1
|
Granovetter MC, Maallo AMS, Ling S, Robert S, Freud E, Patterson C, Behrmann M. Functional resilience of the neural visual recognition system post-pediatric occipitotemporal resection. iScience 2024; 27:111440. [PMID: 39735436 PMCID: PMC11681899 DOI: 10.1016/j.isci.2024.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 11/18/2024] [Indexed: 12/31/2024] Open
Abstract
Neural representations for visual stimuli typically emerge with a bilateral distribution across occipitotemporal cortex (OTC)? Pediatric patients undergoing unilateral OTC resection offer an opportunity to evaluate whether representations for visual stimulus individuation can sufficiently develop in a single OTC. Here, we assessed the non-resected hemisphere of patients with pediatric resection within (n = 9) and outside (n = 12) OTC, as well as healthy controls' two hemispheres (n = 21). Using functional magnetic resonance imaging, we mapped category selectivity (CS), and representations for visual stimulus individuation (for faces, objects, and words) with repetition suppression (RS). There were no group differences in CS or RS. However, OTC resection patients' accuracy on face and object (but not word) recognition was lower than controls'. The neuroimaging results highlight neural resilience following damage to the contralateral homologue. Critically, however, a single OTC does not suffice for typical behavior, and, thereby, implicates the necessary contributions of bilateral OTC for visual recognition.
Collapse
Affiliation(s)
- Michael C. Granovetter
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Departments of Pediatrics and Neurology, New York University, New York, NY 10016, USA
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Shouyu Ling
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sophia Robert
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Erez Freud
- Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Christina Patterson
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Liu TT, Granovetter MC, Maallo AMS, Robert S, Fu JZ, Patterson C, Plaut DC, Behrmann M. Cross-sectional and longitudinal changes in category-selectivity in visual cortex following pediatric cortical resection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.08.627367. [PMID: 39713452 PMCID: PMC11661110 DOI: 10.1101/2024.12.08.627367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The topographic organization of category-selective responses in human ventral occipitotemporal cortex (VOTC) and its relationship to regions subserving language functions is remarkably uniform across individuals. This arrangement is thought to result from the clustering of neurons responding to similar inputs, constrained by intrinsic architecture and tuned by experience. We examined the malleability of this organization in individuals with unilateral resection of VOTC during childhood for the management of drug-resistant epilepsy. In cross-sectional and longitudinal functional imaging studies, we compared the topography and neural representations of 17 category-selective regions in individuals with a VOTC resection, a 'control patient' with resection outside VOTC, and typically developing matched controls. We demonstrated both adherence to and deviation from the standard topography and uncovered fine-grained competitive dynamics between word- and face-selectivity over time in the single, preserved VOTC. The findings elucidate the nature and extent of cortical plasticity and highlight the potential for remodeling of extrastriate architecture and function.
Collapse
Affiliation(s)
- Tina T. Liu
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
- Department of Neurology, Georgetown University Medical Center, Washington, D.C., USA
| | - Michael C. Granovetter
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Departments of Pediatrics and Neurology, New York University, New York, NY, USA
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Sophia Robert
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason Z. Fu
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | | | - David C. Plaut
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, PA, USA
| |
Collapse
|
3
|
Granovetter MC, Maallo AMS, Ling S, Robert S, Freud E, Patterson C, Behrmann M. Functional Resilience of the Neural Visual Recognition System Post-Pediatric Occipitotemporal Resection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.592792. [PMID: 38766137 PMCID: PMC11100714 DOI: 10.1101/2024.05.08.592792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the typically developing (TD) brain, neural representations for visual stimulus categories (e.g., faces, objects, and words) emerge in bilateral occipitotemporal cortex (OTC), albeit with weighted asymmetry; in parallel, recognition behavior continues to be refined. A fundamental question is whether two hemispheres are necessary or redundant for the emergence of neural representations and recognition behavior typically distributed across both hemispheres. The rare population of patients undergoing unilateral OTC resection in childhood offers a unique opportunity to evaluate whether neural computations for visual stimulus individuation suffice for recognition with only a single developing OTC. Here, using functional magnetic resonance imaging, we mapped category selectivity (CS) and neural representations for individual stimulus exemplars using repetition suppression (RS) in the non-resected hemisphere of pediatric OTC resection patients (n = 9) and control patients with resection outside of OTC (n = 12), as well as in both hemispheres of TD controls (n = 21). There were no univariate group differences in the magnitude of CS or RS or any multivariate differences (per representational similarity analysis) in neural activation to faces, objects, or words across groups. Notwithstanding their comparable neural profiles, accuracy of OTC resection patients on face and object recognition, but not word recognition, was statistically inferior to that of controls. The comparable neural signature of the OTC resection patients' preserved hemisphere and the other two groups highlights the resilience of the system following damage to the contralateral homologue. Critically, however, a single OTC does not suffice for normal behavior, and, thereby, implicates the necessity for two hemispheres.
Collapse
Affiliation(s)
- Michael C. Granovetter
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne Margarette S. Maallo
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shouyu Ling
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sophia Robert
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Erez Freud
- Department of Psychology, York University, Toronto, ON, CA
| | | | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Chai XJ, Tang L, Gabrieli JDE, Ofen N. From vision to memory: How scene-sensitive regions support episodic memory formation during child development. Dev Cogn Neurosci 2024; 65:101340. [PMID: 38218015 PMCID: PMC10825658 DOI: 10.1016/j.dcn.2024.101340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024] Open
Abstract
Previous brain imaging studies have identified three brain regions that selectively respond to visual scenes, the parahippocampal place area (PPA), the occipital place area (OPA), and the retrosplenial cortex (RSC). There is growing evidence that these visual scene-sensitive regions process different types of scene information and may have different developmental timelines in supporting scene perception. How these scene-sensitive regions support memory functions during child development is largely unknown. We investigated PPA, OPA and RSC activations associated with episodic memory formation in childhood (5-7 years of age) and young adulthood, using a subsequent scene memory paradigm and a functional localizer for scenes. PPA, OPA, and RSC subsequent memory activation and functional connectivity differed between children and adults. Subsequent memory effects were found in activations of all three scene regions in adults. In children, however, robust subsequent memory effects were only found in the PPA. Functional connectivity during successful encoding was significant among the three regions in adults, but not in children. PPA subsequently memory activations and PPA-RSC subsequent memory functional connectivity correlated with accuracy in adults, but not children. These age-related differences add new evidence linking protracted development of the scene-sensitive regions to the protracted development of episodic memory.
Collapse
Affiliation(s)
- Xiaoqian J Chai
- Department of Neurology and Neurosurgery, McGill University, USA.
| | - Lingfei Tang
- Department of Psychology and the Institute of Gerontology, Wayne State University, USA
| | - John DE Gabrieli
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Noa Ofen
- Department of Psychology and the Institute of Gerontology, Wayne State University, USA; Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
5
|
Dilks DD, Jung Y, Kamps FS. The development of human cortical scene processing. CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE 2023; 32:479-486. [PMID: 38283826 PMCID: PMC10815932 DOI: 10.1177/09637214231191772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Decades of research have uncovered the neural basis of place (or "scene") processing in adulthood, revealing a set of three regions that respond selectively to visual scene information, each hypothesized to support distinct functions within scene processing (e.g., recognizing a particular kind of place versus navigating through it). Despite this considerable progress, surprisingly little is known about how these cortical regions develop. Here we review the limited evidence to date, highlighting the first few studies exploring the origins of cortical scene processing in infancy, and the several studies addressing when the scene regions reach full maturity, unfortunately with inconsistent findings. This inconsistency likely stems from common pitfalls in pediatric functional magnetic resonance imaging, and accordingly, we discuss how these pitfalls may be avoided. Furthermore, we point out that almost all studies to date have focused only on general scene selectivity and argue that greater insight could be gleaned by instead exploring the more distinct functions of each region, as well as their connectivity. Finally, with this last point in mind, we offer a novel hypothesis that scene regions supporting navigation (including the occipital place area and retrosplenial complex) mature later than those supporting scene categorization (including the parahippocampal place area).
Collapse
Affiliation(s)
- Daniel D. Dilks
- Department of Psychology, Emory University, Atlanta, Georgia, USA
| | - Yaelan Jung
- Department of Psychology, Emory University, Atlanta, Georgia, USA
| | - Frederik S. Kamps
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Gu L, Li A, Yang R, Yang J, Pang Y, Qu J, Mei L. Category-specific and category-general neural codes of recognition memory in the ventral visual pathway. Cortex 2023; 164:77-89. [PMID: 37207411 DOI: 10.1016/j.cortex.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Researchers have identified category-specific brain regions, such as the fusiform face area (FFA) and parahippocampal place area (PPA) in the ventral visual pathway, which respond preferentially to one particular category of visual objects. In addition to their category-specific role in visual object identification and categorization, regions in the ventral visual pathway play critical roles in recognition memory. Nevertheless, it is not clear whether the contributions of those brain regions to recognition memory are category-specific or category-general. To address this question, the present study adopted a subsequent memory paradigm and multivariate pattern analysis (MVPA) to explore category-specific and category-general neural codes of recognition memory in the visual pathway. The results revealed that the right FFA and the bilateral PPA showed category-specific neural patterns supporting recognition memory of faces and scenes, respectively. In contrast, the lateral occipital cortex seemed to carry category-general neural codes of recognition memory. These results provide neuroimaging evidence for category-specific and category-general neural mechanisms of recognition memory in the ventral visual pathway.
Collapse
Affiliation(s)
- Lala Gu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Aqian Li
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jiayi Yang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yingdan Pang
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jing Qu
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; School of Psychology, South China Normal University, Guangzhou, China; Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Kamps FS, Richardson H, Murty NAR, Kanwisher N, Saxe R. Using child-friendly movie stimuli to study the development of face, place, and object regions from age 3 to 12 years. Hum Brain Mapp 2022; 43:2782-2800. [PMID: 35274789 PMCID: PMC9120553 DOI: 10.1002/hbm.25815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 01/21/2023] Open
Abstract
Scanning young children while they watch short, engaging, commercially-produced movies has emerged as a promising approach for increasing data retention and quality. Movie stimuli also evoke a richer variety of cognitive processes than traditional experiments, allowing the study of multiple aspects of brain development simultaneously. However, because these stimuli are uncontrolled, it is unclear how effectively distinct profiles of brain activity can be distinguished from the resulting data. Here we develop an approach for identifying multiple distinct subject-specific Regions of Interest (ssROIs) using fMRI data collected during movie-viewing. We focused on the test case of higher-level visual regions selective for faces, scenes, and objects. Adults (N = 13) were scanned while viewing a 5.6-min child-friendly movie, as well as a traditional localizer experiment with blocks of faces, scenes, and objects. We found that just 2.7 min of movie data could identify subject-specific face, scene, and object regions. While successful, movie-defined ssROIS still showed weaker domain selectivity than traditional ssROIs. Having validated our approach in adults, we then used the same methods on movie data collected from 3 to 12-year-old children (N = 122). Movie response timecourses in 3-year-old children's face, scene, and object regions were already significantly and specifically predicted by timecourses from the corresponding regions in adults. We also found evidence of continued developmental change, particularly in the face-selective posterior superior temporal sulcus. Taken together, our results reveal both early maturity and functional change in face, scene, and object regions, and more broadly highlight the promise of short, child-friendly movies for developmental cognitive neuroscience.
Collapse
Affiliation(s)
- Frederik S. Kamps
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Hilary Richardson
- School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - N. Apurva Ratan Murty
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Nancy Kanwisher
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Rebecca Saxe
- Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
8
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
9
|
Three cortical scene systems and their development. Trends Cogn Sci 2022; 26:117-127. [PMID: 34857468 PMCID: PMC8770598 DOI: 10.1016/j.tics.2021.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 11/06/2021] [Indexed: 02/03/2023]
Abstract
Since the discovery of three scene-selective regions in the human brain, a central assumption has been that all three regions directly support navigation. We propose instead that cortical scene processing regions support three distinct computational goals (and one not for navigation at all): (i) The parahippocampal place area supports scene categorization, which involves recognizing the kind of place we are in; (ii) the occipital place area supports visually guided navigation, which involves finding our way through the immediately visible environment, avoiding boundaries and obstacles; and (iii) the retrosplenial complex supports map-based navigation, which involves finding our way from a specific place to some distant, out-of-sight place. We further hypothesize that these systems develop along different timelines, with both navigation systems developing slower than the scene categorization system.
Collapse
|
10
|
Gao X, Wen M, Sun M, Rossion B. A Genuine Interindividual Variability in Number and Anatomical Localization of Face-Selective Regions in the Human Brain. Cereb Cortex 2022; 32:4834-4856. [PMID: 35088077 DOI: 10.1093/cercor/bhab519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroimaging studies have reported regions with more neural activation to face than nonface stimuli in the human occipitotemporal cortex for three decades. Here we used a highly sensitive and reliable frequency-tagging functional magnetic resonance imaging paradigm measuring high-level face-selective neural activity to assess interindividual variability in the localization and number of face-selective clusters. Although the majority of these clusters are located in the same cortical gyri and sulci across 25 adult brains, a volume-based analysis of unsmoothed data reveals a large amount of interindividual variability in their spatial distribution and number, particularly in the ventral occipitotemporal cortex. In contrast to the widely held assumption, these face-selective clusters cannot be objectively related on a one-to-one basis across individual brains, do not correspond to a single cytoarchitectonic region, and are not clearly demarcated by estimated posteroanterior cytoarchitectonic borders. Interindividual variability in localization and number of cortical face-selective clusters does not appear to be due to the measurement noise but seems to be genuine, casting doubt on definite labeling and interindividual correspondence of face-selective "areas" and questioning their a priori definition based on cytoarchitectony or probabilistic atlases of independent datasets. These observations challenge conventional models of human face recognition based on a fixed number of discrete neurofunctional information processing stages.
Collapse
Affiliation(s)
- Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Minjie Wen
- Department of Psychology, Zhejiang University, Hangzhou 310028, China
| | - Mengdan Sun
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
11
|
Tian X, Hao X, Song Y, Liu J. Homogenization of face neural representation during development. Dev Cogn Neurosci 2021; 52:101040. [PMID: 34837875 PMCID: PMC8637318 DOI: 10.1016/j.dcn.2021.101040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/19/2021] [Accepted: 11/18/2021] [Indexed: 12/01/2022] Open
Abstract
Extensive studies have demonstrated that face processing ability develops gradually during development until adolescence. However, the underlying mechanism is unclear. One hypothesis is that children and adults represent faces in qualitatively different fashions with different group templates. An alternative hypothesis emphasizes the development as a quantitative change with a decrease of variation in representations. To test these hypotheses, we used between-participant correlation to measure activation pattern similarity both within and between late-childhood children and adults. We found that activation patterns for faces in the fusiform face area and occipital face area were less similar within the children group than within the adults group, indicating children had a greater variation in representing faces. Interestingly, the activation pattern similarity of children to their own group template was not significantly larger than that to adults' template, suggesting children and adults shared a template in representing faces. Further, the decrease in representation variance was likely a general principle in the ventral visual cortex, as a similar result was observed in a scene-selective region when perceiving scenes. Taken together, our study provides evidence that development of object representation may result from a homogenization process that shifts from greater variance in late-childhood to homogeneity in adults.
Collapse
Affiliation(s)
- Xue Tian
- Faculty of Psychology, Tianjin Normal University, Tianjin 300387, China
| | - Xin Hao
- Key Laboratory of Adolescent Cyberpsychology and Behavior, Ministry of Education, Central China Normal University, Wuhan, China; School of Psychology, Central China Normal University, Wuhan, China
| | - Yiying Song
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Jia Liu
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Barrick EM, Thornton MA, Tamir DI. Mask exposure during COVID-19 changes emotional face processing. PLoS One 2021; 16:e0258470. [PMID: 34637454 PMCID: PMC8509869 DOI: 10.1371/journal.pone.0258470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
Faces are one of the key ways that we obtain social information about others. They allow people to identify individuals, understand conversational cues, and make judgements about others' mental states. When the COVID-19 pandemic hit the United States, widespread mask-wearing practices were implemented, causing a shift in the way Americans typically interact. This introduction of masks into social exchanges posed a potential challenge-how would people make these important inferences about others when a large source of information was no longer available? We conducted two studies that investigated the impact of mask exposure on emotion perception. In particular, we measured how participants used facial landmarks (visual cues) and the expressed valence and arousal (affective cues), to make similarity judgements about pairs of emotion faces. Study 1 found that in August 2020, participants with higher levels of mask exposure used cues from the eyes to a greater extent when judging emotion similarity than participants with less mask exposure. Study 2 measured participants' emotion perception in both April and September 2020 -before and after widespread mask adoption-in the same group of participants to examine changes in the use of facial cues over time. Results revealed an overall increase in the use of visual cues from April to September. Further, as mask exposure increased, people with the most social interaction showed the largest increase in the use of visual facial cues. These results provide evidence that a shift has occurred in how people process faces such that the more people are interacting with others that are wearing masks, the more they have learned to focus on visual cues from the eye area of the face.
Collapse
Affiliation(s)
- Elyssa M. Barrick
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| | - Mark A. Thornton
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Diana I. Tamir
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
13
|
Nussenbaum K, Hartley CA. Developmental change in prefrontal cortex recruitment supports the emergence of value-guided memory. eLife 2021; 10:e69796. [PMID: 34542408 PMCID: PMC8452307 DOI: 10.7554/elife.69796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Prioritizing memory for valuable information can promote adaptive behavior across the lifespan, but it is unclear how the neurocognitive mechanisms that enable the selective acquisition of useful knowledge develop. Here, using a novel task coupled with functional magnetic resonance imaging, we examined how children, adolescents, and adults (N = 90) learn from experience what information is likely to be rewarding, and modulate encoding and retrieval processes accordingly. We found that the ability to use learned value signals to selectively enhance memory for useful information strengthened throughout childhood and into adolescence. Encoding and retrieval of high- vs. low-value information was associated with increased activation in striatal and prefrontal regions implicated in value processing and cognitive control. Age-related increases in value-based lateral prefrontal cortex modulation mediated the relation between age and memory selectivity. Our findings demonstrate that developmental increases in the strategic engagement of the prefrontal cortex support the emergence of adaptive memory.
Collapse
|
14
|
Plebanek DJ, James KH. Category structure guides the formation of neural representations. Exp Brain Res 2021; 239:1667-1684. [PMID: 33782786 DOI: 10.1007/s00221-021-06088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/13/2021] [Indexed: 11/27/2022]
Abstract
Perceptual variability is often viewed as having multiple benefits in object learning and categorization. Despite the abundant results demonstrating benefits such as increased transfer of knowledge, the neural mechanisms underlying variability as well as the developmental trajectories of how variability precipitates changes to category boundaries are unknown. By manipulating an individual's exposure to variability of novel, metrically organized categories during an fMRI-adaptation paradigm, we were able to assess the functional differences between similarity and variability in category learning and generalization across two time-points in development: adulthood (n = 14) and late childhood (n = 13). During this study, participants were repeatedly exposed to category members from different distributions. After a period of adaptation, a deviant stimulus that differed from the expected distribution was then presented. This deviant differed in either an invariant dimension (a feature that remained consistent throughout presentation was altered) or a similarity dimension (a feature that changed throughout exposure was changed in a new dimension). Our results can be summarized in three main findings: (1) Variability during exposure recruited the right fusiform gyrus to a greater extent than tight exposure. (2) Deviant items were generalized based on the exemplar distributions during exposure, although children only generalized items if provided variable exposure. (3) Variability influenced release to a greater extent in children than adults. These results are discussed in relation to the variability and category learning literature more broadly.
Collapse
Affiliation(s)
- Daniel J Plebanek
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Karin H James
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
15
|
Rossion B, Retter TL, Liu‐Shuang J. Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci 2020; 52:4283-4344. [DOI: 10.1111/ejn.14865] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN UMR7039 Université de Lorraine F‐54000Nancy France
- Service de Neurologie, CHRU‐Nancy Université de Lorraine F‐54000Nancy France
| | - Talia L. Retter
- Department of Behavioural and Cognitive Sciences Faculty of Language and Literature Humanities, Arts and Education University of Luxembourg Luxembourg Luxembourg
| | - Joan Liu‐Shuang
- Institute of Research in Psychological Science Institute of Neuroscience Université de Louvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
16
|
Inhibiting saccades to a social stimulus: a developmental study. Sci Rep 2020; 10:4615. [PMID: 32165671 PMCID: PMC7067843 DOI: 10.1038/s41598-020-61188-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/07/2020] [Indexed: 11/08/2022] Open
Abstract
Faces are an important source of social signal throughout the lifespan. In adults, they have a prioritized access to the orienting system. Here we investigate when this effect emerges during development. We tested 139 children, early adolescents, adolescents and adults in a mixed pro- and anti-saccades task with faces, cars or noise patterns as visual targets. We observed an improvement in performance until about 15 years of age, replicating studies that used only meaningless stimuli as targets. Also, as previously reported, we observed that adults made more direction errors to faces than abstract patterns and cars. The children showed this effect too with regards to noise patterns but it was not specific since performance for cars and faces did not differ. The adolescents, in contrast, made more errors for faces than for cars but as many errors for noise patterns and faces. In all groups latencies for pro-saccades were faster towards faces. We discuss these findings with regards to the development of executive control in childhood and adolescence and the influence of social stimuli at different ages.
Collapse
|
17
|
Kamps FS, Pincus JE, Radwan SF, Wahab S, Dilks DD. Late Development of Navigationally Relevant Motion Processing in the Occipital Place Area. Curr Biol 2020; 30:544-550.e3. [PMID: 31956027 PMCID: PMC7730705 DOI: 10.1016/j.cub.2019.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/18/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Human adults flawlessly and effortlessly navigate boundaries and obstacles in the immediately visible environment, a process we refer to as "visually guided navigation." Neuroimaging work in adults suggests this ability involves the occipital place area (OPA) [1, 2]-a scene-selective region in the dorsal stream that selectively represents information necessary for visually guided navigation [3-9]. Despite progress in understanding the neural basis of visually guided navigation, however, little is known about how this system develops. Is navigationally relevant information processing present in the first few years of life? Or does this information processing only develop after many years of experience? Although a handful of studies have found selective responses to scenes (relative to objects) in OPA in childhood [10-13], no study has explored how more specific navigationally relevant information processing emerges in this region. Here, we do just that by measuring OPA responses to first-person perspective motion information-a proxy for the visual experience of actually navigating the immediate environment-using fMRI in 5- and 8-year-old children. We found that, although OPA already responded more to scenes than objects by age 5, responses to first-person perspective motion were not yet detectable at this same age and rather only emerged by age 8. This protracted development was specific to first-person perspective motion through scenes, not motion on faces or objects, and was not found in other scene-selective regions (the parahippocampal place area or retrosplenial complex) or a motion-selective region (MT). These findings therefore suggest that navigationally relevant information processing in OPA undergoes prolonged development across childhood.
Collapse
Affiliation(s)
- Frederik S Kamps
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Jordan E Pincus
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Samaher F Radwan
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Stephanie Wahab
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Daniel D Dilks
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| |
Collapse
|
18
|
Arcaro MJ, Schade PF, Livingstone MS. Universal Mechanisms and the Development of the Face Network: What You See Is What You Get. Annu Rev Vis Sci 2019; 5:341-372. [PMID: 31226011 PMCID: PMC7568401 DOI: 10.1146/annurev-vision-091718-014917] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Our assignment was to review the development of the face-processing network, an assignment that carries the presupposition that a face-specific developmental program exists. We hope to cast some doubt on this assumption and instead argue that the development of face processing is guided by the same ubiquitous rules that guide the development of cortex in general.
Collapse
Affiliation(s)
- Michael J Arcaro
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Peter F Schade
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | | |
Collapse
|
19
|
Perceptual Function and Category-Selective Neural Organization in Children with Resections of Visual Cortex. J Neurosci 2019; 39:6299-6314. [PMID: 31167940 DOI: 10.1523/jneurosci.3160-18.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
The consequences of cortical resection, a treatment for humans with pharmaco-resistant epilepsy, provide a unique opportunity to advance our understanding of the nature and extent of cortical (re)organization. Despite the importance of visual processing in daily life, the neural and perceptual sequellae of occipitotemporal resections remain largely unexplored. Using psychophysical and fMRI investigations, we compared the neural and visuoperceptual profiles of 10 children or adolescents following unilateral cortical resections and their age- and gender-matched controls. Dramatically, with the exception of two individuals, both of whom had relatively greater cortical alterations, all patients showed normal perceptual performance on tasks of intermediate- and high-level vision, including face and object recognition. Consistently, again with the exception of the same two individuals, both univariate and multivariate fMRI analyses revealed normal selectivity and representational structure of category-selective regions. Furthermore, the spatial organization of category-selective regions obeyed the typical medial-to-lateral topographic organization albeit unilaterally in the structurally preserved hemisphere rather than bilaterally. These findings offer novel insights into the malleability of cortex in the pediatric population and suggest that, although experience may be necessary for the emergence of neural category-selectivity, this emergence is not necessarily contingent on the integrity of particular cortical structures.SIGNIFICANCE STATEMENT One approach to reduce seizure activity in patients with pharmaco-resistant epilepsy involves the resection of the epileptogenic focus. The impact of these resections on the perceptual behaviors and organization of visual cortex remain largely unexplored. Here, we characterized the visuoperceptual and neural profiles of ventral visual cortex in a relatively large sample of post-resection pediatric patients. Two major findings emerged. First, most patients exhibited preserved visuoperceptual performance across a wide-range of visual behaviors. Second, normal topography, magnitude, and representational structure of category-selective organization were uncovered in the spared hemisphere. These comprehensive imaging and behavioral investigations uncovered novel evidence concerning the neural representations and visual functions in children who have undergone cortical resection, and have implications for cortical plasticity more generally.
Collapse
|
20
|
Representational similarity precedes category selectivity in the developing ventral visual pathway. Neuroimage 2019; 197:565-574. [PMID: 31077844 DOI: 10.1016/j.neuroimage.2019.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 11/24/2022] Open
Abstract
Many studies have investigated the development of face-, scene-, and body-selective regions in the ventral visual pathway. This work has primarily focused on comparing the size and univariate selectivity of these neural regions in children versus adults. In contrast, very few studies have investigated the developmental trajectory of more distributed activation patterns within and across neural regions. Here, we scanned both children (ages 5-7) and adults to test the hypothesis that distributed representational patterns arise before category selectivity (for faces, bodies, or scenes) in the ventral pathway. Consistent with this hypothesis, we found mature representational patterns in several ventral pathway regions (e.g., FFA, PPA, etc.), even in children who showed no hint of univariate selectivity. These results suggest that representational patterns emerge first in each region, perhaps forming a scaffold upon which univariate category selectivity can subsequently develop. More generally, our findings demonstrate an important dissociation between category selectivity and distributed response patterns, and raise questions about the relative roles of each in development and adult cognition.
Collapse
|
21
|
Meissner TW, Nordt M, Weigelt S. Prolonged functional development of the parahippocampal place area and occipital place area. Neuroimage 2019; 191:104-115. [DOI: 10.1016/j.neuroimage.2019.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/15/2019] [Accepted: 02/09/2019] [Indexed: 11/24/2022] Open
|
22
|
Liu P, Cole PM, Gilmore RO, Pérez-Edgar KE, Vigeant MC, Moriarty P, Scherf KS. Young children's neural processing of their mother's voice: An fMRI study. Neuropsychologia 2019; 122:11-19. [PMID: 30528586 PMCID: PMC6334756 DOI: 10.1016/j.neuropsychologia.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022]
Abstract
In addition to semantic content, human speech carries paralinguistic information that conveys important social cues such as a speaker's identity. For young children, their own mothers' voice is one of the most salient vocal inputs in their daily environment. Indeed, qualities of mothers' voices are shown to contribute to children's social development. Our knowledge of how the mother's voice is processed at the neural level, however, is limited. This study investigated whether the voice of a mother modulates activation in the network of regions activated by the human voice in young children differently than the voice of an unfamiliar mother. We collected fMRI data from 32 typically developing 7- and 8-year-olds as they listened to natural speech produced by their mother and another child's mother. We used emotionally-varied natural speech stimuli to approximate the range of children's day-to-day experience. We individually-defined functional ROIs in children's voice-sensitive neural network and then independently investigated the extent to which activation in these regions is modulated by speaker identity. The bilateral posterior auditory cortex, superior temporal gyrus (STG), and inferior frontal gyrus (IFG) exhibit enhanced activation in response to the voice of one's own mother versus that of an unfamiliar mother. The findings indicate that children process the voice of their own mother uniquely, and pave the way for future studies of how social information processing contributes to the trajectory of child social development.
Collapse
Affiliation(s)
- Pan Liu
- Department of Psychology, Child Study Center, The Pennsylvania State University, University Park, PA, USA
| | - Pamela M Cole
- Department of Psychology, Child Study Center, The Pennsylvania State University, University Park, PA, USA.
| | - Rick O Gilmore
- Department of Psychology, Child Study Center, The Pennsylvania State University, University Park, PA, USA
| | - Koraly E Pérez-Edgar
- Department of Psychology, Child Study Center, The Pennsylvania State University, University Park, PA, USA
| | - Michelle C Vigeant
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - Peter Moriarty
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, PA, USA
| | - K Suzanne Scherf
- Department of Psychology, Child Study Center, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
23
|
Freud E, Culham JC, Namdar G, Behrmann M. Object complexity modulates the association between action and perception in childhood. J Exp Child Psychol 2018; 179:56-72. [PMID: 30476695 DOI: 10.1016/j.jecp.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 11/17/2022]
Abstract
Vision for action and vision for perception both rely on shape representations derived within the visual system. Whether the same psychological and neural mechanisms underlie both forms of behavior remains hotly contested, and whether this arrangement is equivalent in adults and children is controversial as well. To address these outstanding questions, we used an established psychophysical heuristic, Weber's law, which, in adults, has typically been observed for perceptual judgment tasks but not for actions such as grasping. We examined whether this perception-action dissociation in Weber's law was present in childhood as it is in adulthood and whether it was modulated by stimulus complexity. Two major results emerged. First, although adults evinced visuomotor behavior that violated Weber's law, young children (4.5-6.5 years) adhered to Weber's law when they grasped complex objects ("Efron" blocks), which varied along both the graspable and non-graspable dimensions to maintain a constant surface area, but not when they grasped simple objects, which varied only along the graspable dimension. Second, adherence to Weber's law was found across all ages in the context of a perceptual task. Together, these findings suggest that, in early childhood, visuomotor representations are modulated by perceptual representations, particularly when a refined description of object shape is needed.
Collapse
Affiliation(s)
- Erez Freud
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada; Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario M3J 1P3, Canada; Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario N6A 3K7, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 3K7, Canada; Neuroscience Program, University of Western Ontario, London, Ontario N6A 3K7, Canada
| | - Gal Namdar
- Department of Psychology, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Marlene Behrmann
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Age-related increase of image-invariance in the fusiform face area. Dev Cogn Neurosci 2018; 31:46-57. [PMID: 29738921 PMCID: PMC6969195 DOI: 10.1016/j.dcn.2018.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022] Open
Abstract
Image invariance in the FFA increases from age seven to adulthood. These results are confirmed by two independent ROI analyses. Adaptation in the FFA relates to the ability to recognize a face in multiple images.
Face recognition undergoes prolonged development from childhood to adulthood, thereby raising the question which neural underpinnings are driving this development. Here, we address the development of the neural foundation of the ability to recognize a face across naturally varying images. Fourteen children (ages, 7–10) and 14 adults (ages, 20–23) watched images of either the same or different faces in a functional magnetic resonance imaging adaptation paradigm. The same face was either presented in exact image repetitions or in varying images. Additionally, a subset of participants completed a behavioral task, in which they decided if the face in consecutively presented images belonged to the same person. Results revealed age-related increases in neural sensitivity to face identity in the fusiform face area. Importantly, ventral temporal face-selective regions exhibited more image-invariance – as indicated by stronger adaptation for different images of the same person – in adults compared to children. Crucially, the amount of adaptation to face identity across varying images was correlated with the ability to recognize individual faces in different images. These results suggest that the increase of image-invariance in face-selective regions might be related to the development of face recognition skills.
Collapse
|
25
|
Morita T, Saito DN, Ban M, Shimada K, Okamoto Y, Kosaka H, Okazawa H, Asada M, Naito E. Self-Face Recognition Begins to Share Active Region in Right Inferior Parietal Lobule with Proprioceptive Illusion During Adolescence. Cereb Cortex 2018; 28:1532-1548. [PMID: 29420750 PMCID: PMC6093481 DOI: 10.1093/cercor/bhy027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/15/2018] [Indexed: 01/19/2023] Open
Abstract
We recently reported that right-side dominance of the inferior parietal lobule (IPL) in self-body recognition (proprioceptive illusion) task emerges during adolescence in typical human development. Here, we extend this finding by demonstrating that functional lateralization to the right IPL also develops during adolescence in another self-body (specifically a self-face) recognition task. We collected functional magnetic resonance imaging (fMRI) data from 60 right-handed healthy children (8-11 years), adolescents (12-15 years), and adults (18-23 years; 20 per group) while they judged whether a presented face was their own (Self) or that of somebody else (Other). We also analyzed fMRI data collected while they performed proprioceptive illusion task. All participants performed self-face recognition with high accuracy. Among brain regions where self-face-related activity (Self vs. Other) developed, only right IPL activity developed predominantly for self-face processing, with no substantial involvement in other-face processing. Adult-like right-dominant use of IPL emerged during adolescence, but was not yet present in childhood. Adult-like common activation between the tasks also emerged during adolescence. Adolescents showing stronger right-lateralized IPL activity during illusion also showed this during self-face recognition. Our results suggest the importance of the right IPL in neuronal processing of information associated with one's own body in typically developing humans.
Collapse
Affiliation(s)
- Tomoyo Morita
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, Japan
| | - Midori Ban
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Faculty of Psychology, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto, Japan
| | - Koji Shimada
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Yuko Okamoto
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Hidehiko Okazawa
- Research Center for Child Mental Development, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-shimoaiduki, Eiheiji-cho, Yoshida-gun, Fukui, Japan
| | - Minoru Asada
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 2A6 1-4 Yamadaoka, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences and Medicine, Osaka University, 1-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
26
|
The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biol 2018; 16:e2004103. [PMID: 29509766 PMCID: PMC5856411 DOI: 10.1371/journal.pbio.2004103] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/16/2018] [Accepted: 02/13/2018] [Indexed: 11/19/2022] Open
Abstract
How does education affect cortical organization? All literate adults possess a region specialized for letter strings, the visual word form area (VWFA), within the mosaic of ventral regions involved in processing other visual categories such as objects, places, faces, or body parts. Therefore, the acquisition of literacy may induce a reorientation of cortical maps towards letters at the expense of other categories such as faces. To test this cortical recycling hypothesis, we studied how the visual cortex of individual children changes during the first months of reading acquisition. Ten 6-year-old children were scanned longitudinally 6 or 7 times with functional magnetic resonance imaging (fMRI) before and throughout the first year of school. Subjects were exposed to a variety of pictures (words, numbers, tools, houses, faces, and bodies) while performing an unrelated target-detection task. Behavioral assessment indicated a sharp rise in grapheme-phoneme knowledge and reading speed in the first trimester of school. Concurrently, voxels specific to written words and digits emerged at the VWFA location. The responses to other categories remained largely stable, although right-hemispheric face-related activity increased in proportion to reading scores. Retrospective examination of the VWFA voxels prior to reading acquisition showed that reading encroaches on voxels that are initially weakly specialized for tools and close to but distinct from those responsive to faces. Remarkably, those voxels appear to keep their initial category selectivity while acquiring an additional and stronger responsivity to words. We propose a revised model of the neuronal recycling process in which new visual categories invade weakly specified cortex while leaving previously stabilized cortical responses unchanged.
Collapse
|
27
|
Lynn AC, Padmanabhan A, Simmonds D, Foran W, Hallquist MN, Luna B, O'Hearn K. Functional connectivity differences in autism during face and car recognition: underconnectivity and atypical age-related changes. Dev Sci 2018; 21:10.1111/desc.12508. [PMID: 27748031 PMCID: PMC5392438 DOI: 10.1111/desc.12508] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
Face recognition abilities improve between adolescence and adulthood over typical development (TD), but plateau in autism, leading to increasing face recognition deficits in autism later in life. Developmental differences between autism and TD may reflect changes between neural systems involved in the development of face encoding and recognition. Here, we focused on whole-brain connectivity with the fusiform face area (FFA), a well-established face-preferential brain region. Older children, adolescents, and adults with and without autism completed the Cambridge Face Memory Test, and a matched car memory test, during fMRI scanning. We then examined task-based functional connectivity between the FFA and the rest of the brain, comparing autism and TD groups during encoding and recognition of face and car stimuli. The autism group exhibited underconnectivity, relative to the TD group, between the FFA and frontal and primary visual cortices, independent of age. Underconnectivity with the medial and rostral lateral prefrontal cortex was face-specific during encoding and recognition, respectively. Conversely, underconnectivity with the L orbitofrontal cortex was evident for both face and car encoding. Atypical age-related changes in connectivity emerged between the FFA and the R temporoparietal junction, and R dorsal striatum for face stimuli only. Similar differences in age-related changes in autism emerged for FFA connectivity with the amygdala across both face and car recognition. Thus, underconnectivity and atypical development of functional connectivity may lead to a less optimal face-processing network in the context of increasing general and social cognitive deficits in autism.
Collapse
Affiliation(s)
- Andrew C Lynn
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, USA
| | | | - Daniel Simmonds
- Laboratory of Neurocognitive Development, University of Pittsburgh, USA
| | - William Foran
- Laboratory of Neurocognitive Development, University of Pittsburgh, USA
| | - Michael N Hallquist
- Laboratory of Neurocognitive Development, University of Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh, USA
| | - Beatriz Luna
- Laboratory of Neurocognitive Development, University of Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh, USA
- Department of Psychology, University of Pittsburgh, USA
| | - Kirsten O'Hearn
- Laboratory of Neurocognitive Development, University of Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh, USA
- Department of Psychology, University of Pittsburgh, USA
| |
Collapse
|
28
|
Incremental learning of perceptual and conceptual representations and the puzzle of neural repetition suppression. Psychon Bull Rev 2017; 23:1055-71. [PMID: 27294423 DOI: 10.3758/s13423-015-0855-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Incremental learning models of long-term perceptual and conceptual knowledge hold that neural representations are gradually acquired over many individual experiences via Hebbian-like activity-dependent synaptic plasticity across cortical connections of the brain. In such models, variation in task relevance of information, anatomic constraints, and the statistics of sensory inputs and motor outputs lead to qualitative alterations in the nature of representations that are acquired. Here, the proposal that behavioral repetition priming and neural repetition suppression effects are empirical markers of incremental learning in the cortex is discussed, and research results that both support and challenge this position are reviewed. Discussion is focused on a recent fMRI-adaptation study from our laboratory that shows decoupling of experience-dependent changes in neural tuning, priming, and repetition suppression, with representational changes that appear to work counter to the explicit task demands. Finally, critical experiments that may help to clarify and resolve current challenges are outlined.
Collapse
|
29
|
Bennetts RJ, Mole J, Bate S. Super-recognition in development: A case study of an adolescent with extraordinary face recognition skills. Cogn Neuropsychol 2017; 34:357-376. [PMID: 29165028 DOI: 10.1080/02643294.2017.1402755] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.
Collapse
Affiliation(s)
- Rachel J Bennetts
- a School of Biological and Chemical Sciences , Queen Mary University of London , London , UK
| | - Joseph Mole
- b Oxford Doctoral Course in Clinical Psychology , University of Oxford , Oxford , UK
| | - Sarah Bate
- c Department of Psychology , Bournemouth University , Poole , UK
| |
Collapse
|
30
|
Development of Neural Sensitivity to Face Identity Correlates with Perceptual Discriminability. J Neurosci 2017; 36:10893-10907. [PMID: 27798143 DOI: 10.1523/jneurosci.1886-16.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Face perception is subserved by a series of face-selective regions in the human ventral stream, which undergo prolonged development from childhood to adulthood. However, it is unknown how neural development of these regions relates to the development of face-perception abilities. Here, we used functional magnetic resonance imaging (fMRI) to measure brain responses of ventral occipitotemporal regions in children (ages, 5-12 years) and adults (ages, 19-34 years) when they viewed faces that parametrically varied in dissimilarity. Since similar faces generate lower responses than dissimilar faces due to fMRI adaptation, this design objectively evaluates neural sensitivity to face identity across development. Additionally, a subset of subjects participated in a behavioral experiment to assess perceptual discriminability of face identity. Our data reveal three main findings: (1) neural sensitivity to face identity increases with age in face-selective but not object-selective regions; (2) the amplitude of responses to faces increases with age in both face-selective and object-selective regions; and (3) perceptual discriminability of face identity is correlated with the neural sensitivity to face identity of face-selective regions. In contrast, perceptual discriminability is not correlated with the amplitude of response in face-selective regions or of responses of object-selective regions. These data suggest that developmental increases in neural sensitivity to face identity in face-selective regions improve perceptual discriminability of faces. Our findings significantly advance the understanding of the neural mechanisms of development of face perception and open new avenues for using fMRI adaptation to study the neural development of high-level visual and cognitive functions more broadly. SIGNIFICANCE STATEMENT Face perception, which is critical for daily social interactions, develops from childhood to adulthood. However, it is unknown what developmental changes in the brain lead to improved performance. Using fMRI in children and adults, we find that from childhood to adulthood, neural sensitivity to changes in face identity increases in face-selective regions. Critically, subjects' perceptual discriminability among faces is linked to neural sensitivity: participants with higher neural sensitivity in face-selective regions demonstrate higher perceptual discriminability. Thus, our results suggest that developmental increases in face-selective regions' sensitivity to face identity improve perceptual discrimination of faces. These findings significantly advance understanding of the neural mechanisms underlying the development of face perception and have important implications for assessing both typical and atypical development.
Collapse
|
31
|
Liu TT, Behrmann M. Functional outcomes following lesions in visual cortex: Implications for plasticity of high-level vision. Neuropsychologia 2017; 105:197-214. [PMID: 28668576 DOI: 10.1016/j.neuropsychologia.2017.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Abstract
Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further.
Collapse
Affiliation(s)
- Tina T Liu
- Department of Psychology, and, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Marlene Behrmann
- Department of Psychology, and, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
The Lateral Occipital Cortex Is Selective for Object Shape, Not Texture/Color, at Six Months. J Neurosci 2017; 37:3698-3703. [PMID: 28264984 DOI: 10.1523/jneurosci.3300-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022] Open
Abstract
Understanding how the human visual system develops is crucial to understanding the nature and organization of our complex and varied visual representations. However, previous investigations of the development of the visual system using fMRI are primarily confined to a subset of the visual system (high-level vision: faces, scenes) and relatively late in visual development (starting at 4-5 years of age). The current study extends our understanding of human visual development by presenting the first systematic investigation of a mid-level visual region [the lateral occipital cortex (LOC)] in a population much younger than has been investigated in the past: 6 month olds. We use functional near-infrared spectroscopy (fNIRS), an emerging optical method for recording cortical hemodynamics, to perform neuroimaging with this very young population. Whereas previous fNIRS studies have suffered from imprecise neuroanatomical localization, we rely on the most rigorous MR coregistration of fNIRS data to date to image the infant LOC. We find surprising evidence that at 6 months the LOC has functional specialization that is highly similar to adults. Following Cant and Goodale (2007), we investigate whether the LOC tracks shape information and not other cues to object identity (e.g., texture/material). This finding extends evidence of LOC specialization from early childhood into infancy and earlier than developmental trajectories of high-level visual regions.SIGNIFICANCE STATEMENT Understanding visual development is crucial to understanding the nature of visual representations in the human brain. Previous studies of visual development have investigated children (4 years and older) and high-level visual areas. This study expands our knowledge of visual development by investigating the functional development of mid-level vision [lateral occipital cortex (LOC)] early in infancy. We find surprisingly adult-like functional specialization of the LOC by 6 months of age: infants exhibit shape selectivity, but not object selectivity, in this region.
Collapse
|
33
|
Emberson LL, Cannon G, Palmeri H, Richards JE, Aslin RN. Using fNIRS to examine occipital and temporal responses to stimulus repetition in young infants: Evidence of selective frontal cortex involvement. Dev Cogn Neurosci 2017; 23:26-38. [PMID: 28012401 PMCID: PMC5253300 DOI: 10.1016/j.dcn.2016.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/06/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022] Open
Abstract
How does the developing brain respond to recent experience? Repetition suppression (RS) is a robust and well-characterized response of to recent experience found, predominantly, in the perceptual cortices of the adult brain. We use functional near-infrared spectroscopy (fNIRS) to investigate how perceptual (temporal and occipital) and frontal cortices in the infant brain respond to auditory and visual stimulus repetitions (spoken words and faces). In Experiment 1, we find strong evidence of repetition suppression in the frontal cortex but only for auditory stimuli. In perceptual cortices, we find only suggestive evidence of auditory RS in the temporal cortex and no evidence of visual RS in any ROI. In Experiments 2 and 3, we replicate and extend these findings. Overall, we provide the first evidence that infant and adult brains respond differently to stimulus repetition. We suggest that the frontal lobe may support the development of RS in perceptual cortices.
Collapse
|
34
|
Doi H, Shinohara K. Attention allocation towards own face is pronounced during middle adolescence: an eye-tracking study. Dev Sci 2016; 21. [PMID: 27873384 DOI: 10.1111/desc.12490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/18/2016] [Indexed: 11/28/2022]
Abstract
Increased interest in the self has long been deemed to be one of the most peculiar characteristics of adolescence. On the basis of this, we conjectured that attentiveness towards self-relevant information, especially one's own face, becomes more pronounced during the middle adolescence. The present study tested this hypothesis by comparing the pattern of visuospatial attention allocation to their own face among early, middle and late adolescent males using an eye-tracking methodology. The results have shown a clear pattern of increased attention allocation towards their own face over a close friend's and a stranger's face in middle adolescents, but fixation durations on their own and a friend's face did not differ from each other in early and late adolescents. In addition, middle adolescents showed higher public self-consciousness and a lower level of self-esteem than early and late adolescents, respectively. These results indicate that attention allocation towards one's own face is more pronounced during middle adolescence, and is associated with increased interest in their own attributes.
Collapse
Affiliation(s)
- Hirokazu Doi
- Graduate School of Biomedical Sciences, Nagasaki University, Japan
| | | |
Collapse
|
35
|
Kersey AJ, Emberson LL. Tracing trajectories of audio-visual learning in the infant brain. Dev Sci 2016; 20. [PMID: 27781324 DOI: 10.1111/desc.12480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/11/2016] [Indexed: 11/29/2022]
Abstract
Although infants begin learning about their environment before they are born, little is known about how the infant brain changes during learning. Here, we take the initial steps in documenting how the neural responses in the brain change as infants learn to associate audio and visual stimuli. Using functional near-infrared spectroscopy (fNRIS) to record hemodynamic responses in the infant cortex (temporal, occipital, and frontal cortex), we find that across the infant brain, learning is characterized by an increase in activation followed by a decrease. We take this U-shaped response as evidence of repetition enhancement during early stages of learning and repetition suppression during later stages, a result that mirrors the Hunter and Ames model of infant visual preference. Furthermore, we find that the neural response to violations of the learned associations can be predicted by the shape of the learning curve in temporal and occipital cortex. These data provide the first look at the shape of the neural response during audio-visual associative learning in infancy establishing that diverse regions of the infant brain exhibit systematic changes across the time-course of learning.
Collapse
Affiliation(s)
- Alyssa J Kersey
- Department of Brain and Cognitive Sciences, University of Rochester, USA
| | | |
Collapse
|
36
|
Nordt M, Hoehl S, Weigelt S. The use of repetition suppression paradigms in developmental cognitive neuroscience. Cortex 2016; 80:61-75. [DOI: 10.1016/j.cortex.2016.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 02/29/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
|
37
|
Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed. PLoS One 2016; 11:e0157911. [PMID: 27326860 PMCID: PMC4915671 DOI: 10.1371/journal.pone.0157911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 06/07/2016] [Indexed: 01/20/2023] Open
Abstract
Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.
Collapse
|
38
|
Zhu X, Bhatt RS, Joseph JE. Pruning or tuning? Maturational profiles of face specialization during typical development. Brain Behav 2016; 6:e00464. [PMID: 27313976 PMCID: PMC4907975 DOI: 10.1002/brb3.464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 01/14/2016] [Accepted: 03/04/2016] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Face processing undergoes significant developmental change with age. Two kinds of developmental changes in face specialization were examined in this study: specialized maturation, or the continued tuning of a region to faces but little change in the tuning to other categories; and competitive interactions, or the continued tuning to faces accompanied by decreased tuning to nonfaces (i.e., pruning). METHODS Using fMRI, in regions where adults showed a face preference, a face- and object-specialization index were computed for younger children (5-8 years), older children (9-12 years) and adults (18-45 years). The specialization index was scaled to each subject's maximum activation magnitude in each region to control for overall age differences in the activation level. RESULTS Although no regions showed significant face specialization in the younger age group, regions strongly associated with social cognition (e.g., right posterior superior temporal sulcus, right inferior orbital cortex) showed specialized maturation, in which tuning to faces increased with age but there was no pruning of nonface responses. Conversely, regions that are associated with more basic perceptual processing or motor mirroring (right middle temporal cortex, right inferior occipital cortex, right inferior frontal opercular cortex) showed competitive interactions in which tuning to faces was accompanied by pruning of object responses with age. CONCLUSIONS The overall findings suggest that cortical maturation for face processing is regional-specific and involves both increased tuning to faces and diminished response to nonfaces. Regions that show competitive interactions likely support a more generalized function that is co-opted for face processing with development, whereas regions that show specialized maturation increase their tuning to faces, potentially in an activity-dependent, experience-driven manner.
Collapse
Affiliation(s)
- Xun Zhu
- Department of Psychology Shihezi University Xinjiang China; Department of Neurosciences Medical University of South Carolina Charleston South Carolina 29425
| | - Ramesh S Bhatt
- Department of Psychology College of Arts and Sciences University of Kentucky Lexington Kentucky 40506
| | - Jane E Joseph
- Department of Neurosciences Medical University of South Carolina Charleston South Carolina 29425
| |
Collapse
|
39
|
Behrmann M, Scherf KS, Avidan G. Neural mechanisms of face perception, their emergence over development, and their breakdown. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 7:247-63. [PMID: 27196333 DOI: 10.1002/wcs.1388] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 02/03/2023]
Abstract
Face perception is probably the most developed visual perceptual skill in humans, most likely as a result of its unique evolutionary and social significance. Much recent research has converged to identify a host of relevant psychological mechanisms that support face recognition. In parallel, there has been substantial progress in uncovering the neural mechanisms that mediate rapid and accurate face perception, with specific emphasis on a broadly distributed neural circuit, comprised of multiple nodes whose joint activity supports face perception. This article focuses specifically on the neural underpinnings of face recognition, and reviews recent structural and functional imaging studies that elucidate the neural basis of this ability. In addition, the article covers some of the recent investigations that characterize the emergence of the neural basis of face recognition over the course of development, and explores the relationship between these changes and increasing behavioural competence. This paper also describes studies that characterize the nature of the breakdown of face recognition in individuals who are impaired in face recognition, either as a result of brain damage acquired at some point or as a result of the failure to master face recognition over the course of development. Finally, information regarding similarities between the neural circuits for face perception in humans and in nonhuman primates is briefly covered, as is the contribution of subcortical regions to face perception. WIREs Cogn Sci 2016, 7:247-263. doi: 10.1002/wcs.1388 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Marlene Behrmann
- Department of Psychology and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA
| | - K Suzanne Scherf
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Galia Avidan
- Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
40
|
Liu T, Xiao T, Shi J. Automatic Change Detection to Facial Expressions in Adolescents: Evidence from Visual Mismatch Negativity Responses. Front Psychol 2016; 7:462. [PMID: 27065927 PMCID: PMC4811878 DOI: 10.3389/fpsyg.2016.00462] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/15/2016] [Indexed: 12/19/2022] Open
Abstract
Adolescence is a critical period for the neurodevelopment of social-emotional processing, wherein the automatic detection of changes in facial expressions is crucial for the development of interpersonal communication. Two groups of participants (an adolescent group and an adult group) were recruited to complete an emotional oddball task featuring on happy and one fearful condition. The measurement of event-related potential was carried out via electroencephalography and electrooculography recording, to detect visual mismatch negativity (vMMN) with regard to the automatic detection of changes in facial expressions between the two age groups. The current findings demonstrated that the adolescent group featured more negative vMMN amplitudes than the adult group in the fronto-central region during the 120–200 ms interval. During the time window of 370–450 ms, only the adult group showed better automatic processing on fearful faces than happy faces. The present study indicated that adolescent’s posses stronger automatic detection of changes in emotional expression relative to adults, and sheds light on the neurodevelopment of automatic processes concerning social-emotional information.
Collapse
Affiliation(s)
- Tongran Liu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences Beijing, China
| | - Tong Xiao
- Natural Language Processing Laboratory, College of Information Science and Engineering, Northeastern University Liaoning, China
| | - Jiannong Shi
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of SciencesBeijing, China; Department of Learning and Philosophy, Aalborg UniversityAalborg, Denmark
| |
Collapse
|
41
|
Jüttner M, Wakui E, Petters D, Davidoff J. Developmental Commonalities between Object and Face Recognition in Adolescence. Front Psychol 2016; 7:385. [PMID: 27014176 PMCID: PMC4791401 DOI: 10.3389/fpsyg.2016.00385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 03/04/2016] [Indexed: 11/22/2022] Open
Abstract
In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains.
Collapse
Affiliation(s)
- Martin Jüttner
- Department of Psychology, School of Life and Health Sciences, Aston UniversityBirmingham, UK
- *Correspondence: Martin Jüttner, ; Jules Davidoff,
| | - Elley Wakui
- School of Psychology, University of East LondonLondon, UK
| | - Dean Petters
- Department of Psychology, Birmingham City UniversityBirmingham, UK
| | - Jules Davidoff
- Department of Psychology, Goldsmiths, University of LondonLondon, UK
- *Correspondence: Martin Jüttner, ; Jules Davidoff,
| |
Collapse
|
42
|
Joseph JE, Zhu X, Gundran A, Davies F, Clark JD, Ruble L, Glaser P, Bhatt RS. Typical and atypical neurodevelopment for face specialization: an FMRI study. J Autism Dev Disord 2015; 45:1725-41. [PMID: 25479816 DOI: 10.1007/s10803-014-2330-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Individuals with autism spectrum disorder (ASD) and their relatives process faces differently from typically developed (TD) individuals. In an fMRI face-viewing task, TD and undiagnosed sibling (SIB) children (5-18 years) showed face specialization in the right amygdala and ventromedial prefrontal cortex, with left fusiform and right amygdala face specialization increasing with age in TD subjects. SIBs showed extensive antero-medial temporal lobe activation for faces that was not present in any other group, suggesting a potential compensatory mechanism. In ASD, face specialization was minimal but increased with age in the right fusiform and decreased with age in the left amygdala, suggesting atypical development of a frontal-amygdala-fusiform system which is strongly linked to detecting salience and processing facial information.
Collapse
Affiliation(s)
- Jane E Joseph
- Department of Neurosciences, Medical University of South Carolina, Clinical Sciences Building, Room 325E, MSC 616, Charleston, SC, 29425, USA,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
The sequential structure of brain activation predicts skill. Neuropsychologia 2015; 81:94-106. [PMID: 26707716 DOI: 10.1016/j.neuropsychologia.2015.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/24/2022]
Abstract
In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation.
Collapse
|
44
|
Liu T, Xiao T, Li X, Shi J. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception: An Event-Related Potential Study. PLoS One 2015; 10:e0138199. [PMID: 26375031 PMCID: PMC4574213 DOI: 10.1371/journal.pone.0138199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 08/27/2015] [Indexed: 11/22/2022] Open
Abstract
The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two experimental conditions: a happy condition, in which neutral expressions were standard stimuli (p = 0.8) and happy expressions were deviant stimuli (p = 0.2), and a fearful condition, in which neutral expressions were standard stimuli (p = 0.8) and fearful expressions were deviant stimuli (p = 0.2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were analyzed to index the automatic neural processing of facial expressions. For the early vMMN (50-130 ms), the high IQ group showed more negative vMMN amplitudes than the average IQ group in the happy condition. For the late vMMN (320-450 ms), the high IQ group had greater vMMN responses than the average IQ group over frontal and occipito-temporal areas in the fearful condition, and the average IQ group evoked larger vMMN amplitudes than the high IQ group over occipito-temporal areas in the happy condition. The present study elucidated the close relationships between fluid intelligence and pre-attentive change detection on social-emotional information.
Collapse
Affiliation(s)
- Tongran Liu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tong Xiao
- Natural Language Processing Laboratory, College of Information Science and Engineering, Northeastern University, Liaoning, 110819, China
| | - Xiaoyan Li
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiannong Shi
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Learning and Philosophy, Aalborg University, Denmark
| |
Collapse
|
45
|
Dehaene S, Cohen L, Morais J, Kolinsky R. Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nat Rev Neurosci 2015; 16:234-44. [PMID: 25783611 DOI: 10.1038/nrn3924] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Jiang P, Tokariev M, Aronen ET, Salonen O, Ma Y, Vuontela V, Carlson S. Responsiveness and functional connectivity of the scene-sensitive retrosplenial complex in 7–11-year-old children. Brain Cogn 2014; 92C:61-72. [DOI: 10.1016/j.bandc.2014.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/01/2022]
|
47
|
Ross PD, de Gelder B, Crabbe F, Grosbras MH. Body-selective areas in the visual cortex are less active in children than in adults. Front Hum Neurosci 2014; 8:941. [PMID: 25484863 PMCID: PMC4240043 DOI: 10.3389/fnhum.2014.00941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/04/2014] [Indexed: 11/13/2022] Open
Abstract
Our ability to read other people's non-verbal signals gets refined throughout childhood and adolescence. How this is paralleled by brain development has been investigated mainly with regards to face perception, showing a protracted functional development of the face-selective visual cortical areas. In view of the importance of whole-body expressions in interpersonal communication it is important to understand the development of brain areas sensitive to these social signals. Here we used functional magnetic resonance imaging (fMRI) to compare brain activity in a group of 24 children (age 6-11) and 26 adults while they passively watched short videos of body or object movements. We observed activity in similar regions in both groups; namely the extra-striate body area (EBA), fusiform body area (FBA), posterior superior temporal sulcus (pSTS), amygdala and premotor regions. Adults showed additional activity in the inferior frontal gyrus (IFG). Within the main body-selective regions (EBA, FBA and pSTS), the strength and spatial extent of fMRI signal change was larger in adults than in children. Multivariate Bayesian (MVB) analysis showed that the spatial pattern of neural representation within those regions did not change over age. Our results indicate, for the first time, that body perception, like face perception, is still maturing through the second decade of life.
Collapse
Affiliation(s)
- Paddy D Ross
- Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | - Beatrice de Gelder
- Brain and Emotion Laboratory, Department of Cognitive Neuroscience, Maastricht University Maastricht, Netherlands
| | - Frances Crabbe
- Institute of Neuroscience and Psychology, University of Glasgow Glasgow, UK
| | | |
Collapse
|
48
|
He W, Brock J, Johnson BW. Face processing in the brains of pre-school aged children measured with MEG. Neuroimage 2014; 106:317-27. [PMID: 25463467 DOI: 10.1016/j.neuroimage.2014.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022] Open
Abstract
There are two competing theories concerning the development of face perception: a late maturation account and an early maturation account. Magnetoencephalography (MEG) neuroimaging holds promise for adjudicating between the two opposing accounts by providing objective neurophysiological measures of face processing, with sufficient temporal resolution to isolate face-specific brain responses from those associated with other sensory, cognitive and motor processes. The current study used a customized child MEG system to measure M100 and M170 brain responses in 15 children aged three to six years while they viewed faces, cars and their phase-scrambled counterparts. Compared to adults tested using the same stimuli in a conventional MEG system, children showed significantly larger and later M100 responses. Children's M170 responses, derived by subtracting the responses to phase-scrambled images from the corresponding images (faces or cars) were delayed in latency but otherwise resembled the adult M170. This component has not been obtained in previous studies of young children tested using conventional adult MEG systems. However children did show a markedly reduced M170 response to cars in comparison to adults. This may reflect children's lack of expertise with cars relative to faces. Taken together, these data are in accord with recent behavioural and neuroimaging data that support early maturation of the basic face processing functions.
Collapse
Affiliation(s)
- Wei He
- Department of Cognitive Science, ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, NSW 2109, Australia.
| | - Jon Brock
- Department of Cognitive Science, ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, NSW 2109, Australia
| | - Blake W Johnson
- Department of Cognitive Science, ARC Centre of Excellence in Cognition and its Disorders, Macquarie University, NSW 2109, Australia
| |
Collapse
|
49
|
Nenert R, Allendorfer JB, Szaflarski JP. A model for visual memory encoding. PLoS One 2014; 9:e107761. [PMID: 25272154 PMCID: PMC4182671 DOI: 10.1371/journal.pone.0107761] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/23/2014] [Indexed: 12/21/2022] Open
Abstract
Memory encoding engages multiple concurrent and sequential processes. While the individual processes involved in successful encoding have been examined in many studies, a sequence of events and the importance of modules associated with memory encoding has not been established. For this reason, we sought to perform a comprehensive examination of the network for memory encoding using data driven methods and to determine the directionality of the information flow in order to build a viable model of visual memory encoding. Forty healthy controls ages 19-59 performed a visual scene encoding task. FMRI data were preprocessed using SPM8 and then processed using independent component analysis (ICA) with the reliability of the identified components confirmed using ICASSO as implemented in GIFT. The directionality of the information flow was examined using Granger causality analyses (GCA). All participants performed the fMRI task well above the chance level (>90% correct on both active and control conditions) and the post-fMRI testing recall revealed correct memory encoding at 86.33 ± 5.83%. ICA identified involvement of components of five different networks in the process of memory encoding, and the GCA allowed for the directionality of the information flow to be assessed, from visual cortex via ventral stream to the attention network and then to the default mode network (DMN). Two additional networks involved in this process were the cerebellar and the auditory-insular network. This study provides evidence that successful visual memory encoding is dependent on multiple modules that are part of other networks that are only indirectly related to the main process. This model may help to identify the node(s) of the network that are affected by a specific disease processes and explain the presence of memory encoding difficulties in patients in whom focal or global network dysfunction exists.
Collapse
Affiliation(s)
- Rodolphe Nenert
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jane B. Allendorfer
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jerzy P. Szaflarski
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurology, University of Cincinnati Academic Health Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
50
|
Nishimura M, Scherf KS, Zachariou V, Tarr MJ, Behrmann M. Size precedes view: developmental emergence of invariant object representations in lateral occipital complex. J Cogn Neurosci 2014; 27:474-91. [PMID: 25244115 DOI: 10.1162/jocn_a_00720] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Although object perception involves encoding a wide variety of object properties (e.g., size, color, viewpoint), some properties are irrelevant for identifying the object. The key to successful object recognition is having an internal representation of the object identity that is insensitive to these properties while accurately representing important diagnostic features. Behavioral evidence indicates that the formation of these kinds of invariant object representations takes many years to develop. However, little research has investigated the developmental emergence of invariant object representations in the ventral visual processing stream, particularly in the lateral occipital complex (LOC) that is implicated in object processing in adults. Here, we used an fMR adaptation paradigm to evaluate age-related changes in the neural representation of objects within LOC across variations in size and viewpoint from childhood through early adulthood. We found a dissociation between the neural encoding of object size and object viewpoint within LOC: by age of 5-10 years, area LOC demonstrates adaptation across changes in size, but not viewpoint, suggesting that LOC responses are invariant to size variations, but that adaptation across changes in view is observed in LOC much later in development. Furthermore, activation in LOC was correlated with behavioral indicators of view invariance across the entire sample, such that greater adaptation was correlated with better recognition of objects across changes in viewpoint. We did not observe similar developmental differences within early visual cortex. These results indicate that LOC acquires the capacity to compute invariance specific to different sources of information at different time points over the course of development.
Collapse
|