fundamental frequency as the driving stimulus and are highly sensitive to manipulations of attention and stimulus properties. While standard computer monitors offer great flexibility in the choice of visual stimuli for driving SSVEPs, the frequencies that can be elicited are limited to integer divisors of the monitor’s refresh rate. Results To avoid this technical constraint, we devised an interpolation technique for stimulus presentation, with which SSVEPs can be elicited at arbitrary frequencies. We tested this technique with monitor refresh rates of 85 and 120 Hz. At a refresh rate of 85 Hz, interpolated presentation produced artifacts in the recorded spectrum in the form of additional peaks not located at the stimulated frequency or its harmonics. However, at a refresh rate of 120 Hz, these artifacts did not occur and the spectrum elicited by an interpolated flicker became indistinguishable from the spectrum obtained by non-interpolated presentation of the same frequency. Conclusions Our interpolation technique eliminates frequency limitations of the common non-interpolated presentation technique and has many possible applications for future research.
Collapse
Affiliation(s)
- Søren K Andersen
- School of Psychology, University of Aberdeen, William Guild Building, Aberdeen, AB24 3FX, UK.
| | - Matthias M Müller
- Institute of Psychology, University of Leipzig, Neumarkt 9-19, 04109, Leipzig, Germany.
| |
Collapse
|
8
|
Dmochowski JP, Greaves AS, Norcia AM. Maximally reliable spatial filtering of steady state visual evoked potentials. Neuroimage 2015; 109:63-72. [PMID: 25579449 DOI: 10.1016/j.neuroimage.2014.12.078] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/29/2014] [Accepted: 12/29/2014] [Indexed: 11/27/2022] Open
Abstract
Due to their high signal-to-noise ratio (SNR) and robustness to artifacts, steady state visual evoked potentials (SSVEPs) are a popular technique for studying neural processing in the human visual system. SSVEPs are conventionally analyzed at individual electrodes or linear combinations of electrodes which maximize some variant of the SNR. Here we exploit the fundamental assumption of evoked responses--reproducibility across trials--to develop a technique that extracts a small number of high SNR, maximally reliable SSVEP components. This novel spatial filtering method operates on an array of Fourier coefficients and projects the data into a low-dimensional space in which the trial-to-trial spectral covariance is maximized. When applied to two sample data sets, the resulting technique recovers physiologically plausible components (i.e., the recovered topographies match the lead fields of the underlying sources) while drastically reducing the dimensionality of the data (i.e., more than 90% of the trial-to-trial reliability is captured in the first four components). Moreover, the proposed technique achieves a higher SNR than that of the single-best electrode or the Principal Components. We provide a freely-available MATLAB implementation of the proposed technique, herein termed "Reliable Components Analysis".
Collapse
Affiliation(s)
- Jacek P Dmochowski
- Department of Psychology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA.
| | - Alex S Greaves
- Department of Psychology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Anthony M Norcia
- Department of Psychology, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Xu P, Tian C, Zhang Y, Jing W, Wang Z, Liu T, Hu J, Tian Y, Xia Y, Yao D. Cortical network properties revealed by SSVEP in anesthetized rats. Sci Rep 2014; 3:2496. [PMID: 23970104 PMCID: PMC3750539 DOI: 10.1038/srep02496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/07/2013] [Indexed: 11/09/2022] Open
Abstract
Steady state visual evoked potentials (SSVEP) are assumed to be regulated by multiple brain areas, yet the underlying mechanisms are not well understood. In this study, we utilized multi-channel intracranial recordings together with network analysis to investigate the underlying relationships between SSVEP and brain networks in anesthetized rat. We examined the relationship between SSVEP amplitude and the network topological properties for different stimulation frequencies, the synergetic dynamic changes of the amplitude and topological properties in each rat, the network properties of the control state, and the individual difference of SSVEP network attributes existing among rats. All these aspects consistently indicate that SSVEP response is closely correlated with network properties, the reorganization of the background network plays a crucial role in SSVEP production, and the background network may provide a physiological marker for evaluating the potential of SSVEP generation.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dichoptic Viewing Methods for Binocular Rivalry Research: Prospects for Large-Scale Clinical and Genetic Studies. Twin Res Hum Genet 2013; 16:1033-78. [DOI: 10.1017/thg.2013.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Binocular rivalry (BR) is an intriguing phenomenon that occurs when two different images are presented, one to each eye, resulting in alternation orrivalrybetween the percepts. The phenomenon has been studied for nearly 200 years, with renewed and intensive investigation over recent decades. Therateof perceptual switching has long been known to vary widely between individuals but to be relatively stable within individuals. A recent twin study demonstrated that individual variation in BR rate is under substantial genetic control, a finding that also represented the first report, using a large study, of genetic contribution for any post-retinal visual processing phenomenon. The twin study had been prompted by earlier work showing BR rate was slow in the heritable psychiatric condition, bipolar disorder (BD). Together, these studies suggested that slow BR may represent an endophenotype for BD, and heralded the advent of modern clinical and genetic studies of rivalry. This new focus has coincided with rapid advances in 3D display technology, but despite such progress, specific development of technology for rivalry research has been lacking. This review therefore compares different display methods for BR research across several factors, including viewing parameters, image quality, equipment cost, compatibility with other investigative methods, subject group, and sample size, with a focus on requirements specific to large-scale clinical and genetic studies. It is intended to be a resource for investigators new to BR research, such as clinicians and geneticists, and to stimulate the development of 3D display technology for advancing interdisciplinary studies of rivalry.
Collapse
|
11
|
Koenig-Robert R, VanRullen R. SWIFT: a novel method to track the neural correlates of recognition. Neuroimage 2013; 81:273-282. [PMID: 23664953 DOI: 10.1016/j.neuroimage.2013.04.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 04/28/2013] [Indexed: 10/26/2022] Open
Abstract
Isolating the neural correlates of object recognition and studying their fine temporal dynamics have been a great challenge in neuroscience. A major obstacle has been the difficulty to dissociate low-level feature extraction from the actual object recognition activity. Here we present a new technique called semantic wavelet-induced frequency-tagging (SWIFT), where cyclic wavelet-scrambling allowed us to isolate neural correlates of object recognition from low-level feature extraction in humans using EEG. We show that SWIFT is insensitive to unrecognized visual objects in natural images, which were presented up to 30s, but is highly selective to the recognition of the same objects after their identity has been revealed. The enhancement of object representations by top-down attention was particularly strong with SWIFT due to its selectivity for high-level representations. Finally, we determined the temporal dynamics of object representations tracked by SWIFT and found that SWIFT can follow a maximum of between 4 and 7 different object representations per second. This result is consistent with a reduction in temporal capacity processing from low to high-level brain areas.
Collapse
Affiliation(s)
- Roger Koenig-Robert
- Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Université de Toulouse, Toulouse, France; CNRS, CerCo, Toulouse, France.
| | - Rufin VanRullen
- Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Université de Toulouse, Toulouse, France; CNRS, CerCo, Toulouse, France
| |
Collapse
|
12
|
Blake R, Wilson H. Binocular vision. Vision Res 2010; 51:754-70. [PMID: 20951722 DOI: 10.1016/j.visres.2010.10.009] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/05/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
This essay reviews major developments - empirical and theoretical - in the field of binocular vision during the last 25years. We limit our survey primarily to work on human stereopsis, binocular rivalry and binocular contrast summation, with discussion where relevant of single-unit neurophysiology and human brain imaging. We identify several key controversies that have stimulated important work on these problems. In the case of stereopsis those controversies include position vs. phase encoding of disparity, dependence of disparity limits on spatial scale, role of occlusion in binocular depth and surface perception, and motion in 3D. In the case of binocular rivalry, controversies include eye vs. stimulus rivalry, role of "top-down" influences on rivalry dynamics, and the interaction of binocular rivalry and stereopsis. Concerning binocular contrast summation, the essay focuses on two representative models that highlight the evolving complexity in this field of study.
Collapse
Affiliation(s)
- Randolph Blake
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea.
| | | |
Collapse
|
13
|
Nunez PL, Srinivasan R. Scale and frequency chauvinism in brain dynamics: too much emphasis on γ band oscillations. Brain Struct Funct 2010; 215:67-71. [PMID: 20890614 PMCID: PMC2998274 DOI: 10.1007/s00429-010-0277-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/07/2010] [Indexed: 12/01/2022]
|
14
|
Vialatte FB, Maurice M, Dauwels J, Cichocki A. Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Prog Neurobiol 2009; 90:418-38. [PMID: 19963032 DOI: 10.1016/j.pneurobio.2009.11.005] [Citation(s) in RCA: 565] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/26/2022]
Abstract
After 40 years of investigation, steady-state visually evoked potentials (SSVEPs) have been shown to be useful for many paradigms in cognitive (visual attention, binocular rivalry, working memory, and brain rhythms) and clinical neuroscience (aging, neurodegenerative disorders, schizophrenia, ophthalmic pathologies, migraine, autism, depression, anxiety, stress, and epilepsy). Recently, in engineering, SSVEPs found a novel application for SSVEP-driven brain-computer interface (BCI) systems. Although some SSVEP properties are well documented, many questions are still hotly debated. We provide an overview of recent SSVEP studies in neuroscience (using implanted and scalp EEG, fMRI, or PET), with the perspective of modern theories about the visual pathway. We investigate the steady-state evoked activity, its properties, and the mechanisms behind SSVEP generation. Next, we describe the SSVEP-BCI paradigm and review recently developed SSVEP-based BCI systems. Lastly, we outline future research directions related to basic and applied aspects of SSVEPs.
Collapse
Affiliation(s)
- François-Benoît Vialatte
- Riken BSI, Laboratory for Advanced Brain Signal Processing, 2-1 Hirosawa, Wako-Shi, Saitama-Ken 351-0128, Japan.
| | | | | | | |
Collapse
|
15
|
Early visual brain areas reflect the percept of an ambiguous scene. Proc Natl Acad Sci U S A 2008; 105:20500-4. [PMID: 19074267 DOI: 10.1073/pnas.0810966105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When a visual scene allows multiple interpretations, the percepts may spontaneously alternate despite the stable retinal image and the invariant sensory input transmitted to the brain. To study the brain basis of such multi-stable percepts, we superimposed rapidly changing dynamic noise as regional tags to the Rubin vase-face figure and followed the corresponding tag-related cortical signals with magnetoencephalography. The activity already in the earliest visual cortical areas, the primary visual cortex included, varied with the perceptual states reported by the observers. These percept-related modulations most likely reflect top-down influences that accentuate the neural representation of the perceived object in the early visual cortex and maintain the segregation of objects from the background.
Collapse
|
16
|
Sutoyo D, Srinivasan R. Nonlinear SSVEP responses are sensitive to the perceptual binding of visual hemifields during conventional 'eye' rivalry and interocular 'percept' rivalry. Brain Res 2008; 1251:245-55. [PMID: 18952069 DOI: 10.1016/j.brainres.2008.09.086] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/29/2008] [Accepted: 09/24/2008] [Indexed: 11/28/2022]
Abstract
We conducted behavioral and EEG experiments to identify physiological correlates of perceptual binding during two types of binocular rivalry: (1) conventional 'eye' rivalry where perception alternates between the two monocular images presented one to each eye and (2) interocular 'percept' rivalry, where perception alternates between percepts formed by grouping complementary hemifields one from each eye. We employed 'frequency-tagging' by flickering a grating in each hemifield of each eye at different frequencies to elicit SSVEP responses specific to each hemifield of each eye. When the gratings in complementary visual fields of the two eyes were congruent in color and orientation, robust interocular 'percept' rivalry was observed with roughly equal probability to conventional 'eye' rivalry. The SSVEPs evoked by the flickering gratings were enhanced by conscious perception at both posterior and frontal electrodes only during conventional 'eye' rivalry and not during interocular 'percept' rivalry, suggesting that dominance of one eye is the basis of most previous reports of SSVEP modulation by conscious perception. We also observed nonlinear SSVEP responses at the sums of our four fundamental frequencies. These combination responses were only produced by flicker in complementary visual hemifields--in the same eye or across eyes, but never by incongruent flickering gratings that occupy the same visual field across eyes, suggesting that they are related to the binding of the visual hemifields (monocular or interocular) into a coherent percept. These combination responses were modulated by the type of rivalry experienced by the observer, but not by the specific conscious perception. Neural processes related to perceptual binding of both rival percepts take place during binocular rivalry even when only one percept is consciously perceived. This suggests that conventional 'eye' and interocular 'percept' rivalry both involve competition between percepts.
Collapse
Affiliation(s)
- David Sutoyo
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92617, USA
| | | |
Collapse
|
17
|
Eriksson J, Larsson A, Nyberg L. Item-specific Training Reduces Prefrontal Cortical Involvement in Perceptual Awareness. J Cogn Neurosci 2008; 20:1777-87. [DOI: 10.1162/jocn.2008.20064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Previous studies on the neural correlates of perceptual awareness implicate sensory-specific regions and higher cortical regions such as the prefrontal cortex (PFC) in this process. The specific role of PFC regions is, however, unknown. PFC activity could be bottom-up driven, integrating signals from sensory regions. Alternatively, PFC regions could serve more active top-down processes that help to define the content of consciousness. To compare these alternative views of PFC function, we used functional magnetic resonance imaging and measured brain activity specifically related to conscious perception of items that varied in ease of identification (by being presented 0, 12, or 60 times previously). A bottom-up account predicts that PFC activity would be largely insensitive to stimulus difficulty, whereas a top-down account predicts reduced PFC activity as identification becomes easier. The results supported the latter prediction by showing reduced activity for previously presented compared to novel items in the PFC and several other regions. This was further confirmed by a functional connectivity analysis showing that the interaction between frontal and visual sensory regions declined as a function of ease of identification. Given the attribution of top-down processing to PFC regions in combination with the marked decline in PFC activity for easy items, these findings challenge the prevailing notion that the PFC is necessary for consciousness.
Collapse
|
18
|
Early correlates of visual awareness following orientation and colour rivalry. Vision Res 2008; 48:2359-69. [DOI: 10.1016/j.visres.2008.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 07/25/2008] [Accepted: 07/29/2008] [Indexed: 11/18/2022]
|
19
|
Mishra J, Hillyard SA. Endogenous attention selection during binocular rivalry at early stages of visual processing. Vision Res 2008; 49:1073-80. [PMID: 18384833 DOI: 10.1016/j.visres.2008.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/22/2008] [Accepted: 02/18/2008] [Indexed: 11/19/2022]
Abstract
Directing attention to one of two superimposing surfaces composed of dot fields rotating in opposing directions facilitates processing of brief translations of the attended surface [Valdes-Sosa, M., Bobes, M. A., Rodriguez, V., & Pinilla, T. (1998). Switching attention without shifting the spotlight object-based attentional modulation of brain potentials. Journal of Cognition and Neuroscience, 10(1), 137-151]. Here we used ERP recordings to investigate the mechanisms of endogenous attentional selection of such competing dot surfaces under conditions of dichoptic viewing (one surface to each eye) and monocular viewing (both surfaces to one eye). Under dichoptic conditions, which induced binocular rivalry, translations of the attended surface presented to one eye elicited enhanced visual P1 and N1 ERP components relative to translations of the unattended surface presented to the other eye. In comparison, during monocular viewing the attended surface translations elicited a significantly larger N1 component in the absence of any P1 modulation. These results indicate that processing of the attended surface is biased at an earlier level in extrastriate visual cortex under conditions of inter-ocular versus intra-ocular competition.
Collapse
Affiliation(s)
- Jyoti Mishra
- University of California, San Diego, La Jolla, 92093-0608, USA.
| | | |
Collapse
|
20
|
Thorpe SG, Nunez PL, Srinivasan R. Identification of wave-like spatial structure in the SSVEP: comparison of simultaneous EEG and MEG. Stat Med 2008; 26:3911-26. [PMID: 17671957 DOI: 10.1002/sim.2969] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steady-state visual-evoked potentials/fields (SSVEPs/SSVEFs) are used in cognitive and clinical electroencephalogram (EEG) and magnetoencephalogram (MEG) studies because of their excellent signal-to-noise ratios and relative immunity to artifact. Steady-state paradigms are also used to characterize preferred frequencies of dynamic neocortical processes. In this study, SSVEPs and SSVEFs were simultaneously recorded while subjects viewed checkerboard patterns alternating (black to white, white to black) with fixed driving frequency between 2 and 20 Hz. Distinct peaks in SSVEP/SSVEF power were observed in the theta (4-8 Hz) and upper alpha (10-14 Hz) bands. A distinct peak in SSVEP power was also observed in the beta band (between 15 and 20 Hz) which had no counterpart in the MEG. One-dimensional spatial spectra indicate that distinct large-scale source distributions contribute to SSVEP power in the upper alpha band in the form of long wavelength (lambda>20 cm) traveling waves propagating from occipital to prefrontal electrodes. In the beta band, spatial spectra and SSVEF indicate that long-wavelength source distributions over posterior and anterior regions form standing wave patterns. These results suggest that simple models of SSVEP based on a single dipole source in the occipital lobe are inadequate to explain the dynamic spatial patterns of SSVEP magnitude and phase. Theoretical models of SSVEP should include multiple local and distributed sources and exhibit both traveling and standing wave dynamics.
Collapse
Affiliation(s)
- Samuel Garrett Thorpe
- Department of Cognitive Sciences, University of California, Irvine, CA 92617-5100, USA.
| | | | | |
Collapse
|
21
|
Srinivasan R, Winter WR, Ding J, Nunez PL. EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics. J Neurosci Methods 2007; 166:41-52. [PMID: 17698205 PMCID: PMC2151962 DOI: 10.1016/j.jneumeth.2007.06.026] [Citation(s) in RCA: 345] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 06/23/2007] [Accepted: 06/25/2007] [Indexed: 10/23/2022]
Abstract
We contrasted coherence estimates obtained with EEG, Laplacian, and MEG measures of synaptic activity using simulations with head models and simultaneous recordings of EEG and MEG. EEG coherence is often used to assess functional connectivity in human cortex. However, moderate to large EEG coherence can also arise simply by the volume conduction of current through the tissues of the head. We estimated this effect using simulated brain sources and a model of head tissues (cerebrospinal fluid (CSF), skull, and scalp) derived from MRI. We found that volume conduction can elevate EEG coherence at all frequencies for moderately separated (<10 cm) electrodes; a smaller levation is observed with widely separated (>20 cm) electrodes. This volume conduction effect was readily observed in experimental EEG at high frequencies (40-50 Hz). Cortical sources generating spontaneous EEG in this band are apparently uncorrelated. In contrast, lower frequency EEG coherence appears to result from a mixture of volume conduction effects and genuine source coherence. Surface Laplacian EEG methods minimize the effect of volume conduction on coherence estimates by emphasizing sources at smaller spatial scales than unprocessed potentials (EEG). MEG coherence estimates are inflated at all frequencies by the field spread across the large distance between sources and sensors. This effect is most apparent at sensors separated by less than 15 cm in tangential directions along a surface passing through the sensors. In comparison to long-range (>20 cm) volume conduction effects in EEG, widely spaced MEG sensors show smaller field-spread effects, which is a potentially significant advantage. However, MEG coherence estimates reflect fewer sources at a smaller scale than EEG coherence and may only partially overlap EEG coherence. EEG, Laplacian, and MEG coherence emphasize different spatial scales and orientations of sources.
Collapse
Affiliation(s)
- Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, CA 92697-5100, United States.
| | | | | | | |
Collapse
|
22
|
Srinivasan R, Fornari E, Knyazeva MG, Meuli R, Maeder P. fMRI responses in medial frontal cortex that depend on the temporal frequency of visual input. Exp Brain Res 2007; 180:677-91. [PMID: 17297549 PMCID: PMC2084393 DOI: 10.1007/s00221-007-0886-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
Functional networks in the human brain have been investigated using electrophysiological methods (EEG/MEG, LFP, and MUA) and steady-state paradigms that apply periodic luminance or contrast modulation to drive cortical networks. We have used this approach with fMRI to characterize a cortical network driven by a checkerboard reversing at a fixed frequency. We found that the fMRI signals in voxels located in occipital cortex were increased by checkerboard reversal at frequencies ranging from 3 to 14 Hz. In contrast, the response of a cluster of voxels centered on basal medial frontal cortex depended strongly on the reversal frequency, consistently exhibiting a peak in the response for specific reversal frequencies between 3 and 5 Hz in each subject. The fMRI signals at the frontal voxels were positively correlated indicating a homogeneous cluster. Some of the occipital voxels were positively correlated to the frontal voxels apparently forming a large-scale functional network. Other occipital voxels were negatively correlated to the frontal voxels, suggesting a functionally distinct network. The results provide preliminary fMRI evidence that during visual stimulation, input frequency can be varied to engage different functional networks.
Collapse
Affiliation(s)
- Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, CA 92697-5100, USA.
| | | | | | | | | |
Collapse
|
23
|
Nunez PL, Srinivasan R. A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness. Clin Neurophysiol 2006; 117:2424-35. [PMID: 16996303 PMCID: PMC1991284 DOI: 10.1016/j.clinph.2006.06.754] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/12/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE We propose a theoretical framework for EEG and evoked potential studies based on the single postulate that these data are composed of a combination of waves (as this term is used in the physical sciences) and thalamocortical network activity. METHODS Using known properties of traveling and standing waves, independent of any neocortical dynamic theory, our simple postulate leads to experimental predictions, several of which have now been verified. A mathematical-physiological theory of "brain waves" based on known (but highly idealized) properties of cortical synaptic action and corticocortical fibers is used to support the framework. RESULTS Brain waves are predicted with links between temporal frequencies and the spatial distributions of synaptic activity. Such dispersion relations, which essentially define more general phenomena as waves, are shown to restrict the spatial-temporal dynamics of synaptic action with many experimental EEG consequences. CONCLUSIONS The proposed framework accounts for several salient features of spontaneous EEG and evoked potentials. SIGNIFICANCE We conjecture that wave-like behavior of synaptic action may facilitate interactions between remote cell assemblies, providing an important mechanism for the functional integration underlying conscious experience.
Collapse
Affiliation(s)
- Paul L Nunez
- Department of Biomedical Engineering, Tulane University and Brain Physics LLC, Brain Physics LLC, 162 Bertel Drive, Covington, LA 70433, USA.
| | | |
Collapse
|
24
|
Srinivasan R, Bibi FA, Nunez PL. Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency. Brain Topogr 2006; 18:167-87. [PMID: 16544207 PMCID: PMC1995016 DOI: 10.1007/s10548-006-0267-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2005] [Indexed: 10/24/2022]
Abstract
Steady-state visual evoked potentials (SSVEPs) are used in cognitive and clinical studies of brain function because of excellent signal-to-noise ratios and relative immunity to artifacts. SSVEPs also provide a means to characterize preferred frequencies of neocortical dynamic processes. In this study, SSVEPs were recorded with 110 electrodes while subjects viewed random dot patterns flickered between 3 and 30 Hz. Peaks in SSVEP power were observed at delta (3 Hz), lower alpha (7 and 8 Hz), and upper alpha band (12 and 13 Hz) frequencies; the spatial distribution of SSVEP power is also strongly dependent on the input frequency suggesting cortical resonances. We characterized the cortical sources that generate SSVEPs at different input frequencies by applying surface Laplacians and spatial spectral analysis. Laplacian SSVEPs recorded are sensitive to small changes (1-2 Hz) in the input frequency at occipital and parietal electrodes indicating distinct local sources. At 10 Hz, local source activity occurs in multiple cortical regions; Laplacian SSVEPs are also observed in lateral frontal electrodes. Laplacian SSVEPs are negligible at many frontal electrodes that elicit strong potential SSVEPs at delta, lower alpha, and upper alpha bands. One-dimensional (anterior-posterior) spatial spectra indicate that distinct large-scale source distributions contribute SSVEP power in these frequency bands. In the upper alpha band, spatial spectra indicate the presence of long-wavelength (> 15 cm) traveling waves propagating from occipital to prefrontal electrodes. In the delta and lower alpha band, spatial spectra indicate that long-wavelength source distributions over posterior and anterior regions form standing-wave patterns. These results suggest that the SSVEP is generated by both (relatively stationary) localized sources and distributed sources that exhibit characteristics of wave phenomena.
Collapse
Affiliation(s)
- Ramesh Srinivasan
- Department of Cognitive Sciences, University of California, Irvine, 92617, USA.
| | | | | |
Collapse
|