1
|
Masselink J, Cheviet A, Froment-Tilikete C, Pélisson D, Lappe M. A triple distinction of cerebellar function for oculomotor learning and fatigue compensation. PLoS Comput Biol 2023; 19:e1011322. [PMID: 37540726 PMCID: PMC10456158 DOI: 10.1371/journal.pcbi.1011322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 08/25/2023] [Accepted: 07/02/2023] [Indexed: 08/06/2023] Open
Abstract
The cerebellum implements error-based motor learning via synaptic gain adaptation of an inverse model, i.e. the mapping of a spatial movement goal onto a motor command. Recently, we modeled the motor and perceptual changes during learning of saccadic eye movements, showing that learning is actually a threefold process. Besides motor recalibration of (1) the inverse model, learning also comprises perceptual recalibration of (2) the visuospatial target map and (3) of a forward dynamics model that estimates the saccade size from corollary discharge. Yet, the site of perceptual recalibration remains unclear. Here we dissociate cerebellar contributions to the three stages of learning by modeling the learning data of eight cerebellar patients and eight healthy controls. Results showed that cerebellar pathology restrains short-term recalibration of the inverse model while the forward dynamics model is well informed about the reduced saccade change. Adaptation of the visuospatial target map trended in learning direction only in control subjects, yet without reaching significance. Moreover, some patients showed a tendency for uncompensated oculomotor fatigue caused by insufficient upregulation of saccade duration. According to our model, this could induce long-term perceptual compensation, consistent with the overestimation of target eccentricity found in the patients' baseline data. We conclude that the cerebellum mediates short-term adaptation of the inverse model, especially by control of saccade duration, while the forward dynamics model was not affected by cerebellar pathology.
Collapse
Affiliation(s)
- Jana Masselink
- Institute for Psychology & Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Bron cedex, France
- Department of Psychology, Durham University, South Road, Durham, United Kingdom
| | - Caroline Froment-Tilikete
- IMPACT Team, Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Bron cedex, France
- Hospices Civils de Lyon—Pierre-Wertheimer Hospital, Neuro-Ophtalmology Unit, Bron cedex, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, University Claude Bernard Lyon 1, Bron cedex, France
| | - Markus Lappe
- Institute for Psychology & Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
2
|
Cheviet A, Masselink J, Koun E, Salemme R, Lappe M, Froment-Tilikete C, Pélisson D. Cerebellar Signals Drive Motor Adjustments and Visual Perceptual Changes during Forward and Backward Adaptation of Reactive Saccades. Cereb Cortex 2022; 32:3896-3916. [PMID: 34979550 DOI: 10.1093/cercor/bhab455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/12/2022] Open
Abstract
Saccadic adaptation ($SA$) is a cerebellar-dependent learning of motor commands ($MC$), which aims at preserving saccade accuracy. Since $SA$ alters visual localization during fixation and even more so across saccades, it could also involve changes of target and/or saccade visuospatial representations, the latter ($CDv$) resulting from a motor-to-visual transformation (forward dynamics model) of the corollary discharge of the $MC$. In the present study, we investigated if, in addition to its established role in adaptive adjustment of $MC$, the cerebellum could contribute to the adaptation-associated perceptual changes. Transfer of backward and forward adaptation to spatial perceptual performance (during ocular fixation and trans-saccadically) was assessed in eight cerebellar patients and eight healthy volunteers. In healthy participants, both types of $SA$ altered $MC$ as well as internal representations of the saccade target and of the saccadic eye displacement. In patients, adaptation-related adjustments of $MC$ and adaptation transfer to localization were strongly reduced relative to healthy participants, unraveling abnormal adaptation-related changes of target and $CDv$. Importantly, the estimated changes of $CDv$ were totally abolished following forward session but mainly preserved in backward session, suggesting that an internal model ensuring trans-saccadic localization could be located in the adaptation-related cerebellar networks or in downstream networks, respectively.
Collapse
Affiliation(s)
- Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster 48149, Germany
| | - Eric Koun
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Roméo Salemme
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster 48149, Germany
| | - Caroline Froment-Tilikete
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France.,Hospices Civils de Lyon - Pierre-Wertheimer Hospital, Neuro-Ophtalmology unit, Bron cedex 69500, France
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, University Claude Bernard Lyon 1, Bron cedex 69676, France
| |
Collapse
|
3
|
Cheviet A, Pisella L, Pélisson D. The posterior parietal cortex processes visuo-spatial and extra-retinal information for saccadic remapping: A case study. Cortex 2021; 139:134-151. [PMID: 33862400 DOI: 10.1016/j.cortex.2021.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/10/2020] [Accepted: 02/28/2021] [Indexed: 11/26/2022]
Abstract
Optimally collecting information and controlling behaviour require that we constantly scan our visual environment through eye movements. How the dynamic interaction between short-lived retinal images and extra-retinal signals of eye motion results in our subjective experience of visual stability remains a major issue in Cognitive Neuroscience. The present study aimed to assess and determine the nature of the contribution of the posterior parietal cortex (PPC) to the saccadic remapping mechanisms which contribute to such perceptual visual constancy. Perceptual responses in transsaccadic visual localization tasks were measured in a patient presenting with a PPC lesion and manifesting optic ataxia in the left hemifield with no neglect. Two perceptual localization tasks, each with versus without an intervening saccade, were used: the saccadic suppression of displacement (SSD) task (Ostendorf, Liebermann, & Ploner, 2010) and the peri-saccadic flash localization (LOC) task (Zimmerman & Lappe, 2010). Compared to a group of age-matched healthy subjects, the patient showed a specific pattern of perceptual deficits in the ataxic (left) hemifield. First, a significant impairment occurred in the stationary eye conditions, attesting for an alteration of visuo-spatial encoding. Second, in the saccade conditions, an additional perceptual deficit (an error of ~5° along the saccade direction) was observed in both tasks and mainly in conditions where extra-retinal signals are thought to be critically involved, revealing a constant underestimation by extra-retinal signals of the saccade size, despite preserved saccade accuracy. These findings highlight a crucial role of the PPC in saccadic remapping processes underlying perceptual visual constancy and provide empirical evidence for models such as Ziesche and Hamker's (2014).
Collapse
Affiliation(s)
- Alexis Cheviet
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.
| | - Laure Pisella
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.
| | - Denis Pélisson
- IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University of Lyon, Bron Cedex, France.
| |
Collapse
|
4
|
Masselink J, Lappe M. Visuomotor learning from postdictive motor error. eLife 2021; 10:64278. [PMID: 33687328 PMCID: PMC8057815 DOI: 10.7554/elife.64278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sensorimotor learning adapts motor output to maintain movement accuracy. For saccadic eye movements, learning also alters space perception, suggesting a dissociation between the performed saccade and its internal representation derived from corollary discharge (CD). This is critical since learning is commonly believed to be driven by CD-based visual prediction error. We estimate the internal saccade representation through pre- and trans-saccadic target localization, showing that it decouples from the actual saccade during learning. We present a model that explains motor and perceptual changes by collective plasticity of spatial target percept, motor command, and a forward dynamics model that transforms CD from motor into visuospatial coordinates. We show that learning does not follow visual prediction error but instead a postdictive update of space after saccade landing. We conclude that trans-saccadic space perception guides motor learning via CD-based postdiction of motor error under the assumption of a stable world.
Collapse
Affiliation(s)
- Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|
5
|
Mastropasqua A, Dowsett J, Dieterich M, Taylor PCJ. Right frontal eye field has perceptual and oculomotor functions during optokinetic stimulation and nystagmus. J Neurophysiol 2019; 123:571-586. [PMID: 31875488 DOI: 10.1152/jn.00468.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The right frontal eye field (rFEF) is associated with visual perception and eye movements. rFEF is activated during optokinetic nystagmus (OKN), a reflex that moves the eye in response to visual motion (optokinetic stimulation, OKS). It remains unclear whether rFEF plays causal perceptual and/or oculomotor roles during OKS and OKN. To test this, participants viewed a leftward-moving visual scene of vertical bars and judged whether a flashed dot was moving. Single pulses of transcranial magnetic stimulation (TMS) were applied to rFEF on half of trials. In half of blocks, to explore oculomotor control, participants performed an OKN in response to the OKS. rFEF TMS, during OKN, made participants more accurate on trials when the dot was still, and it slowed eye movements. In separate blocks, participants fixated during OKS. This not only controlled for eye movements but also allowed the use of EEG to explore the FEF's role in visual motion discrimination. In these blocks, by contrast, leftward dot motion discrimination was impaired, associated with a disruption of the frontal-posterior balance in alpha-band oscillations. None of these effects occurred in a control site (M1) experiment. These results demonstrate multiple related yet dissociable causal roles of the right FEF during optokinetic stimulation.NEW & NOTEWORTHY This study demonstrates causal roles of the right frontal eye field (FEF) in motion discrimination and eye movement control during visual scene motion: previous work had only examined other stimuli and eye movements such as saccades. Using combined transcranial magnetic stimulation and EEG and a novel optokinetic stimulation motion-discrimination task, we find evidence for multiple related yet dissociable causal roles within the FEF: perceptual processing during optokinetic stimulation, generation of the optokinetic nystagmus, and the maintenance of alpha oscillations.
Collapse
Affiliation(s)
- Angela Mastropasqua
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Germany
| | - James Dowsett
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Germany.,SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| | - Paul C J Taylor
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Germany
| |
Collapse
|
6
|
Saccadic Suppression of Displacement Does Not Reflect a Saccade-Specific Bias to Assume Stability. Vision (Basel) 2019; 3:vision3040049. [PMID: 31735850 PMCID: PMC6969937 DOI: 10.3390/vision3040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 11/27/2022] Open
Abstract
Across saccades, small displacements of a visual target are harder to detect and their directions more difficult to discriminate than during steady fixation. Prominent theories of this effect, known as saccadic suppression of displacement, propose that it is due to a bias to assume object stability across saccades. Recent studies comparing the saccadic effect to masking effects suggest that suppression of displacement is not saccade-specific. Further evidence for this account is presented from two experiments where participants judged the size of displacements on a continuous scale in saccade and mask conditions, with and without blanking. Saccades and masks both reduced the proportion of correctly perceived displacements and increased the proportion of missed displacements. Blanking improved performance in both conditions by reducing the proportion of missed displacements. Thus, if suppression of displacement reflects a bias for stability, it is not a saccade-specific bias, but a more general stability assumption revealed under conditions of impoverished vision. Specifically, I discuss the potentially decisive role of motion or other transient signals for displacement perception. Without transients or motion, the quality of relative position signals is poor, and saccadic and mask-induced suppression of displacement reflects performance when the decision has to be made on these signals alone. Blanking may improve those position signals by providing a transient onset or a longer time to encode the pre-saccadic target position.
Collapse
|
7
|
Bansal S, Ford JM, Spering M. The function and failure of sensory predictions. Ann N Y Acad Sci 2018; 1426:199-220. [PMID: 29683518 DOI: 10.1111/nyas.13686] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023]
Abstract
Humans and other primates are equipped with neural mechanisms that allow them to automatically make predictions about future events, facilitating processing of expected sensations and actions. Prediction-driven control and monitoring of perceptual and motor acts are vital to normal cognitive functioning. This review provides an overview of corollary discharge mechanisms involved in predictions across sensory modalities and discusses consequences of predictive coding for cognition and behavior. Converging evidence now links impairments in corollary discharge mechanisms to neuropsychiatric symptoms such as hallucinations and delusions. We review studies supporting a prediction-failure hypothesis of perceptual and cognitive disturbances. We also outline neural correlates underlying prediction function and failure, highlighting similarities across the visual, auditory, and somatosensory systems. In linking basic psychophysical and psychophysiological evidence of visual, auditory, and somatosensory prediction failures to neuropsychiatric symptoms, our review furthers our understanding of disease mechanisms.
Collapse
Affiliation(s)
- Sonia Bansal
- Maryland Psychiatric Research Center, University of Maryland, Catonsville, Maryland
| | - Judith M Ford
- University of California and Veterans Affairs Medical Center, San Francisco, California
| | - Miriam Spering
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Collins T, Jacquet PO. TMS over posterior parietal cortex disrupts trans-saccadic visual stability. Brain Stimul 2018; 11:390-399. [DOI: 10.1016/j.brs.2017.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/24/2017] [Accepted: 11/26/2017] [Indexed: 01/20/2023] Open
|
9
|
Cassanello CR, Ohl S, Rolfs M. Saccadic adaptation to a systematically varying disturbance. J Neurophysiol 2016; 116:336-50. [PMID: 27098027 DOI: 10.1152/jn.00206.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Saccadic adaptation maintains the correct mapping between eye movements and their targets, yet the dynamics of saccadic gain changes in the presence of systematically varying disturbances has not been extensively studied. Here we assessed changes in the gain of saccade amplitudes induced by continuous and periodic postsaccadic visual feedback. Observers made saccades following a sequence of target steps either along the horizontal meridian (Two-way adaptation) or with unconstrained saccade directions (Global adaptation). An intrasaccadic step-following a sinusoidal variation as a function of the trial number (with 3 different frequencies tested in separate blocks)-consistently displaced the target along its vector. The oculomotor system responded to the resulting feedback error by modifying saccade amplitudes in a periodic fashion with similar frequency of variation but lagging the disturbance by a few tens of trials. This periodic response was superimposed on a drift toward stronger hypometria with similar asymptotes and decay rates across stimulus conditions. The magnitude of the periodic response decreased with increasing frequency and was smaller and more delayed for Global than Two-way adaptation. These results suggest that-in addition to the well-characterized return-to-baseline response observed in protocols using constant visual feedback-the oculomotor system attempts to minimize the feedback error by integrating its variation across trials. This process resembles a convolution with an internal response function, whose structure would be determined by coefficients of the learning model. Our protocol reveals this fast learning process in single short experimental sessions, qualifying it for the study of sensorimotor learning in health and disease.
Collapse
Affiliation(s)
- Carlos R Cassanello
- Department of Psychology and Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Sven Ohl
- Department of Psychology and Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| | - Martin Rolfs
- Department of Psychology and Bernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
10
|
Transsaccadic processing: stability, integration, and the potential role of remapping. Atten Percept Psychophys 2015; 77:3-27. [PMID: 25380979 DOI: 10.3758/s13414-014-0751-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While our frequent saccades allow us to sample the complex visual environment in a highly efficient manner, they also raise certain challenges for interpreting and acting upon visual input. In the present, selective review, we discuss key findings from the domains of cognitive psychology, visual perception, and neuroscience concerning two such challenges: (1) maintaining the phenomenal experience of visual stability despite our rapidly shifting gaze, and (2) integrating visual information across discrete fixations. In the first two sections of the article, we focus primarily on behavioral findings. Next, we examine the possibility that a neural phenomenon known as predictive remapping may provide an explanation for aspects of transsaccadic processing. In this section of the article, we delineate and critically evaluate multiple proposals about the potential role of predictive remapping in light of both theoretical principles and empirical findings.
Collapse
|
11
|
Wischnewski M, Schutter DJLG. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul 2015; 8:685-92. [PMID: 26014214 DOI: 10.1016/j.brs.2015.03.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/12/2015] [Accepted: 03/20/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In the past decade research has shown that continuous (cTBS) and intermittent theta burst stimulation (iTBS) alter neuronal excitability levels in the primary motor cortex. OBJECTIVE Quantitatively review the magnitude and time course on cortical excitability of cTBS and iTBS. METHODS Sixty-four TBS studies published between January 2005 and October 2014 were retrieved from the scientific search engine PubMED and included for analyses. The main inclusion criteria involved stimulation of the primary motor cortex in healthy volunteers with no motor practice prior to intervention and motor evoked potentials as primary outcome measure. RESULTS ITBS applied for 190 s significantly increases cortical excitability up to 60 min with a mean maximum potentiation of 35.54 ± 3.32%. CTBS applied for 40 s decreases cortical excitability up to 50 min with a mean maximum depression of -22.81 ± 2.86%, while cTBS applied for 20 s decreases cortical excitability (mean maximum -27.84 ± 4.15%) for 20 min. CONCLUSION The present findings offer normative insights into the magnitude and time course of TBS-induced changes in cortical excitability levels.
Collapse
Affiliation(s)
- Miles Wischnewski
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands.
| | - Dennis J L G Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
12
|
Stenner MP, Bauer M, Haggard P, Heinze HJ, Dolan R. Enhanced Alpha-oscillations in Visual Cortex during Anticipation of Self-generated Visual Stimulation. J Cogn Neurosci 2014; 26:2540-51. [DOI: 10.1162/jocn_a_00658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action–outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time–frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top–down control.
Collapse
|
13
|
Tanaka LL, Dessing JC, Malik P, Prime SL, Crawford JD. The effects of TMS over dorsolateral prefrontal cortex on trans-saccadic memory of multiple objects. Neuropsychologia 2014; 63:185-93. [PMID: 25192630 DOI: 10.1016/j.neuropsychologia.2014.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/04/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Humans typically make several rapid eye movements (saccades) per second. It is thought that visual working memory can retain and spatially integrate three to four objects or features across each saccade but little is known about this neural mechanism. Previously we showed that transcranial magnetic stimulation (TMS) to the posterior parietal cortex and frontal eye fields degrade trans-saccadic memory of multiple object features (Prime, Vesia, & Crawford, 2008, Journal of Neuroscience, 28(27), 6938-6949; Prime, Vesia, & Crawford, 2010, Cerebral Cortex, 20(4), 759-772.). Here, we used a similar protocol to investigate whether dorsolateral prefrontal cortex (DLPFC), an area involved in spatial working memory, is also involved in trans-saccadic memory. Subjects were required to report changes in stimulus orientation with (saccade task) or without (fixation task) an eye movement in the intervening memory interval. We applied single-pulse TMS to left and right DLPFC during the memory delay, timed at three intervals to arrive approximately 100 ms before, 100 ms after, or at saccade onset. In the fixation task, left DLPFC TMS produced inconsistent results, whereas right DLPFC TMS disrupted performance at all three intervals (significantly for presaccadic TMS). In contrast, in the saccade task, TMS consistently facilitated performance (significantly for left DLPFC/perisaccadic TMS and right DLPFC/postsaccadic TMS) suggesting a dis-inhibition of trans-saccadic processing. These results are consistent with a neural circuit of trans-saccadic memory that overlaps and interacts with, but is partially separate from the circuit for visual working memory during sustained fixation.
Collapse
Affiliation(s)
- L L Tanaka
- Centre for Vision Research and Canadian Action and Perception Network, York University, Toronto, Canada; Neuroscience Graduate Diploma Program and Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, Canada
| | - J C Dessing
- Centre for Vision Research and Canadian Action and Perception Network, York University, Toronto, Canada; School of Psychology, Queen׳s University Belfast, Northern Ireland
| | - P Malik
- Centre for Vision Research and Canadian Action and Perception Network, York University, Toronto, Canada; Neuroscience Graduate Diploma Program and Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, Canada
| | - S L Prime
- Department of Psychology, University of Saskatchewan, Canada
| | - J D Crawford
- Centre for Vision Research and Canadian Action and Perception Network, York University, Toronto, Canada; Neuroscience Graduate Diploma Program and Departments of Psychology, Biology, and Kinesiology and Health Sciences, York University, Toronto, Canada.
| |
Collapse
|
14
|
Abstract
One of the more enduring mysteries of neuroscience is how the visual system constructs robust maps of the world that remain stable in the face of frequent eye movements. Here we show that encoding the position of objects in external space is a relatively slow process, building up over hundreds of milliseconds. We display targets to which human subjects saccade after a variable preview duration. As they saccade, the target is displaced leftwards or rightwards, and subjects report the displacement direction. When subjects saccade to targets without delay, sensitivity is poor; but if the target is viewed for 300-500 ms before saccading, sensitivity is similar to that during fixation with a strong visual mask to dampen transients. These results suggest that the poor displacement thresholds usually observed in the "saccadic suppression of displacement" paradigm are a result of the fact that the target has had insufficient time to be encoded in memory, and not a result of the action of special mechanisms conferring saccadic stability. Under more natural conditions, trans-saccadic displacement detection is as good as in fixation, when the displacement transients are masked.
Collapse
|
15
|
Ostendorf F, Liebermann D, Ploner CJ. A role of the human thalamus in predicting the perceptual consequences of eye movements. Front Syst Neurosci 2013; 7:10. [PMID: 23630474 PMCID: PMC3632791 DOI: 10.3389/fnsys.2013.00010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/05/2013] [Indexed: 01/06/2023] Open
Abstract
Internal monitoring of oculomotor commands may help to anticipate and keep track of changes in perceptual input imposed by our eye movements. Neurophysiological studies in non-human primates identified corollary discharge (CD) signals of oculomotor commands that are conveyed via thalamus to frontal cortices. We tested whether disruption of these monitoring pathways on the thalamic level impairs the perceptual matching of visual input before and after an eye movement in human subjects. Fourteen patients with focal thalamic stroke and 20 healthy control subjects performed a task requiring a perceptual judgment across eye movements. Subjects reported the apparent displacement of a target cue that jumped unpredictably in sync with a saccadic eye movement. In a critical condition of this task, six patients exhibited clearly asymmetric perceptual performance for rightward vs. leftward saccade direction. Furthermore, perceptual judgments in seven patients systematically depended on oculomotor targeting errors, with self-generated targeting errors erroneously attributed to external stimulus jumps. Voxel-based lesion-symptom mapping identified an area in right central thalamus as critical for the perceptual matching of visual space across eye movements. Our findings suggest that trans-thalamic CD transmission decisively contributes to a correct prediction of the perceptual consequences of oculomotor actions.
Collapse
Affiliation(s)
- Florian Ostendorf
- Department of Neurology, Charité - Universitätsmedizin Berlin Berlin, Germany ; Berlin School of Mind and Brain, Humboldt Universität zu Berlin Berlin, Germany
| | | | | |
Collapse
|