1
|
Ullman MT, Clark GM, Pullman MY, Lovelett JT, Pierpont EI, Jiang X, Turkeltaub PE. The neuroanatomy of developmental language disorder: a systematic review and meta-analysis. Nat Hum Behav 2024; 8:962-975. [PMID: 38491094 DOI: 10.1038/s41562-024-01843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2024] [Indexed: 03/18/2024]
Abstract
Developmental language disorder (DLD) is a common neurodevelopmental disorder with adverse impacts that continue into adulthood. However, its neural bases remain unclear. Here we address this gap by systematically identifying and quantitatively synthesizing neuroanatomical studies of DLD using co-localization likelihood estimation, a recently developed neuroanatomical meta-analytic technique. Analyses of structural brain data (22 peer-reviewed papers, 577 participants) revealed highly consistent anomalies only in the basal ganglia (100% of participant groups in which this structure was examined, weighted by group sample sizes; 99.8% permutation-based likelihood the anomaly clustering was not due to chance). These anomalies were localized specifically to the anterior neostriatum (again 100% weighted proportion and 99.8% likelihood). As expected given the task dependence of activation, functional neuroimaging data (11 peer-reviewed papers, 414 participants) yielded less consistency, though anomalies again occurred primarily in the basal ganglia (79.0% and 95.1%). Multiple sensitivity analyses indicated that the patterns were robust. The meta-analyses elucidate the neuroanatomical signature of DLD, and implicate the basal ganglia in particular. The findings support the procedural circuit deficit hypothesis of DLD, have basic research and translational implications for the disorder, and advance our understanding of the neuroanatomy of language.
Collapse
Affiliation(s)
- Michael T Ullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA.
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Mariel Y Pullman
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA
- Mount Sinai Beth Israel, New York, NY, USA
| | - Jarrett T Lovelett
- Brain and Language Laboratory, Department of Neuroscience, Georgetown University, Washington DC, USA
- Department of Psychology, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth I Pierpont
- Department of Pediatrics, University of Minnesota Medical Center, Minneapolis, MN, USA
| | - Xiong Jiang
- Department of Neuroscience, Georgetown University, Washington DC, USA
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University, Washington DC, USA
- Research Division, MedStar National Rehabilitation Network, Washington DC, USA
| |
Collapse
|
2
|
Ruiz Callejo D, Wouters J, Boets B. Speech-in-noise perception in autistic adolescents with and without early language delay. Autism Res 2023; 16:1719-1727. [PMID: 37318057 DOI: 10.1002/aur.2966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Speech-in-noise perception seems aberrant in individuals with autism spectrum disorder (ASD). Potential aggravating factors are the level of linguistic skills and impairments in auditory temporal processing. Here, we investigated autistic adolescents with and without language delay as compared to non-autistic peers, and we assessed speech perception in steady-state noise, temporally modulated noise, and concurrent speech. We found that autistic adolescents with intact language capabilities and not those with language delay performed worse than NT peers on words-in-stationary-noise perception. For the perception of sentences in stationary noise, we did not observe significant group differences, although autistic adolescents with language delay tend to perform worse in comparison to their TD peers. We also found evidence for a robust deficit in speech-in-concurrent-speech processing in ASD independent of language ability, as well as an association between early language delay in ASD and inadequate temporal speech processing. We propose that reduced voice stream segregation and inadequate social attentional orienting in ASD result in disproportional informational masking of the speech signal. These findings indicate a speech-in-speech processing deficit in autistic adolescents with broad implications for the quality of social communication.
Collapse
Affiliation(s)
- Diego Ruiz Callejo
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Autism Research (LAuRes), KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Li M, Wang Y, Tachibana M, Rahman S, Kagitani-Shimono K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res 2022; 15:1585-1602. [PMID: 35962721 PMCID: PMC9546367 DOI: 10.1002/aur.2789] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Patients with autism spectrum disorder (ASD) often show pervasive and complex language impairments that are closely associated with aberrant structural connectivity of language networks. However, the characteristics of white matter connectivity in ASD have remained inconclusive in previous diffusion tensor imaging (DTI) studies. The current meta‐analysis aimed to comprehensively elucidate the abnormality in language‐related white matter connectivity in individuals with ASD. We searched PubMed, Web of Science, Scopus, and Medline databases to identify relevant studies. The standardized mean difference was calculated to measure the pooled difference in DTI metrics in each tract between the ASD and typically developing (TD) groups. The moderating effects of age, sex, language ability, and symptom severity were investigated using subgroup and meta‐regression analysis. Thirty‐three DTI studies involving 831 individuals with ASD and 836 TD controls were included in the meta‐analysis. ASD subjects showed significantly lower fractional anisotropy or higher mean diffusivity across language‐associated tracts than TD controls. These abnormalities tended to be more prominent in the left language networks than in the right. In addition, children with ASD exhibit more pronounced and pervasive disturbances in white matter connectivity than adults. These results support the under‐connectivity hypothesis and demonstrate the widespread abnormal microstructure of language‐related tracts in patients with ASD. Otherwise, white matter abnormalities in the autistic brain could vary depending on the developmental stage and hemisphere.
Collapse
Affiliation(s)
- Min Li
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yide Wang
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Masaya Tachibana
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shafiur Rahman
- Department of Child Development, United Graduate School of Child Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Félix J, Santos ME, Benitez-Burraco A. Specific Language Impairment, Autism Spectrum Disorders and Social (Pragmatic) Communication Disorders: Is There Overlap in Language Deficits? A Review. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2022. [DOI: 10.1007/s40489-022-00327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
AbstractAnalysing language characteristics and understanding their dynamics is the key for a successful intervention by speech and language therapists (SLT). Thus, this review aims to investigate a possible overlap in language development shared by autism spectrum disorders (ASD), specific language impairment (SLI) and social (pragmatic) communication disorder (SPCD). The sources of this work were the PubMed, PsycInfo and SciELO databases, as well as the Scientific Open Access Repositories of Portugal. The final selection included 18 studies, focused on several linguistic areas. Results suggest that when individuals are matched according to some language or cognitive skills, they will also show similar characteristics in other language domains. Future work should be done based on spontaneous speech.
Collapse
|
5
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
The Neurological Basis of Developmental Dyslexia and Related Disorders: A Reappraisal of the Temporal Hypothesis, Twenty Years on. Brain Sci 2021; 11:brainsci11060708. [PMID: 34071786 PMCID: PMC8229928 DOI: 10.3390/brainsci11060708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
In a now-classic article published a couple of decades ago (Brain, 2000; 123: 2373-2399), I proposed an "extended temporal processing deficit hypothesis of dyslexia", suggesting that a deficit in temporal processing could explain not only language-related peculiarities usually noticed in dyslexic children, but also a wider range of symptoms related to impaired processing of time in general. In the present review paper, I will revisit this "historical" hypothesis both in the light of a new clinical perspective, including the central yet poorly explained notion of comorbidity, and also taking a new look at the most recent experimental work, mainly focusing on brain imaging data. First, consistent with daily clinical practice, I propose to distinguish three groups of children who fail to learn to read, of fairly equal occurrence, who share the same initial presentation (difficulty in mastering the rules of grapheme-phoneme correspondence) but with differing associated signs and/or comorbid conditions (language disorders in the first group, attentional deficits in the second one, and motor coordination problems in the last one), thus suggesting, at least in part, potentially different triggering mechanisms. It is then suggested, in the light of brain imaging information available to date, that the three main clinical presentations/associations of cognitive impairments that compromise reading skills acquisition correspond to three distinct patterns of miswiring or "disconnectivity" in specific brain networks which have in common their involvement in the process of learning and their heavy reliance on temporal features of information processing. With reference to the classic temporal processing deficit of dyslexia and to recent evidence of an inability of the dyslexic brain to achieve adequate coupling of oscillatory brain activity to the temporal features of external events, a general model is proposed according to which a common mechanism of temporal uncoupling between various disconnected-and/or mis-wired-processors may account for distinct forms of specific learning disorders, with reading impairment being a more or less constant feature. Finally, the potential therapeutic implications of such a view are considered, with special emphasis on methods seeking to enhance cross-modal connectivity between separate brain systems, including those using rhythmic and musical training in dyslexic patients.
Collapse
|
7
|
Jiménez de la Peña M, Jiménez de Domingo A, Tirado P, Calleja-Pérez B, Alcaraz LA, Álvarez S, Williams J, Hagman JR, Németh AH, Fernández-Jaén A. Neuroimaging Findings in Patients with EBF3 Mutations: Report of Two Cases. Mol Syndromol 2021; 12:186-193. [PMID: 34177436 DOI: 10.1159/000513583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Early B cell factor 3 (EBF3) is a transcription factor involved in brain development. Heterozygous, loss-of-function mutations in EBF3 have been reported in an autosomal dominant neurodevelopmental syndrome characterized by hypotonia, ataxia, and developmental delay (sometimes described as "HADD"s). We report 2 unrelated cases with novel de novo EBF3 mutations: c.455G>T (p.Arg152Leu) and c.962dup (p.Tyr321*) to expand the genotype/phenotype correlations of this disorder; clinical, neuropsychological, and MRI studies were used to define the phenotype. IQ was in the normal range and diffusion tensor imaging revealed asymmetric alterations of the longitudinal fasciculus in both cases. Our results demonstrate that EBF3 mutations can underlie neurodevelopmental disorders without intellectual disability. Long tract abnormalities have not been previously recognized and suggest that they may be an unrecognized and characteristic feature in this syndrome.
Collapse
Affiliation(s)
| | | | - Pilar Tirado
- Department of Pediatric Neurology, Hospital Universitario La Paz, Madrid, Spain
| | | | | | - Sara Álvarez
- Genomics and Medicine, NIMGenetics, Madrid, Spain
| | - Jonathan Williams
- Oxford Medical Genetics Laboratories, Churchill Hospital, Oxford, United Kingdom
| | - James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Andrea H Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Alberto Fernández-Jaén
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, and Medicine School, Universidad Europea de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Cermak CA, Arshinoff S, Ribeiro de Oliveira L, Tendera A, Beal DS, Brian J, Anagnostou E, Sanjeevan T. Brain and Language Associations in Autism Spectrum Disorder: A Scoping Review. J Autism Dev Disord 2021; 52:725-737. [PMID: 33765302 DOI: 10.1007/s10803-021-04975-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Examining brain and behaviour associations for language in autism spectrum disorder (ASD) may bring us closer to identifying neural profiles that are unique to a subgroup of individuals with ASD identified as language impaired (e.g. ASD LI+). We conducted a scoping review to examine brain regions that are associated with language performance in ASD. Further, we examined methodological differences across studies in how language ability was characterized and what neuroimaging methods were used to explore brain regions. Seventeen studies met inclusion criteria. Brain regions specific to ASD LI+ groups were found, however inconsistencies in brain and language associations were evident across study findings. Participant age, age-appropriate language scores, and neuroimaging methods likely contributed to differences in associations found.
Collapse
Affiliation(s)
- Carly A Cermak
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, 500 University Avenue, Toronto, ON, M5G 1V7, Canada. .,Rehabilitation Sciences Institute, University of Toronto, 500 University Avenue, Toronto, ON, M5G 1V7, Canada. .,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada.
| | - Spencer Arshinoff
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada
| | - Leticia Ribeiro de Oliveira
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, 500 University Avenue, Toronto, ON, M5G 1V7, Canada.,Rehabilitation Sciences Institute, University of Toronto, 500 University Avenue, Toronto, ON, M5G 1V7, Canada
| | - Anna Tendera
- Rehabilitation Sciences Institute, University of Toronto, 500 University Avenue, Toronto, ON, M5G 1V7, Canada
| | - Deryk S Beal
- Department of Speech-Language Pathology, Faculty of Medicine, University of Toronto, 500 University Avenue, Toronto, ON, M5G 1V7, Canada.,Rehabilitation Sciences Institute, University of Toronto, 500 University Avenue, Toronto, ON, M5G 1V7, Canada.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada.,Department of Paediatrics, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada.,Department of Paediatrics, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Teenu Sanjeevan
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Road, Toronto, ON, M4G 1R8, Canada
| |
Collapse
|
9
|
Lee JC, Dick AS, Tomblin JB. Altered brain structures in the dorsal and ventral language pathways in individuals with and without developmental language disorder (DLD). Brain Imaging Behav 2020; 14:2569-2586. [PMID: 31933046 PMCID: PMC7354888 DOI: 10.1007/s11682-019-00209-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental Language Disorder (DLD) is a neurodevelopmental disorder characterized by difficulty learning and using language, and this difficulty cannot be attributed to other developmental conditions. The aim of the current study was to examine structural differences in dorsal and ventral language pathways between adolescents and young adults with and without DLD (age range: 14-27 years) using anatomical magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Results showed age-related structural brain differences in both dorsal and ventral pathways in individuals with DLD. These findings provide evidence for neuroanatomical correlates of persistent language deficits in adolescents/young adults with DLD, and further suggest that this brain-language relationship in DLD is better characterized by taking account the dynamic course of the disorder along development.
Collapse
Affiliation(s)
- Joanna C Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - J Bruce Tomblin
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
10
|
Barbeau EB, Klein D, Soulières I, Petrides M, Bernhardt B, Mottron L. Age of Speech Onset in Autism Relates to Structural Connectivity in the Language Network. Cereb Cortex Commun 2020; 1:tgaa077. [PMID: 34296136 PMCID: PMC8152885 DOI: 10.1093/texcom/tgaa077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Speech onset delays (SOD) and language atypicalities are central aspects of the autism spectrum (AS), despite not being included in the categorical diagnosis of AS. Previous studies separating participants according to speech onset history have shown distinct patterns of brain organization and activation in perceptual tasks. One major white matter tract, the arcuate fasciculus (AF), connects the posterior temporal and left frontal language regions. Here, we used anatomical brain imaging to investigate the properties of the AF in adolescent and adult autistic individuals with typical levels of intelligence who differed by age of speech onset. The left AF of the AS group showed a significantly smaller volume than that of the nonautistic group. Such a reduction in volume was only present in the younger group. This result was driven by the autistic group without SOD (SOD−), despite their typical age of speech onset. The autistic group with SOD (SOD+) showed a more typical AF as adults relative to matched controls. This suggests that, along with multiple studies in AS-SOD+ individuals, atypical brain reorganization is observable in the 2 major AS subgroups and that such reorganization applies mostly to the language regions in SOD− and perceptual regions in SOD+ individuals.
Collapse
Affiliation(s)
- Elise B Barbeau
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Denise Klein
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Isabelle Soulières
- Department of Psychology, Université du Québec à Montreal, Montreal, QC H2X 3P2, Canada
| | - Michael Petrides
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Boris Bernhardt
- Neurology and Neurosurgery Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Laurent Mottron
- Département de Psychiatrie et d'addictologie, de l'Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
11
|
Verly M, Gerrits R, Sleurs C, Lagae L, Sunaert S, Zink I, Rommel N. The mis-wired language network in children with developmental language disorder: insights from DTI tractography. Brain Imaging Behav 2020; 13:973-984. [PMID: 29934818 DOI: 10.1007/s11682-018-9903-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This study aims to detect the neural substrate underlying the language impairment in children with developmental language disorder (DLD) using diffusion tensor imaging (DTI) tractography. Deterministic DTI tractography was performed in a group of right-handed children with DLD (N = 17; mean age 10;07 ± 2;01 years) and a typically developing control group matched for age, gender and handedness (N = 22; mean age 11;00 ± 1;11 years) to bilaterally identify the superior longitudinal fascicle, arcuate fascicle, anterior lateral segment and posterior lateral segment (also called dorsal language network) and the middle and inferior longitudinal fascicle, extreme capsule fiber system and uncinate fascicle (also called ventral language network). Language skills were assessed using an extensive, standardized test battery. Differences in language performance, white matter organization and structural lateralization of the language network were statistically analyzed. Children with DLD showed a higher overall volume and higher ADC values for the left-hemispheric language related WM tracts. In addition, in children with DLD, the majority (88%; 7/8) of the studied language related WM tracts did not show a significant left or right lateralization pattern. These structural alterations might underlie the language impairment in children with DLD.
Collapse
Affiliation(s)
- Marjolein Verly
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium.
| | - Robin Gerrits
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium
| | | | - Lieven Lagae
- Department of Pediatrics, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, Translational MRI, KU Leuven, Leuven, Belgium.,Department of Radiology, UZ Leuven, Leuven, Belgium
| | - Inge Zink
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium
| | - Nathalie Rommel
- Department of Neurosciences, ExpORL, KU Leuven, Herestraat 49, bus 721, 3000, Leuven, Belgium
| |
Collapse
|
12
|
Yassin W, Kojima M, Owada K, Kuwabara H, Gonoi W, Aoki Y, Takao H, Natsubori T, Iwashiro N, Kasai K, Kano Y, Abe O, Yamasue H. Paternal age contribution to brain white matter aberrations in autism spectrum disorder. Psychiatry Clin Neurosci 2019; 73:649-659. [PMID: 31271249 DOI: 10.1111/pcn.12909] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/29/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
AIM Although advanced parental age holds an increased risk for autism spectrum disorder (ASD), its role as a potential risk factor for an atypical white matter development underlying the pathophysiology of ASD has not yet been investigated. The current study was aimed to detect white matter disparities in ASD, and further investigate the relationship of paternal and maternal age at birth with such disparities. METHODS Thirty-nine adult males with high-functioning ASD and 37 typically developing (TD) males were analyzed in the study. The FMRIB Software Library and tract-based spatial statistics were utilized to process and analyze the diffusion tensor imaging data. RESULTS Subjects with ASD exhibited significantly higher mean diffusivity (MD) and radial diffusivity (RD) in white matter fibers, including the association (inferior fronto-occipital fasciculus, right inferior longitudinal fasciculus, superior longitudinal fasciculi, uncinate fasciculus, and cingulum), commissural (forceps minor), and projection tracts (anterior thalamic radiation and right corticospinal tract) compared to TD subjects (Padjusted < 0.05). No differences were seen in either fractional anisotropy or axial diffusivity. Linear regression analyses assessing the relationship between parental ages and the white matter aberrations revealed a positive correlation between paternal age (PA), but not maternal age, and both MD and RD in the affected fibers (Padjusted < 0.05). Multiple regression showed that only PA was a predictor of both MD and RD. CONCLUSION Our findings suggest that PA contributes to the white matter disparities seen in individuals with ASD compared to TD subjects.
Collapse
Affiliation(s)
- Walid Yassin
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiho Owada
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Wataru Gonoi
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Aoki
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidemasa Takao
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsunobu Natsubori
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Norichika Iwashiro
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yukiko Kano
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
13
|
McMurray B, Klein-Packard J, Tomblin JB. A real-time mechanism underlying lexical deficits in developmental language disorder: Between-word inhibition. Cognition 2019; 191:104000. [PMID: 31234114 PMCID: PMC6988176 DOI: 10.1016/j.cognition.2019.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 06/07/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
Eight to 11% of children have a clinical disorder in oral language (Developmental Language Disorder, DLD). Language deficits in DLD can affect all levels of language and persist through adulthood. Word-level processing may be critical as words link phonology, orthography, syntax and semantics. Thus, a lexical deficit could cascade throughout language. Cognitively, word recognition is a competition process: as the input (e.g., lizard) unfolds, multiple candidates (liver, wizard) compete for recognition. Children with DLD do not fully resolve this competition, but it is unclear what cognitive mechanisms underlie this. We examined lexical inhibition-the ability of more active words to suppress competitors-in 79 adolescents with and without DLD. Participants heard words (e.g. net) in which the onset was manipulated to briefly favor a competitor (neck). This was predicted to inhibit the target, slowing recognition. Word recognition was measured using a task in which participants heard the stimulus, and clicked on a picture of the item from an array of competitors, while eye-movements were monitored as a measure of how strongly the participant was committed to that interpretation over time. TD listeners showed evidence of inhibition with greater interference for stimuli that briefly activated a competitor word. DLD listeners did not. This suggests deficits in DLD may stem from a failure to engage lexical inhibition. This in turn could have ripple effects throughout the language system. This supports theoretical approaches to DLD that emphasize lexical-level deficits, and deficits in real-time processing.
Collapse
Affiliation(s)
- Bob McMurray
- Dept. of Psychological & Brain Sciences, University of Iowa, United States; Dept. of Communication Sciences & Disorders, University of Iowa, United States; Dept. of Linguistics, University of Iowa, United States; Dept. of Otolaryngology, University of Iowa, United States; DeLTA Center, University of Iowa, United States.
| | | | - J Bruce Tomblin
- Dept. of Communication Sciences & Disorders, University of Iowa, United States; DeLTA Center, University of Iowa, United States
| |
Collapse
|
14
|
Cheng Q, Roth A, Halgren E, Mayberry RI. Effects of Early Language Deprivation on Brain Connectivity: Language Pathways in Deaf Native and Late First-Language Learners of American Sign Language. Front Hum Neurosci 2019; 13:320. [PMID: 31607879 PMCID: PMC6761297 DOI: 10.3389/fnhum.2019.00320] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023] Open
Abstract
Previous research has identified ventral and dorsal white matter tracts as being crucial for language processing; their maturation correlates with increased language processing capacity. Unknown is whether the growth or maintenance of these language-relevant pathways is shaped by language experience in early life. To investigate the effects of early language deprivation and the sensory-motor modality of language on white matter tracts, we examined the white matter connectivity of language-relevant pathways in congenitally deaf people with or without early access to language. We acquired diffusion tensor imaging (DTI) data from two groups of individuals who experienced language from birth, twelve deaf native signers of American Sign Language, and twelve hearing L2 signers of ASL (native English speakers), and from three, well-studied individual cases who experienced minimal language during childhood. The results indicate that the sensory-motor modality of early language experience does not affect the white matter microstructure between crucial language regions. Both groups with early language experience, deaf and hearing, show leftward laterality in the two language-related tracts. However, all three cases with early language deprivation showed altered white matter microstructure, especially in the left dorsal arcuate fasciculus (AF) pathway.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Linguistics, University of California, San Diego, San Diego, CA, United States
| | - Austin Roth
- Department of Linguistics, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Eric Halgren
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| | - Rachel I. Mayberry
- Department of Linguistics, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
15
|
Cooper HE, Kaden E, Halliday LF, Bamiou DE, Mankad K, Peters C, Clark CA. White matter microstructural abnormalities in children with severe congenital hypothyroidism. NEUROIMAGE-CLINICAL 2019; 24:101980. [PMID: 31446316 PMCID: PMC6713841 DOI: 10.1016/j.nicl.2019.101980] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022]
Abstract
This study assessed white matter microstructural integrity and behavioral correlates for children with severe congenital hypothyroidism (CH) who were identified and treated early following newborn screening. Eighteen children with severe CH and 21 healthy controls underwent a battery of behavioral measures of hearing, language and communication, along with diffusion MR imaging. Tract-based spatial statistics were performed on standard diffusion parameters of fractional anisotropy and diffusivity metrics. Microscopic diffusion anisotropy mapping based on the Spherical Mean Technique was also used to evaluate biologically specific metrics. Compared with age-matched controls, children with severe CH had poorer hearing and communication skills, albeit generally within normal limits. Children with severe CH had fractional anisotropy that was significantly lower in the cerebellum, bilateral thalami and right temporal lobe, and radial diffusivity that was significantly higher in the cerebellum and bilateral thalami. Microscopic fractional anisotropy and intra-neurite volume fraction were also significantly decreased, and transverse microscopic diffusivity was significantly increased, in the CH group in areas including the cerebellum, thalamus, occipital lobe, and corpus callosum, and in the white matter adjacent to sensorimotor cortex, particularly in the left hemisphere. Significant and widespread correlations were observed between behavioral measures and measures of white matter microstructural integrity in children with CH. The results indicate that children with severe CH who are identified through newborn screening may have significant brain white matter microstructural abnormalities despite early treatment. Children with severe CH show reductions in white matter microstructural integrity. Hearing and communication abilities are impaired for some children with severe CH. White matter abnormalities are associated with communication abilities in CH.
Collapse
Affiliation(s)
- Hannah E Cooper
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK; Royal Berkshire NHS Foundation Trust, Reading, UK.
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Lorna F Halliday
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Doris-Eva Bamiou
- UCL Ear Institute, Faculty of Brain Sciences, University College London, London, UK; National Institute of Health Research (NIHR), University College London Hospitals Biomedical Research Centre, London, UK
| | - Kshitij Mankad
- Department of Neuroradiology, Great Ormond Street Hospital for Children, London, UK
| | - Catherine Peters
- Department of Endocrinology, Great Ormond Street Hospital for Children, London, UK
| | - Christopher A Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
16
|
Hrdlicka M, Sanda J, Urbanek T, Kudr M, Dudova I, Kickova S, Pospisilova L, Mohaplova M, Maulisova A, Krsek P, Kyncl M, Blatny M, Komarek V. Diffusion Tensor Imaging And Tractography In Autistic, Dysphasic, And Healthy Control Children. Neuropsychiatr Dis Treat 2019; 15:2843-2852. [PMID: 31632032 PMCID: PMC6781738 DOI: 10.2147/ndt.s219545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/01/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is a powerful tool for investigating brain anatomical connectivity. The aim of our study was to compare brain connectivity among children with autism spectrum disorders (ASD), developmental dysphasia (DD), and healthy controls (HC) in the following tracts: the arcuate fasciculus (AF), inferior frontal occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and uncinate fasciculus (UF). METHODS Our sample consisted of 113 children with a mean age 8.7±2.2 years (77 boys, 36 girls), divided into three subgroups: ASD (n=39), DD (n=36), and HC (n=38). The International Classification of Diseases, 10th ed. was used to make clinical diagnoses. DTI images were collected using a 1.5 T Phillips Achieva MR imaging system. RESULTS Detailed analyses of fractional anisotropy (FA) revealed significant differences among the ASD, DD, and HC groups in the left AF (p=0.014) and right AF (p=0.001), the left IFOF (p<0.001) and right IFOF (p<0.001), the left ILF (p<0.001) and right ILF (p<0.001), but not in the UF. Post-hoc analyses revealed three patterns of FA differences among the groups: (1) in the right AF, right IFOF, and right ILF, FA was significantly lower in the ASD group compared to the DD and HC groups; however, there was no difference in FA between DD and HC; (2) in the left AF and left IFOF, FA was significantly lower in the ASD than in the HC group, but there were no differences between DD vs HC nor DD vs ASD; and (3) in the left ILF, no difference in FA was seen between ASD and DD, but FA in both was significantly lower than in the HC. CONCLUSION Microstructural white matter properties differed between ASD vs DD and HC subjects. The tract where FA impairment in ASD and DD subjects was the most similar was the left ILF.
Collapse
Affiliation(s)
- Michal Hrdlicka
- Department of Child Psychiatry, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Jan Sanda
- Department of Radiology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Tomas Urbanek
- Institute of Psychology, Academy of Sciences, Brno, Czech Republic
| | - Martin Kudr
- Department of Pediatric Neurology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Iva Dudova
- Department of Child Psychiatry, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Stepanka Kickova
- Department of Child Psychiatry, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lenka Pospisilova
- Department of Child Psychiatry, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.,Charles University First Faculty of Medicine, Prague, Czech Republic
| | - Marketa Mohaplova
- Department of Child Psychiatry, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Alice Maulisova
- Department of Pediatric Neurology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Martin Kyncl
- Department of Radiology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Marek Blatny
- Department of Child Psychiatry, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic.,Department of Psychology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Vladimir Komarek
- Department of Pediatric Neurology, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
17
|
Morgan AT, Su M, Reilly S, Conti-Ramsden G, Connelly A, Liégeois FJ. A Brain Marker for Developmental Speech Disorders. J Pediatr 2018; 198:234-239.e1. [PMID: 29705112 DOI: 10.1016/j.jpeds.2018.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/21/2018] [Accepted: 02/14/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To characterize the organization of speech- and language-related white matter tracts in children with developmental speech and/or language disorders. STUDY DESIGN We collected magnetic resonance diffusion-weighted imaging data from 41 children, ages 9-11 years, with developmental speech and/or language disorders, and compared them with 45 typically developing controls with the same age range. We used probabilistic tractography of diffusion-weighted imaging to map language (3 segments of arcuate fasciculus, extreme capsule system) and speech motor (corticobulbar) tracts bilaterally. The corticospinal and callosal tracts were used as control regions. We compared the mean fractional anisotropy and diffusivity values between atypical and control groups, covarying for nonverbal IQ. We then examined differences between atypical subgroups: developmental speech disorder (DSD), developmental language disorder, and co-occurring developmental speech and language disorder. RESULTS Fractional anisotropy in the left corticobulbar tract was lower in the DSD than in the control group. Radial and mean diffusivity were higher in the DSD than the developmental language disorder, co-occurring developmental speech and language disorder, or control groups. There were no group differences for any metrics in the language or control tracts. CONCLUSIONS Atypical development of the left corticobulbar tract may be a neural marker for DSD. This finding is in line with reports of speech disorder after left corticobulbar damage in children and adults with brain injury. By contrast, we found no association between diffusion metrics in language-related tracts in developmental language disorder, and changes for language disorders are likely more complex.
Collapse
Affiliation(s)
- Angela T Morgan
- Murdoch Children's Research Institute and Royal Children's Hospital, Melbourne, Australia; University of Melbourne, Australia.
| | - Merina Su
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sheena Reilly
- Murdoch Children's Research Institute and Royal Children's Hospital, Melbourne, Australia; Griffith University, Gold Coast, Australia
| | | | - Alan Connelly
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | | |
Collapse
|
18
|
Leivada E, Kambanaros M, Grohmann KK. The Locus Preservation Hypothesis: Shared Linguistic Profiles across Developmental Disorders and the Resilient Part of the Human Language Faculty. Front Psychol 2017; 8:1765. [PMID: 29081756 PMCID: PMC5646141 DOI: 10.3389/fpsyg.2017.01765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/25/2017] [Indexed: 12/18/2022] Open
Abstract
Grammatical markers are not uniformly impaired across speakers of different languages, even when speakers share a diagnosis and the marker in question is grammaticalized in a similar way in these languages. The aim of this work is to demarcate, from a cross-linguistic perspective, the linguistic phenotype of three genetically heterogeneous developmental disorders: specific language impairment, Down syndrome, and autism spectrum disorder. After a systematic review of linguistic profiles targeting mainly English-, Greek-, Catalan-, and Spanish-speaking populations with developmental disorders (n = 880), shared loci of impairment are identified and certain domains of grammar are shown to be more vulnerable than others. The distribution of impaired loci is captured by the Locus Preservation Hypothesis which suggests that specific parts of the language faculty are immune to impairment across developmental disorders. Through the Locus Preservation Hypothesis, a classical chicken and egg question can be addressed: Do poor conceptual resources and memory limitations result in an atypical grammar or does a grammatical breakdown lead to conceptual and memory limitations? Overall, certain morphological markers reveal themselves as highly susceptible to impairment, while syntactic operations are preserved, granting support to the first scenario. The origin of resilient syntax is explained from a phylogenetic perspective in connection to the "syntax-before-phonology" hypothesis.
Collapse
Affiliation(s)
- Evelina Leivada
- Language and Culture, UiT-The Arctic University of Norway, Tromsø, Norway
- Rehabilitation Sciences, Cyprus University of Technology, Limassol, Cyprus
| | - Maria Kambanaros
- Rehabilitation Sciences, Cyprus University of Technology, Limassol, Cyprus
- Cyprus University of Technology, Limassol, Cyprus
| | - Kleanthes K. Grohmann
- Rehabilitation Sciences, Cyprus University of Technology, Limassol, Cyprus
- English Studies, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
19
|
Fitzgerald J, Leemans A, Kehoe E, O'Hanlon E, Gallagher L, McGrath J. Abnormal fronto-parietal white matter organisation in the superior longitudinal fasciculus branches in autism spectrum disorders. Eur J Neurosci 2017; 47:652-661. [DOI: 10.1111/ejn.13655] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 11/27/2022]
Affiliation(s)
- Jacqueline Fitzgerald
- Department of Psychiatry; School of Medicine; Trinity College Dublin; Dublin Ireland
- Trinity College Institute of Neuroscience; Trinity College Dublin; Lloyd Building Dublin Ireland
| | - Alexander Leemans
- Image Sciences Institute; University Medical Center Utrecht; Utrecht The Netherlands
| | - Elizabeth Kehoe
- Trinity College Institute of Neuroscience; Trinity College Dublin; Lloyd Building Dublin Ireland
| | - Erik O'Hanlon
- Trinity College Institute of Neuroscience; Trinity College Dublin; Lloyd Building Dublin Ireland
- Department of Psychiatry; Royal College of Surgeons in Ireland; Dublin Ireland
| | - Louise Gallagher
- Department of Psychiatry; School of Medicine; Trinity College Dublin; Dublin Ireland
- Linndara Child and Adolescent Mental Health Service; Dublin Ireland
| | - Jane McGrath
- Department of Psychiatry; School of Medicine; Trinity College Dublin; Dublin Ireland
- Linndara Child and Adolescent Mental Health Service; Dublin Ireland
| |
Collapse
|
20
|
Naigles LR, Johnson R, Mastergeorge A, Ozonoff S, Rogers SJ, Amaral DG, Nordahl CW. Neural correlates of language variability in preschool-aged boys with autism spectrum disorder. Autism Res 2017; 10:1107-1119. [PMID: 28301102 DOI: 10.1002/aur.1756] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/17/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Children with autism vary widely in their language abilities, yet the neural correlates of this language variability remain unclear, especially early in development. Diffusion tensor imaging (DTI) was used to examine diffusivity measures along the length of 18 major fiber tracts in 104 preschool-aged boys with autism spectrum disorder (ASD). The boys were assigned to subgroups according to their level of language development (Low: no/low language, Middle: small vocabulary, High: large vocabulary and grammar), based on their raw scores on the expressive language (EL) and receptive language (RL) sections of the Mullen Scales of Early Learning (MSEL). Results indicate that the subgroups differed in fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) along the inferior longitudinal fasciculus (ILF) in both hemispheres. Moreover, FA correlated significantly with Mullen EL and RL raw scores, but not ADOS severity score, along the left and right ILF. Subgroups also differed in MD (but not FA) along the left superior longitudinal fasiculus and left corticospinal tract, but these differences were not correlated with language scores. These findings suggest that white matter microstructure in the left and right ILF varies in relation to lexical development in young males with ASD. The findings also support the use of raw scores on language-relevant standardized tests for assessing early language-brain relationships. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1107-1119. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Letitia R Naigles
- Department of Psychological Sciences, University of Connecticut, 406 Babbidge Road, Storrs, CT, 06296-1020
| | - Ryan Johnson
- Davis Health System, University of California-Davis MIND Institute: University of California, 2825 50th Street, Sacramento, CA, 95817
| | - Ann Mastergeorge
- Davis Health System, University of California-Davis MIND Institute: University of California, 2825 50th Street, Sacramento, CA, 95817.,Texas Tech University: Human Development and Family Studies, P.O. Box 41230, Lubbock, TX, 79409-1230
| | - Sally Ozonoff
- Davis Health System, University of California-Davis MIND Institute: University of California, 2825 50th Street, Sacramento, CA, 95817
| | - Sally J Rogers
- Davis Health System, University of California-Davis MIND Institute: University of California, 2825 50th Street, Sacramento, CA, 95817
| | - David G Amaral
- Davis Health System, University of California-Davis MIND Institute: University of California, 2825 50th Street, Sacramento, CA, 95817
| | - Christine Wu Nordahl
- Davis Health System, University of California-Davis MIND Institute: University of California, 2825 50th Street, Sacramento, CA, 95817
| |
Collapse
|
21
|
Bathelt J, Astle D, Barnes J, Raymond FL, Baker K. Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability. Neuroimage Clin 2016; 12:655-665. [PMID: 27747153 PMCID: PMC5053034 DOI: 10.1016/j.nicl.2016.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 01/01/2023]
Abstract
Childhood speech and language deficits are highly prevalent and are a common feature of neurodevelopmental disorders. However, it is difficult to investigate the underlying causal pathways because many diagnostic groups have a heterogeneous aetiology. Studying disorders with a shared genetic cause and shared cognitive deficits can provide crucial insight into the cellular mechanisms and neural systems that give rise to those impairments. The current study investigated structural brain differences of individuals with mutations in ZDHHC9, which is associated with a specific neurodevelopmental phenotype including prominent speech and language impairments and intellectual disability. We used multiple structural neuroimaging methods to characterise neuroanatomy in this group, and observed bilateral reductions in cortical thickness in areas surrounding the temporo-parietal junction, parietal lobule, and inferior frontal lobe, and decreased microstructural integrity of cortical, subcortical-cortical, and interhemispheric white matter projections. These findings are compared to reports for other genetic groups and genetically heterogeneous disorders with a similar presentation. Overlap in the neuroanatomical phenotype suggests a common pathway that particularly affects the development of temporo-parietal and inferior frontal areas, and their connections.
Collapse
Affiliation(s)
- Joe Bathelt
- MRC Cognition & Brain Sciences Unit, Cambridge, United Kingdom
| | - Duncan Astle
- MRC Cognition & Brain Sciences Unit, Cambridge, United Kingdom
| | - Jessica Barnes
- MRC Cognition & Brain Sciences Unit, Cambridge, United Kingdom
| | - F. Lucy Raymond
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Kate Baker
- MRC Cognition & Brain Sciences Unit, Cambridge, United Kingdom
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
22
|
Neurobiological Basis of Language Learning Difficulties. Trends Cogn Sci 2016; 20:701-714. [PMID: 27422443 PMCID: PMC4993149 DOI: 10.1016/j.tics.2016.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/18/2016] [Accepted: 06/20/2016] [Indexed: 12/24/2022]
Abstract
In this paper we highlight why there is a need to examine subcortical learning systems in children with language impairment and dyslexia, rather than focusing solely on cortical areas relevant for language. First, behavioural studies find that children with these neurodevelopmental disorders perform less well than peers on procedural learning tasks that depend on corticostriatal learning circuits. Second, fMRI studies in neurotypical adults implicate corticostriatal and hippocampal systems in language learning. Finally, structural and functional abnormalities are seen in the striatum in children with language disorders. Studying corticostriatal networks in developmental language disorders could offer us insights into their neurobiological basis and elucidate possible modes of compensation for intervention. Individuals with SLI and dyslexia have impaired or immature learning mechanisms; this hampers their extraction of structure in complex learning environments. These learning difficulties are not general or confined to language. Problems are specific to tasks that involve implicitly learning sequential structure or complex cue–outcome relationships. Such learning is thought to depend upon corticostriatal circuits. In language learning studies, the striatum is recruited when adults extract sequential information from auditory-verbal sequences and as they learn complex motor routines relevant for speech. Neuroimaging studies indicate striatal abnormalities in individuals with language disorders. There is a need to probe the integrity of neural learning systems in developmental language disorders using tasks relevant for language learning which place specific demands on the striatum/MTL.
Collapse
|
23
|
Meyns P, Van Gestel L, Leunissen I, De Cock P, Sunaert S, Feys H, Duysens J, Desloovere K, Ortibus E. Macrostructural and Microstructural Brain Lesions Relate to Gait Pathology in Children With Cerebral Palsy. Neurorehabil Neural Repair 2016; 30:817-33. [DOI: 10.1177/1545968315624782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background. Even though lower-limb motor disorders are core features of spastic cerebral palsy (sCP), the relationship with brain lesions remains unclear. Unraveling the relation between gait pathology, lower-limb function, and brain lesions in sCP is complex for several reasons; wide heterogeneity in brain lesions, ongoing brain maturation, and gait depends on a number of primary motor functions/deficits (eg, muscle strength, spasticity). Objective. To use a comprehensive approach combining conventional MRI and diffusion tensor imaging (DTI) in children with sCP above 3 years old to relate quantitative parameters of brain lesions in multiple brain areas to gait performance. Methods. A total of 50 children with sCP (25 bilateral, 25 unilateral involvement) were enrolled. The investigated neuroradiological parameters included the following: (1) volumetric measures of the corpus callosum (CC) and lateral ventricles (LVs), and (2) DTI parameters of the corticospinal tract (CST). Gait pathology and primary motor deficits, including muscle strength and spasticity, were evaluated by 3D gait analysis and clinical examination. Results. In bilateral sCP (n = 25), volume of the LV and the subparts of the CC connecting frontal, (pre)motor, and sensory areas were most related to lower-limb functioning and gait pathology. DTI measures of the CST revealed additional relations with the primary motor deficits (n = 13). In contrast, in unilateral sCP, volumetric (n = 25) and diffusion measures (n = 14) were only correlated to lower-limb strength. Conclusions. These results indicate that the combined influence of multiple brain lesions and their impact on the primary motor deficits might explain a large part of the gait pathology in sCP.
Collapse
Affiliation(s)
- Pieter Meyns
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Belgium
- Movement control and neuroplasticity, Department of Kinesiology, KU Leuven, Belgium
| | - Leen Van Gestel
- Neuromotor Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
- The Scottish Centre for Children with Motor Impairments, Cumbernauld, United Kingdom
| | - Inge Leunissen
- Movement control and neuroplasticity, Department of Kinesiology, KU Leuven, Belgium
| | - Paul De Cock
- Center for Developmental Disabilities, University Hospitals Leuven, Belgium
- Department of Public Health, Faculty of Medicine, KU Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals Leuven, Belgium
| | - Hilde Feys
- Neuromotor Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
| | - Jacques Duysens
- Movement control and neuroplasticity, Department of Kinesiology, KU Leuven, Belgium
| | - Kaat Desloovere
- Neuromotor Rehabilitation, Department of Rehabilitation Sciences, KU Leuven, Belgium
- Clinical Motion Analysis Laboratory, CERM, University Hospital Leuven, KU Leuven, Belgium
| | - Els Ortibus
- Department of Development and Regeneration, Faculty of Medicine, KU Leuven, Belgium
| |
Collapse
|
24
|
Ismail MMT, Keynton RS, Mostapha MMMO, ElTanboly AH, Casanova MF, Gimel'farb GL, El-Baz A. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey. Front Hum Neurosci 2016; 10:211. [PMID: 27242476 PMCID: PMC4862981 DOI: 10.3389/fnhum.2016.00211] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/25/2016] [Indexed: 12/17/2022] Open
Abstract
Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics.
Collapse
Affiliation(s)
- Marwa M. T. Ismail
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Robert S. Keynton
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | | | - Ahmed H. ElTanboly
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| | - Manuel F. Casanova
- Departments of Pediatrics and Biomedical Sciences, University of South CarolinaColumbia, SC, USA
| | | | - Ayman El-Baz
- BioImaging Laboratory, Department of Bioengineering, University of LouisvilleLouisville, KY, USA
| |
Collapse
|
25
|
Kennis M, van Rooij SJH, Kahn RS, Geuze E, Leemans A. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis? Neuroimage Clin 2016; 11:539-547. [PMID: 27158586 PMCID: PMC4845159 DOI: 10.1016/j.nicl.2016.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 12/04/2022]
Abstract
Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically - e.g., by reversing the polarity of the phase-encoding (PE) direction - this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction.
Collapse
Affiliation(s)
- M Kennis
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Research Center, Military Mental Healthcare, Ministry of Defence, Utrecht, The Netherlands.
| | - S J H van Rooij
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Research Center, Military Mental Healthcare, Ministry of Defence, Utrecht, The Netherlands; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - R S Kahn
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Geuze
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands; Research Center, Military Mental Healthcare, Ministry of Defence, Utrecht, The Netherlands
| | - A Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
de Diego-Balaguer R, Martinez-Alvarez A, Pons F. Temporal Attention as a Scaffold for Language Development. Front Psychol 2016; 7:44. [PMID: 26869953 PMCID: PMC4735410 DOI: 10.3389/fpsyg.2016.00044] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/11/2016] [Indexed: 11/16/2022] Open
Abstract
Language is one of the most fascinating abilities that humans possess. Infants demonstrate an amazing repertoire of linguistic abilities from very early on and reach an adult-like form incredibly fast. However, language is not acquired all at once but in an incremental fashion. In this article we propose that the attentional system may be one of the sources for this developmental trajectory in language acquisition. At birth, infants are endowed with an attentional system fully driven by salient stimuli in their environment, such as prosodic information (e.g., rhythm or pitch). Early stages of language acquisition could benefit from this readily available, stimulus-driven attention to simplify the complex speech input and allow word segmentation. At later stages of development, infants are progressively able to selectively attend to specific elements while disregarding others. This attentional ability could allow them to learn distant non-adjacent rules needed for morphosyntactic acquisition. Because non-adjacent dependencies occur at distant moments in time, learning these dependencies may require correctly orienting attention in the temporal domain. Here, we gather evidence uncovering the intimate relationship between the development of attention and language. We aim to provide a novel approach to human development, bridging together temporal attention and language acquisition.
Collapse
Affiliation(s)
- Ruth de Diego-Balaguer
- Institució Catalana de Recerca i Estudis AvançatsBarcelona, Spain
- Cognition and Brain Plasticity Unit, Institut d’Investigació Biomèdica de BellvitgeBarcelona, Spain
- Department of Basic Psychology, University of BarcelonaBarcelona, Spain
| | - Anna Martinez-Alvarez
- Cognition and Brain Plasticity Unit, Institut d’Investigació Biomèdica de BellvitgeBarcelona, Spain
- Department of Basic Psychology, University of BarcelonaBarcelona, Spain
| | - Ferran Pons
- Department of Basic Psychology, University of BarcelonaBarcelona, Spain
- Department of Basic Psychology, Institute for Brain, Cognition and Behavior (IR3C), University of BarcelonaBarcelona, Spain
| |
Collapse
|
27
|
Boets B, Verhoeven J, Wouters J, Steyaert J. Fragile spectral and temporal auditory processing in adolescents with autism spectrum disorder and early language delay. J Autism Dev Disord 2015; 45:1845-57. [PMID: 25503681 DOI: 10.1007/s10803-014-2341-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM) detection versus gap-in-noise detection and faster AM detection), and to pinpoint the task and stimulus characteristics underlying putative superior spectral processing in ASD. We observed impaired frequency discrimination in the ASD group and suggestive evidence of poorer temporal resolution as indexed by gap-in-noise detection thresholds. These findings question the evidence of enhanced spectral sensitivity in ASD and do not support the hypothesis of superior right and inferior left hemispheric auditory processing in ASD.
Collapse
Affiliation(s)
- Bart Boets
- Child and Adolescent Psychiatry, Department of Neurosciences, University of Leuven (KU Leuven), Herestraat 49, Box 7003, 3000, Leuven, Belgium,
| | | | | | | |
Collapse
|
28
|
Vydrova R, Komarek V, Sanda J, Sterbova K, Jahodova A, Maulisova A, Zackova J, Reissigova J, Krsek P, Kyncl M. Structural alterations of the language connectome in children with specific language impairment. BRAIN AND LANGUAGE 2015; 151:35-41. [PMID: 26609941 DOI: 10.1016/j.bandl.2015.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 09/18/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
We evaluated brain white matter pathways associated with language processing in 37 children with specific language impairment aged 6-12 years and 34 controls, matched for age, sex and handedness. Arcuate fascicle (AF), inferior fronto-occipital fascicle (IFOF), inferior longitudinal fascicle (ILF) and uncinate fascicle (UF) were identified using magnetic resonance diffusion tensor imaging (DTI). Diffusivity parameters and volume of the tracts were compared between the SLI and control group. Children with SLI showed decreased fractional anisotropy in all investigated tracts, increased mean diffusivity and radial diffusivity component in arcuate fascicle bilaterally, left IFOF and left ILF. Further, bilaterally increased volume of the ILF in children with SLI was found. We confirmed previous findings indicating deficient connectivity of the arcuate fascicle and as a novel finding, demonstrate abnormal development of the ventral language stream in patients with SLI.
Collapse
Affiliation(s)
- Rosa Vydrova
- Department of Pediatric Neurology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Vladimir Komarek
- Department of Pediatric Neurology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Jan Sanda
- Department of Radiology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Katalin Sterbova
- Department of Pediatric Neurology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Alena Jahodova
- Department of Pediatric Neurology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Alice Maulisova
- Department of Psychology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Jitka Zackova
- Department of Psychology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | - Jindra Reissigova
- Institute of Computer Science AS CR, Department of Medical Informatics and Biostatistics, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic.
| | - Martin Kyncl
- Department of Radiology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
29
|
Lai MC, Lombardo MV, Ecker C, Chakrabarti B, Suckling J, Bullmore ET, Happé F, Murphy DGM, Baron-Cohen S. Neuroanatomy of Individual Differences in Language in Adult Males with Autism. Cereb Cortex 2015; 25:3613-28. [PMID: 25249409 PMCID: PMC4585508 DOI: 10.1093/cercor/bhu211] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language-neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity.
Collapse
Affiliation(s)
- Meng-Chuan Lai
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei 10051, Taiwan
| | - Michael V. Lombardo
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,Department of Psychology and Center for Applied Neuroscience, University of Cyprus, Nicosia CY 1678, Cyprus
| | - Christine Ecker
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, PO23, Institute of Psychiatry, London SE5 8AF, UK
| | - Bhismadev Chakrabarti
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,School of Psychology and Clinical Language Sciences, Centre for Integrative Neuroscience and Neurodynamics, University of Reading, Reading RG6 6AL, UK
| | - John Suckling
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Edward T. Bullmore
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge CB2 0SZ, UK,GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| | - Francesca Happé
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, PO80, Institute of Psychiatry, London SE5 8AF, UK
| | | | - Declan G. M. Murphy
- Sackler Institute for Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, King's College London, PO23, Institute of Psychiatry, London SE5 8AF, UK
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge CB2 8AH, UK,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge CB21 5EF, UK
| |
Collapse
|
30
|
Mayes AK, Reilly S, Morgan AT. Neural correlates of childhood language disorder: a systematic review. Dev Med Child Neurol 2015; 57:706-17. [PMID: 25692930 DOI: 10.1111/dmcn.12714] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2014] [Indexed: 01/28/2023]
Abstract
AIM The neurobiological contributions of childhood language disorder are not well understood. Yet there is increasing evidence that language disorder is associated with differences in brain structure and/or function in core language regions. A key hypothesis has been that children with language disorder do not show the same degree of leftward asymmetry of these regions as observed in typically developing children. We aimed to systematically review structural and functional magnetic resonance imaging (fMRI) studies to examine brain commonalities and differences between children with language disorder and typically developing controls; and differences in leftward asymmetry between these groups. METHOD A systematic review was conducted using MeSH terms synonymous with childhood language disorder and brain MRI methods. The search identified 1443 papers, and 18 articles met the criteria and were appraised for level and quality of evidence. RESULTS Atypical brain structure and function was reported within traditionally recognized language regions across studies, including the inferior frontal gyrus, posterior superior temporal gyrus, and caudate nucleus. The direction of difference (e.g. increased/decreased) was variable, however, likely because of differences in language disorder groups examined and magnetic resonance data acquisition and analysis approaches. As regards asymmetry, there was some evidence of reduction of the anticipated structural and functional leftward asymmetry in frontal language regions in language disorder groups. INTERPRETATION Mounting evidence suggests that children with language disorder have atypical brain structure and function within neural regions integral to language. There is limited support for the hypothesis that children with language disorder show a reduction of leftward structural and/or functional asymmetry in frontal language regions. Interpretation is limited, however, by a high degree of variability in language disorder assessment and phenotype, and in magnetic resonance methodologies. A large-scale magnetic resonance study of brain structure and function is required in a well-defined language disorder population cohort, with replication, to provide confirmatory data on the neural correlates of childhood language disorder.
Collapse
Affiliation(s)
- Angela K Mayes
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia
| | - Sheena Reilly
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia.,The University of Melbourne, Melbourne, Vic., Australia
| | - Angela T Morgan
- Murdoch Childrens Research Institute, Melbourne, Vic., Australia.,The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
31
|
Perrone D, Aelterman J, Pižurica A, Jeurissen B, Philips W, Leemans A. The effect of Gibbs ringing artifacts on measures derived from diffusion MRI. Neuroimage 2015; 120:441-55. [PMID: 26142273 DOI: 10.1016/j.neuroimage.2015.06.068] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/22/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022] Open
Abstract
Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a unique method to investigate microstructural tissue properties noninvasively and is one of the most popular methods for studying the brain white matter in vivo. To obtain reliable statistical inferences with diffusion MRI, however, there are still many challenges, such as acquiring high-quality DW-MRI data (e.g., high SNR and high resolution), careful data preprocessing (e.g., correcting for subject motion and eddy current induced geometric distortions), choosing the appropriate diffusion approach (e.g., diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), or diffusion spectrum MRI), and applying a robust analysis strategy (e.g., tractography based or voxel based analysis). Notwithstanding the numerous efforts to optimize many steps in this complex and lengthy diffusion analysis pipeline, to date, a well-known artifact in MRI--i.e., Gibbs ringing (GR)--has largely gone unnoticed or deemed insignificant as a potential confound in quantitative DW-MRI analysis. Considering the recent explosion of diffusion MRI applications in biomedical and clinical applications, a systematic and comprehensive investigation is necessary to understand the influence of GR on the estimation of diffusion measures. In this work, we demonstrate with simulations and experimental DW-MRI data that diffusion estimates are significantly affected by GR artifacts and we show that an off-the-shelf GR correction procedure based on total variation already can alleviate this issue substantially.
Collapse
Affiliation(s)
- Daniele Perrone
- iMinds - Image Processing and Interpretation, Ghent University, Ghent, Belgium.
| | - Jan Aelterman
- iMinds - Image Processing and Interpretation, Ghent University, Ghent, Belgium
| | - Aleksandra Pižurica
- iMinds - Image Processing and Interpretation, Ghent University, Ghent, Belgium
| | - Ben Jeurissen
- iMinds - Vision Lab, Department of Physics, University of Antwerp, Belgium
| | - Wilfried Philips
- iMinds - Image Processing and Interpretation, Ghent University, Ghent, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
32
|
Vanderauwera J, Vandermosten M, Dell'Acqua F, Wouters J, Ghesquière P. Disentangling the relation between left temporoparietal white matter and reading: A spherical deconvolution tractography study. Hum Brain Mapp 2015; 36:3273-87. [PMID: 26037303 DOI: 10.1002/hbm.22848] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 01/18/2023] Open
Abstract
Diffusion tensor imaging (DTI) studies have shown that left temporoparietal white matter is related to phonological aspects of reading. However, DTI lacks the sensitivity to disentangle whether phonological processing is sustained by intrahemispheric connections, interhemispheric connections, or projection tracts. Spherical deconvolution (SD) is a nontensor model which enables a more accurate estimation of multiple fiber directions in crossing fiber regions. Hence, this study is the first to investigate whether the observed relation with reading aspects in left temporoparietal white matter is sustained by a particular pathway by applying a nontensor model. Second, measures of degree of diffusion anisotropy, which indirectly informs about white matter organization, were compared between DTI and SD tractography. In this study, 71 children (5-6 years old) participated. Intrahemispheric, interhemispheric, and projection pathways were delineated using DTI and SD tractography. Anisotropy indices were extracted, that is, fractional anisotropy (FA) in DTI and quantitative hindrance modulated orientational anisotropy (HMOA) in SD. DTI results show that diffusion anisotropy in both the intrahemispheric and projection tracts was positively correlated to phonological awareness; however, the effect was confounded by subjects' motion. In SD, the relation was restricted to the left intrahemispheric connections. A model comparison suggested that FA was, relatively to HMOA, more confounded by fiber crossings; however, anisotropy indices were highly related. In sum, this study shows the potential of SD to quantify white matter microstructure in regions containing crossing fibers. More specifically, SD analyses show that phonological awareness is sustained by left intrahemispheric connections and not interhemispheric or projection tracts.
Collapse
Affiliation(s)
- Jolijn Vanderauwera
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Maaike Vandermosten
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Flavio Dell'Acqua
- NATBRAINLAB, Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jan Wouters
- Research Group ExpORL, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Pol Ghesquière
- Parenting and Special Education Research Unit, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
33
|
Clément S, Planchou C, Béland R, Motte J, Samson S. Singing abilities in children with Specific Language Impairment (SLI). Front Psychol 2015; 6:420. [PMID: 25918508 PMCID: PMC4394662 DOI: 10.3389/fpsyg.2015.00420] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/25/2015] [Indexed: 11/13/2022] Open
Abstract
Specific Language Impairment (SLI) is a heritable neurodevelopmental disorder diagnosed when a child has difficulties learning to produce and/or understand speech for no apparent reason (Bishop et al., 2012). The verbal difficulties of children with SLI have been largely documented, and a growing number of studies suggest that these children may also have difficulties in processing non-verbal complex auditory stimuli (Corriveau et al., 2007; Brandt et al., 2012). In a recent study, we reported that a large proportion of children with SLI present deficits in music perception (Planchou et al., under revision). Little is known, however, about the singing abilities of children with SLI. In order to investigate whether or not the impairments in expressive language extend to the musical domain, we assessed singing abilities in eight children with SLI and 15 children with Typical Language Development (TLD) matched for age and non-verbal intelligence. To this aim, we designed a ludic activity consisting of two singing tasks: a pitch-matching and a melodic reproduction task. In the pitch-matching task, the children were requested to sing single notes. In the melodic reproduction task, children were asked to sing short melodies that were either familiar (FAM-SONG and FAM-TUNE conditions) or unfamiliar (UNFAM-TUNE condition). The analysis showed that children with SLI were impaired in the pitch-matching task, with a mean pitch error of 250 cents (mean pitch error for children with TLD: 154 cents). In the melodic reproduction task, we asked 30 healthy adults to rate the quality of the sung productions of the children on a continuous rating scale. The results revealed that singing of children with SLI received lower mean ratings than the children with TLD. Our findings thus indicate that children with SLI showed impairments in musical production and are discussed in light of a general auditory-motor dysfunction in children with SLI.
Collapse
Affiliation(s)
- Sylvain Clément
- Neuropsychology: Auditory, Cognition, Action Team, Laboratoire PSITEC, UFR de Psychologie, Université de Lille Villeneuve d'Ascq, France
| | - Clément Planchou
- Neuropsychology: Auditory, Cognition, Action Team, Laboratoire PSITEC, UFR de Psychologie, Université de Lille Villeneuve d'Ascq, France ; Neurologie Pédiatrique, Pôle Femme-Mère-Enfant, American Memorial Hospital Reims, France
| | - Renée Béland
- École d'Orthophonie et d'Audiologie, Université de Montréal Montréal, QC, Canada
| | - Jacques Motte
- Neurologie Pédiatrique, Pôle Femme-Mère-Enfant, American Memorial Hospital Reims, France
| | - Séverine Samson
- Neuropsychology: Auditory, Cognition, Action Team, Laboratoire PSITEC, UFR de Psychologie, Université de Lille Villeneuve d'Ascq, France ; Unité d'Épilepsie, Groupe Hospitalier Pitié-Salpêtrière Paris, France
| |
Collapse
|
34
|
Taylor LJ, Maybery MT, Grayndler L, Whitehouse AJO. Evidence for distinct cognitive profiles in autism spectrum disorders and specific language impairment. J Autism Dev Disord 2014; 44:19-30. [PMID: 23670577 DOI: 10.1007/s10803-013-1847-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Findings that a subgroup of children with an autism spectrum disorder (ASD) have linguistic capabilities that resemble specific language impairment (SLI) have led some authors to hypothesise that ASD and SLI have a shared aetiology. While considerable research has explored overlap in the language phenotypes of the two conditions, little research has examined possible overlap in cognitive characteristics. In this study, we explored nonword and sentence repetition performance, as well as performance on the Children's Embedded Figures Test (CEFT) for children with ASD or SLI. As expected, 'language impaired' children with ASD (ALI) and children with SLI performed worse than both 'language normal' ASD (ALN) and typically developing (TD) children on the nonword and sentence repetition tests. Further, the SLI children performed worse than all other groups on the CEFT. This finding supports distinct cognitive profiles in ASD and SLI and may provide further evidence for distinct aetiological mechanisms in the two conditions.
Collapse
Affiliation(s)
- Lauren J Taylor
- Neurocognitive Development Unit, School of Psychology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia,
| | | | | | | |
Collapse
|
35
|
Visual processing in adolescents with autism spectrum disorder: evidence from embedded figures and configural superiority tests. J Autism Dev Disord 2014; 45:1281-90. [PMID: 25342435 DOI: 10.1007/s10803-014-2288-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The embedded figures test has often been used to reveal weak central coherence in individuals with autism spectrum disorder (ASD). Here, we administered a more standardized automated version of the embedded figures test in combination with the configural superiority task, to investigate the effect of contextual modulation on local feature detection in 23 adolescents with ASD and 26 matched typically developing controls. On both tasks both groups performed largely similarly in terms of accuracy and reaction time, and both displayed the contextual modulation effect. This indicates that individuals with ASD are equally sensitive compared to typically developing individuals to the contextual effects of the task and that there is no evidence for a local processing bias in adolescents with ASD.
Collapse
|
36
|
Diffusion tensor MRI of chemotherapy-induced cognitive impairment in non-CNS cancer patients: a review. Brain Imaging Behav 2014; 7:409-35. [PMID: 23329357 DOI: 10.1007/s11682-012-9220-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with non-central nervous system cancers often experience subtle cognitive deficits after treatment with cytotoxic agents. Therapy-induced structural changes to the brain could be one of the possible causes underlying these reported cognitive deficits. In this review, we evaluate the use of diffusion tensor imaging (DTI) for assessing possible therapy-induced changes in the microstructure of the cerebral white matter (WM) and provide a critical overview of the published DTI research on therapy-induced cognitive impairment. Both cross-sectional and longitudinal DTI studies have demonstrated abnormal microstructural properties in WM regions involved in cognition. These findings correlated with cognitive performance, suggesting that there is a link between reduced "WM integrity" and chemotherapy-induced impaired cognition. In this paper, we will also introduce the basics of diffusion tensor imaging and how it can be applied to evaluate effects of therapy on structural changes in cerebral WM. The review concludes with considerations and discussion regarding DTI data interpretation and possible future directions for investigating therapy-induced WM changes in cancer patients. This review article is part of a Special Issue entitled: Neuroimaging Studies of Cancer and Cancer Treatment.
Collapse
|
37
|
Liégeois F, Mayes A, Morgan A. Neural Correlates of Developmental Speech and Language Disorders: Evidence from Neuroimaging. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014. [PMID: 25057455 DOI: 10.1007/s40474-014-0019-1)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Disorders of speech and language arise out of a complex interaction of genetic, environmental, and neural factors. Little is understood about the neural bases of these disorders. Here we systematically reviewed neuroimaging findings in Speech disorders (SD) and Language disorders (LD) over the last five years (2008-2013; 10 articles). In participants with SD, structural and functional anomalies in the left supramarginal gyrus suggest a possible deficit in sensory feedback or integration. In LD, cortical and subcortical anomalies were reported in a widespread language network, with little consistency across studies except in the superior temporal gyri. In summary, both functional and structural anomalies are associated with LD and SD, including greater activity and volumes relative to controls. The variability in neuroimaging approach and heterogeneity within and across participant samples restricts our full understanding of the neurobiology of these conditions- reducing the potential for devising novel interventions targeted at the underlying pathology.
Collapse
Affiliation(s)
- Frédérique Liégeois
- UCL Institute of Child Health, Cognitive Neuroscience and Neuropsychiatry Section, 30 Guilford Street, London, WC1N 1EH UK
| | - Angela Mayes
- Language & Literacy Group, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria Australia
| | - Angela Morgan
- Language & Literacy Group, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria Australia ; Department of Paediatrics, University of Melbourne, Parkville, Victoria Australia
| |
Collapse
|
38
|
Liégeois F, Mayes A, Morgan A. Neural Correlates of Developmental Speech and Language Disorders: Evidence from Neuroimaging. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2014; 1:215-227. [PMID: 25057455 PMCID: PMC4104164 DOI: 10.1007/s40474-014-0019-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Disorders of speech and language arise out of a complex interaction of genetic, environmental, and neural factors. Little is understood about the neural bases of these disorders. Here we systematically reviewed neuroimaging findings in Speech disorders (SD) and Language disorders (LD) over the last five years (2008–2013; 10 articles). In participants with SD, structural and functional anomalies in the left supramarginal gyrus suggest a possible deficit in sensory feedback or integration. In LD, cortical and subcortical anomalies were reported in a widespread language network, with little consistency across studies except in the superior temporal gyri. In summary, both functional and structural anomalies are associated with LD and SD, including greater activity and volumes relative to controls. The variability in neuroimaging approach and heterogeneity within and across participant samples restricts our full understanding of the neurobiology of these conditions— reducing the potential for devising novel interventions targeted at the underlying pathology.
Collapse
Affiliation(s)
- Frédérique Liégeois
- UCL Institute of Child Health, Cognitive Neuroscience and Neuropsychiatry Section, 30 Guilford Street, London, WC1N 1EH UK
| | - Angela Mayes
- Language & Literacy Group, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria Australia
| | - Angela Morgan
- Language & Literacy Group, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria Australia ; Department of Paediatrics, University of Melbourne, Parkville, Victoria Australia
| |
Collapse
|
39
|
Norbury CF, Gemmell T, Paul R. Pragmatics abilities in narrative production: a cross-disorder comparison. JOURNAL OF CHILD LANGUAGE 2014; 41:485-510. [PMID: 23632039 DOI: 10.1017/s030500091300007x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We aimed to disentangle contributions of socio-pragmatic and structural language deficits to narrative competence by comparing the narratives of children with autism spectrum disorder (ASD; n = 25), non-autistic children with language impairments (LI; n = 23), and children with typical development (TD; n = 27). Groups were matched for age (6½ to 15 years; mean: 10;6) and non-verbal ability; ASD and TD groups were matched on standardized language scores. Despite distinct clinical presentation, children with ASD and LI produced similarly simple narratives that lacked semantic richness and omitted important story elements, when compared to TD peers. Pragmatic errors were common across groups. Within the LI group, pragmatic errors were negatively correlated with story macrostructure scores and with an index of semantic-pragmatic relevance. For the group with ASD, pragmatic errors consisted of comments that, though extraneous, did not detract from the gist of the narrative. These findings underline the importance of both language and socio-pragmatic skill for producing coherent, appropriate narratives.
Collapse
Affiliation(s)
| | | | - Rhea Paul
- Sacred Heart University, Connecticut, USA
| |
Collapse
|
40
|
Tax CM, Otte WM, Viergever MA, Dijkhuizen RM, Leemans A. REKINDLE: Robust extraction of kurtosis INDices with linear estimation. Magn Reson Med 2014; 73:794-808. [PMID: 24687400 DOI: 10.1002/mrm.25165] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Chantal M.W. Tax
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| | - Willem M. Otte
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
- Department of Pediatric Neurology; University Medical Center Utrecht; Utrecht The Netherlands
| | - Max A. Viergever
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| | - Rick M. Dijkhuizen
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
41
|
Tax CMW, Jeurissen B, Vos SB, Viergever MA, Leemans A. Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data. Neuroimage 2014; 86:67-80. [PMID: 23927905 DOI: 10.1016/j.neuroimage.2013.07.067] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/07/2013] [Accepted: 07/29/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Ben Jeurissen
- iMinds-Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium
| | - Sjoerd B Vos
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
42
|
Maggio V, Grañana NE, Richaudeau A, Torres S, Giannotti A, Suburo AM. Behavior problems in children with specific language impairment. J Child Neurol 2014; 29:194-202. [PMID: 24272522 DOI: 10.1177/0883073813509886] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We studied behavior in a group of children with specific language impairment in its 2 subtypes (expressive and mixed receptive/expressive). After exclusion of other psychiatric conditions, we evaluated 114 children of ages 2 to 7 years using language developmental tests and behavioral screening scales. Behavior problems appeared in 54% of the children. Withdrawn was the most frequently found syndrome in preschool children, whereas anxious/depressed and social problems were the most frequent in older children. The high frequency of behavioral syndromes in children with specific language impairment is remarkable and requires the awareness of primary attendants and specialists. Anxiety, depression, social isolation, and aggressive and rule-breaking behavior can obscure identification of the language impairment. Taking into account this relationship would improve the chances of a timely and appropriate intervention.
Collapse
Affiliation(s)
- Verónica Maggio
- 1Clínica CLASE de Neuropsicología, Hospital Universitario Austral, Pilar, Argentina
| | | | | | | | | | | |
Collapse
|
43
|
Verly M, Verhoeven J, Zink I, Mantini D, Peeters R, Deprez S, Emsell L, Boets B, Noens I, Steyaert J, Lagae L, De Cock P, Rommel N, Sunaert S. Altered functional connectivity of the language network in ASD: role of classical language areas and cerebellum. Neuroimage Clin 2014; 4:374-82. [PMID: 24567909 PMCID: PMC3930113 DOI: 10.1016/j.nicl.2014.01.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/20/2013] [Accepted: 01/21/2014] [Indexed: 11/25/2022]
Abstract
The development of language, social interaction and communicative skills is remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the neural correlates underlying their disrupted language development and functioning are still poorly understood. Using resting state fMRI, we investigated the functional connectivity properties of the language network in a group of ASD patients with clear comorbid language impairment (ASD-LI; N = 19) and compared them to the language related connectivity properties of 23 age-matched typically developing children. A verb generation task was used to determine language components commonly active in both groups. Eight joint language components were identified and subsequently used as seeds in a resting state analysis. Interestingly, both the interregional and the seed-based whole brain connectivity analysis showed preserved connectivity between the classical intrahemispheric language centers, Wernicke's and Broca's areas. In contrast however, a marked loss of functional connectivity was found between the right cerebellar region and the supratentorial regulatory language areas. Also, the connectivity between the interhemispheric Broca regions and modulatory control dorsolateral prefrontal region was found to be decreased. This disruption of normal modulatory control and automation function by the cerebellum may underlie the abnormal language function in children with ASD-LI.
Collapse
Affiliation(s)
- Marjolein Verly
- Department of Neurosciences, Exp ORL, Catholic University of Leuven, Leuven, Belgium
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Judith Verhoeven
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Inge Zink
- Department of Neurosciences, Exp ORL, Catholic University of Leuven, Leuven, Belgium
| | - Dante Mantini
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, UK
- Department of Heath Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurosciences, Laboratory for Neuro- and Psychophysiology, KU Leuven, 3000 Leuven, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Sabine Deprez
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Louise Emsell
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Bart Boets
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Parenting and Special Education Research Unit, Catholic University of Leuven, Leuven, Belgium
- Department of Child and Adolescent Psychiatry, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Ilse Noens
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Parenting and Special Education Research Unit, Catholic University of Leuven, Leuven, Belgium
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, USA
| | - Jean Steyaert
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Department of Child and Adolescent Psychiatry, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Department of Clinical Genetics, University of Maastricht, Maastricht, The Netherlands
| | - Lieven Lagae
- Department of Pediatrics, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Paul De Cock
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Center for Developmental Disabilities, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
| | - Nathalie Rommel
- Department of Neurosciences, Exp ORL, Catholic University of Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Department of Radiology, University Hospitals of the Catholic University of Leuven, Leuven, Belgium
- Leuven Autism Research (LAURES) Consortium, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
44
|
Hollier LP, Maybery MT, Whitehouse AJ. Chapter 10. Atypical cerebral lateralisation and language impairment in autism. ACTA ACUST UNITED AC 2014. [DOI: 10.1075/tilar.11.11hol] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
45
|
Verly M, Verhoeven J, Zink I, Mantini D, Van Oudenhove L, Lagae L, Sunaert S, Rommel N. Structural and functional underconnectivity as a negative predictor for language in autism. Hum Brain Mapp 2013; 35:3602-15. [PMID: 24375710 DOI: 10.1002/hbm.22424] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/18/2013] [Accepted: 10/28/2013] [Indexed: 12/22/2022] Open
Abstract
The development of language, social interaction, and communicative skills are remarkably different in the child with autism spectrum disorder (ASD). Atypical brain connectivity has frequently been reported in this patient population. However, the interplay between their brain connectivity and language performance remains largely understudied. Using diffusion tensor imaging tractography and resting-state fMRI, the authors explored the structural and functional connectivity of the language network and its relation to the language profile in a group of healthy control subjects (N = 25) and a group of children with ASD (N = 17). The authors hypothesized that in children with ASD, a neural connectivity deficit of the language network can be related to the observed abnormal language function. They found an absence of the right-hemispheric arcuate fascicle (AF) in 28% (7/25) of the healthy control children and in 59% (10/17) of the children with ASD. In contrast to healthy control children, the absence of the right-hemispheric AF in children with autism was related to a lower language performance as indicated by a lower verbal IQ, lower scores on the Peabody Picture Vocabulary Test, and lower language scores on the Dutch version of the Clinical Evaluation of Language Fundamentals (CELF-4NL). In addition, through iterative fMRI data analyses, the language impairment of children with ASD could be linked to a marked loss of intrahemispheric functional connectivity between inferior frontal and superior temporal regions, known as the cortical language network. Both structural and functional underconnectivity patterns coincide and are related to an abnormal language function in children with ASD.
Collapse
Affiliation(s)
- Marjolein Verly
- Department of Neurosciences, ExpORL, KU Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Roberts TPL, Heiken K, Zarnow D, Dell J, Nagae L, Blaskey L, Solot C, Levy SE, Berman JI, Edgar JC. Left hemisphere diffusivity of the arcuate fasciculus: influences of autism spectrum disorder and language impairment. AJNR Am J Neuroradiol 2013; 35:587-92. [PMID: 24335547 DOI: 10.3174/ajnr.a3754] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE There has been much discussion whether brain abnormalities associated with specific language impairment and autism with language impairment are shared or are disorder specific. Although white matter tract abnormalities are observed in both specific language impairment and autism spectrum disorders, the similarities and differences in the white matter abnormalities in these 2 disorders have not been fully determined. MATERIALS AND METHODS Diffusion tensor imaging diffusion parameters of the arcuate fasciculus were measured in 14 children with specific language impairment as well as in 16 children with autism spectrum disorder with language impairment, 18 with autism spectrum disorder without language impairment, and 25 age-matched typically developing control participants. RESULTS Language impairment and autism spectrum disorder both had (elevating) main effects on mean diffusivity of the left arcuate fasciculus, initially suggesting a shared white matter substrate abnormality. Analysis of axial and radial diffusivity components, however, indicated that autism spectrum disorder and language impairment differentially affect white matter microstructural properties, with a main effect of autism spectrum disorder on axial diffusivity and a main effect of language impairment on radial diffusivity. CONCLUSIONS Although white matter abnormalities appear similar in language impairment and autism spectrum disorder when examining broad white matter measures, a more detailed analysis indicates different mechanisms for the white matter microstructural anomalies associated with language impairment and autism spectrum disorder.
Collapse
Affiliation(s)
- T P L Roberts
- From the Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Roine U, Roine T, Salmi J, Nieminen-Von Wendt T, Leppämäki S, Rintahaka P, Tani P, Leemans A, Sams M. Increased coherence of white matter fiber tract organization in adults with Asperger syndrome: a diffusion tensor imaging study. Autism Res 2013; 6:642-50. [PMID: 24089369 DOI: 10.1002/aur.1332] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 08/23/2013] [Indexed: 12/17/2022]
Abstract
To investigate whether there are global white matter (WM) differences between autistic and healthy adults, we performed diffusion tensor imaging (DTI) in 14 male adults with Asperger syndrome (AS) and 19 gender-, age-, and intelligence quotient-matched controls. We focused on individuals with high-functioning autism spectrum disorder (ASD), AS, to decrease heterogeneity caused by large variation in the cognitive profile. Previous DTI studies of ASD have mainly focused on finding local changes in fractional anisotropy (FA) and mean diffusivity (MD), two indexes used to characterize microstructural properties of WM. Although the local or voxel-based approaches may be able to provide detailed information in terms of location of the observed differences, such results are known to be highly sensitive to partial volume effects, registration errors, or placement of the regions of interest. Therefore, we performed global histogram analyses of (a) whole-brain tractography results and (b) skeletonized WM masks. In addition to the FA and MD, the planar diffusion coefficient (CP) was computed as it can provide more specific information of the complexity of the neural structure. Our main finding indicated that adults with AS had higher mean FA values than controls. A less complex neural structure in adults with AS could have explained the results, but no significant difference in CP was found. Our results suggest that there are global abnormalities in the WM tissue of adults with AS.
Collapse
Affiliation(s)
- Ulrika Roine
- Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science, Aalto University, Espoo, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ellis Weismer S. Developmental language disorders: challenges and implications of cross-group comparisons. Folia Phoniatr Logop 2013; 65:68-77. [PMID: 23942044 PMCID: PMC4004334 DOI: 10.1159/000353896] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Historically, specific language impairment (SLI) and language deficits associated with autism spectrum disorders (ASD) have been viewed as distinct developmental language disorders. However, over the last decade or so, a considerable amount of research has explored general similarities or specific areas of overlap between children with SLI and ASD based on language and cognitive profiles, neuroimaging findings, and genetic research. The clinical classification schemes that are used to identify the children necessarily influence the extent to which SLI and ASD are viewed as overlapping or distinct conditions. Yet, the criteria used to diagnose these two populations vary across countries and even across investigators within a given country. This necessarily impacts the findings from comparative investigations of these groups. With these challenges in mind, clinical implications of evidence for similarities and distinctions between children with SLI and ASD will be discussed with respect to differential diagnosis and treatment.
Collapse
Affiliation(s)
- Susan Ellis Weismer
- Department of Communication Sciences and Disorders/Waisman Center, University of Wisconsin-Madison, Madison, Wisc., USA
| |
Collapse
|
49
|
Aoki Y, Abe O, Nippashi Y, Yamasue H. Comparison of white matter integrity between autism spectrum disorder subjects and typically developing individuals: a meta-analysis of diffusion tensor imaging tractography studies. Mol Autism 2013; 4:25. [PMID: 23876131 PMCID: PMC3726469 DOI: 10.1186/2040-2392-4-25] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/08/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrant brain connectivity, especially with long-distance underconnectivity, has been recognized as a candidate pathophysiology of autism spectrum disorders. However, a number of diffusion tensor imaging studies investigating people with autism spectrum disorders have yielded inconsistent results. METHODS To test the long-distance underconnectivity hypothesis, we performed a systematic review and meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorder. Diffusion tensor imaging studies comparing individuals with autism spectrum disorders with typically developing individuals were searched using MEDLINE, Web of Science and EMBASE from 1980 through 1 August 2012. Standardized mean differences were calculated as an effect size of the tracts. RESULTS A comprehensive literature search identified 25 relevant diffusion tensor imaging studies comparing autism spectrum disorders and typical development with regions-of-interest methods. Among these, 14 studies examining regions of interest with suprathreshold sample sizes were included in the meta-analysis. A random-effects model demonstrated significant fractional anisotropy reductions in the corpus callosum (P = 0.023, n = 387 (autism spectrum disorders/typically developing individuals: 208/179)), left uncinate fasciculus (P = 0.011, n = 242 (117/125)), and left superior longitudinal fasciculus (P = 0.016, n = 182 (96/86)), and significant increases of mean diffusivity in the corpus callosum (P = 0.006, n = 254 (129/125)) and superior longitudinal fasciculus bilaterally (P = 0.031 and 0.011, left and right, respectively, n = 109 (51/58)), in subjects with autism spectrum disorders compared with typically developing individuals with no significant publication bias. CONCLUSION The current meta-analysis of diffusion tensor imaging studies in subjects with autism spectrum disorders emphasizes important roles of the superior longitudinal fasciculus, uncinate fasciculus, and corpus callosum in the pathophysiology of autism spectrum disorders and supports the long-distance underconnectivity hypothesis.
Collapse
Affiliation(s)
- Yuta Aoki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
50
|
McGrath J, Johnson K, O'Hanlon E, Garavan H, Gallagher L, Leemans A. White matter and visuospatial processing in autism: a constrained spherical deconvolution tractography study. Autism Res 2013; 6:307-19. [PMID: 23509018 DOI: 10.1002/aur.1290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 02/15/2013] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are associated with a marked disturbance of neural functional connectivity, which may arise from disrupted organization of white matter. The aim of this study was to use constrained spherical deconvolution (CSD)-based tractography to isolate and characterize major intrahemispheric white matter tracts that are important in visuospatial processing. CSD-based tractography avoids a number of critical confounds that are associated with diffusion tensor tractography, and to our knowledge, this is the first time that this advanced diffusion tractography method has been used in autism research. Twenty-five participants with ASD and aged 25, intelligence quotient-matched controls completed a high angular resolution diffusion imaging scan. The inferior fronto-occipital fasciculus (IFOF) and arcuate fasciculus were isolated using CSD-based tractography. Quantitative diffusion measures of white matter microstructural organization were compared between groups and associated with visuospatial processing performance. Significant alteration of white matter organization was present in the right IFOF in individuals with ASD. In addition, poorer visuospatial processing was associated in individuals with ASD with disrupted white matter in the right IFOF. Using a novel, advanced tractography method to isolate major intrahemispheric white matter tracts in autism, this research has demonstrated that there are significant alterations in the microstructural organization of white matter in the right IFOF in ASD. This alteration was associated with poorer visuospatial processing performance in the ASD group. This study provides an insight into structural brain abnormalities that may influence atypical visuospatial processing in autism.
Collapse
Affiliation(s)
- Jane McGrath
- Department of Psychiatry, Trinity Centre for Health Sciences, St James's Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|