1
|
Raij T, Lin FH, Letham B, Lankinen K, Nayak T, Witzel T, Hämäläinen M, Ahveninen J. Onset timing of letter processing in auditory and visual sensory cortices. Front Integr Neurosci 2024; 18:1427149. [PMID: 39610979 PMCID: PMC11602476 DOI: 10.3389/fnint.2024.1427149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Here, we report onset latencies for multisensory processing of letters in the primary auditory and visual sensory cortices. Healthy adults were presented with 300-ms visual and/or auditory letters (uppercase Roman alphabet and the corresponding auditory letter names in English). Magnetoencephalography (MEG) evoked response generators were extracted from the auditory and visual sensory cortices for both within-modality and cross-sensory activations; these locations were mainly consistent with functional magnetic resonance imaging (fMRI) results in the same subjects. In the primary auditory cortices (Heschl's gyri) activity to auditory stimuli commenced at 25 ms and to visual stimuli at 65 ms (median values). In the primary visual cortex (Calcarine fissure) the activations started at 48 ms to visual and at 62 ms to auditory stimuli. This timing pattern suggests that the origins of the cross-sensory activations may be in the primary sensory cortices of the opposite modality, with conduction delays (from one sensory cortex to another) of 17-37 ms. Audiovisual interactions for letters started at 125 ms in the auditory and at 133 ms in the visual cortex (60-71 ms after inputs from both modalities converged). Multivariate pattern analysis suggested similar latency differences between the sensory cortices. Combined with our earlier findings for simpler stimuli (noise bursts and checkerboards), these results suggest that primary sensory cortices participate in early cross-modal and interaction processes similarly for different stimulus materials, but previously learned audiovisual associations and stimulus complexity may delay the start of the audiovisual interaction stage.
Collapse
Affiliation(s)
- Tommi Raij
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Fa-Hsuan Lin
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Benjamin Letham
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Kaisu Lankinen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Tapsya Nayak
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| | - Thomas Witzel
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
| | - Matti Hämäläinen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Jyrki Ahveninen
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States
| |
Collapse
|
2
|
Jiang X, Wen X, Ou G, Li S, Chen Y, Zhang J, Liang Z. Propofol modulates neural dynamics of thalamo-cortical system associated with anesthetic levels in rats. Cogn Neurodyn 2023; 17:1541-1559. [PMID: 37974577 PMCID: PMC10640503 DOI: 10.1007/s11571-022-09912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/14/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022] Open
Abstract
The thalamocortical system plays an important role in consciousness. How anesthesia modulates the thalamocortical interactions is not completely known. We simultaneously recorded local field potentials(LFPs) in thalamic reticular nucleus(TRN) and ventroposteromedial thalamic nucleus(VPM), and electrocorticographic(ECoG) activities in frontal and occipital cortices in freely moving rats (n = 11). We analyzed the changes in thalamic and cortical local spectral power and connectivities, which were measured with phase-amplitude coupling (PAC), coherence and multivariate Granger causality, at the states of baseline, intravenous infusion of propofol 20, 40, 80 mg/kg/h and after recovery of righting reflex. We found that propofol-induced burst-suppression results in a synchronous decrease of spectral power in thalamus and cortex (p < 0.001 for all frequency bands). The cross-frequency PAC increased by propofol, characterized by gradually stronger 'trough-max' pattern in TRN and stronger 'peak-max' pattern in cortex. The cross-region PAC increased in the phase of TRN modulating the amplitude of cortex. The functional connectivity (FC) between TRN and cortex for α/β bands also significantly increased (p < 0.040), with increased directional connectivity from TRN to cortex under propofol anesthesia. In contrast, the corticocortical FC significantly decreased (p < 0.047), with decreased directional connectivity from frontal cortex to occipital cortex. However, the thalamothalamic functional and directional connectivities remained largely unchanged by propofol anesthesia. The spectral powers and connectivities are differentially modulated with the changes of propofol doses, suggesting the changes in neural dynamics in thalamocortical system could be used for distinguishing different vigilance levels caused by propofol. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09912-0.
Collapse
Affiliation(s)
- Xuliang Jiang
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Xin Wen
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 People’s Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, 066004 People’s Republic of China
| | - Guoyao Ou
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040 People’s Republic of China
| | - Shitong Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, 200040 People’s Republic of China
| | - Yali Chen
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Jun Zhang
- Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032 People’s Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004 People’s Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao, 066004 People’s Republic of China
| |
Collapse
|
3
|
Banerjee A, Wang BA, Teutsch J, Helmchen F, Pleger B. Analogous cognitive strategies for tactile learning in the rodent and human brain. Prog Neurobiol 2023; 222:102401. [PMID: 36608783 DOI: 10.1016/j.pneurobio.2023.102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Evolution has molded individual species' sensory capacities and abilities. In rodents, who mostly inhabit dark tunnels and burrows, the whisker-based somatosensory system has developed as the dominant sensory modality, essential for environmental exploration and spatial navigation. In contrast, humans rely more on visual and auditory inputs when collecting information from their surrounding sensory space in everyday life. As a result of such species-specific differences in sensory dominance, cognitive relevance and capacities, the evidence for analogous sensory-cognitive mechanisms across species remains sparse. However, recent research in rodents and humans yielded surprisingly comparable processing rules for detecting tactile stimuli, integrating touch information into percepts, and goal-directed rule learning. Here, we review how the brain, across species, harnesses such processing rules to establish decision-making during tactile learning, following canonical circuits from the thalamus and the primary somatosensory cortex up to the frontal cortex. We discuss concordances between empirical and computational evidence from micro- and mesoscopic circuit studies in rodents to findings from macroscopic imaging in humans. Furthermore, we discuss the relevance and challenges for future cross-species research in addressing mutual context-dependent evaluation processes underpinning perceptual learning.
Collapse
Affiliation(s)
- Abhishek Banerjee
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom.
| | - Bin A Wang
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany.
| | - Jasper Teutsch
- Adaptive Decisions Lab, Biosciences Institute, Newcastle University, United Kingdom
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zürich, Switzerland
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr University Bochum, Germany; Collaborative Research Centre 874 "Integration and Representation of Sensory Processes", Ruhr University Bochum, Germany
| |
Collapse
|
4
|
Ma Q. A functional subdivision within the somatosensory system and its implications for pain research. Neuron 2022; 110:749-769. [PMID: 35016037 PMCID: PMC8897275 DOI: 10.1016/j.neuron.2021.12.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/07/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022]
Abstract
Somatosensory afferents are traditionally classified by soma size, myelination, and their response specificity to external and internal stimuli. Here, we propose the functional subdivision of the nociceptive somatosensory system into two branches. The exteroceptive branch detects external threats and drives reflexive-defensive reactions to prevent or limit injury. The interoceptive branch senses the disruption of body integrity, produces tonic pain with strong aversive emotional components, and drives self-caring responses toward to the injured region to reduce suffering. The central thesis behind this functional subdivision comes from a reflection on the dilemma faced by the pain research field, namely, the use of reflexive-defensive behaviors as surrogate assays for interoceptive tonic pain. The interpretation of these assays is now being challenged by the discovery of distinct but interwoven circuits that drive exteroceptive versus interoceptive types of behaviors, with the conflation of these two components contributing partially to the poor translation of therapies from preclinical studies.
Collapse
Affiliation(s)
- Qiufu Ma
- Dana-Farber Cancer Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
5
|
Poulsen AH, van den Berg B, Arguissain FG, Tigerholm J, Buitenweg JR, Andersen OK, Mørch CD. Novel surface electrode design for preferential activation of cutaneous nociceptors. J Neural Eng 2022; 19. [PMID: 34996054 DOI: 10.1088/1741-2552/ac4950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/07/2022] [Indexed: 11/11/2022]
Abstract
Objective Small area electrodes enable preferential activation of nociceptive fibers. It is debated, however, whether co-activation of large fibers still occurs for the existing electrode designs. Moreover, existing electrodes are limited to low stimulation intensities, for which behavioral and physiological responses may be considered less reliable. A recent optimization study showed that there is a potential for improving electrode performance and increase the range of possible stimulation intensities. Based on those results, the present study introduces and tests a novel planar concentric array electrode design for small fiber activation in healthy volunteers. Approach Volunteers received electrical stimulation with the planar concentric array electrode and a regular patch electrode. Perception thresholds were estimated at the beginning and the end of the experiment. Evoked cortical potentials were recorded in blocks of 30 stimuli. For the patch, stimulation intensity was set to two times perception threshold (PT), while three intensities, 2, 5, and 10 times PT, were applied with the planar concentric array electrode. Sensation quality, numerical-rating scores, and reaction times were obtained for each PT estimation and during each block of evoked potential recordings. Main results Stimulation with the patch electrode was characterized as dull, while stimulation with the planar concentric array electrode was characterized as sharp, with increased sharpness for increasing stimulus intensity. Likewise, NRS scores were higher for the planar concentric array electrode compared to the patch and increased with increasing stimulation intensity. Reaction times and ERP latencies were longer for the planar concentric array electrode compared to the patch. Significance The presented novel planar concentric array electrode is a small, non-invasive, and single-use electrode that has the potential to investigate small fiber neuropathy and pain mechanisms, as it is small fiber preferential for a wide range of stimulation intensities.
Collapse
Affiliation(s)
- Aida Hejlskov Poulsen
- Department of Health science and technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik bajers vej, 7 A1, 208, Aalborg, Nordjylland, 9220, DENMARK
| | - Boudewijn van den Berg
- University of Twente Technical Medical Centre, PO box 217, 7500 AE Enschede, The Netherlands, Enschede, 7500, NETHERLANDS
| | - Federico G Arguissain
- Department of Health Science and Technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik Bajers Vej 7A, Aalborg, 9220, DENMARK
| | - Jenny Tigerholm
- Health Science and Technology, Aalborg University, Fredrik Bajers vej 7A, Aalborg, 9220, DENMARK
| | - Jan R Buitenweg
- EWI - TST, University of Twente, PO Box 217, 7500 AE Enchende, The Netherlands, Enschende, 7500, NETHERLANDS
| | - Ole Kaeseler Andersen
- Department of Health Science and Technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik Bajers Vej 7, 9220 Aalborg, Aalborg, 9220, DENMARK
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Aalborg Universitet Det Sundhedsvidenskabelige Fakultet, Fredrik Bajers Vej 7 A, Aalborg, 9220, DENMARK
| |
Collapse
|
6
|
Novembre G, Iannetti GD. Towards a unified neural mechanism for reactive adaptive behaviour. Prog Neurobiol 2021; 204:102115. [PMID: 34175406 PMCID: PMC7611662 DOI: 10.1016/j.pneurobio.2021.102115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Abstract
Surviving in natural environments requires animals to sense sudden events and swiftly adapt behaviour accordingly. The study of such Reactive Adaptive Behaviour (RAB) has been central to a number of research streams, all orbiting around movement science but progressing in parallel, with little cross-field fertilization. We first provide a concise review of these research streams, independently describing four types of RAB: (1) cortico-muscular resonance, (2) stimulus locked response, (3) online motor correction and (4) action stopping. We then highlight remarkable similarities across these four RABs, suggesting that they might be subserved by the same neural mechanism, and propose directions for future research on this topic.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
7
|
Hodkinson DJ, Bungert A, Bowtell R, Jackson SR, Jung J. Operculo-insular and anterior cingulate plasticity induced by transcranial magnetic stimulation in the human motor cortex: a dynamic casual modeling study. J Neurophysiol 2021; 125:1180-1190. [PMID: 33625934 DOI: 10.1152/jn.00670.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
The ability to induce neuroplasticity with noninvasive brain stimulation techniques offers a unique opportunity to examine the human brain systems involved in pain modulation. In experimental and clinical settings, the primary motor cortex (M1) is commonly targeted to alleviate pain, but its mechanism of action remains unclear. Using dynamic causal modeling (DCM) and Bayesian model selection (BMS), we tested seven competing hypotheses about how transcranial magnetic stimulation (TMS) modulates the directed influences (or effective connectivity) between M1 and three distinct cortical areas of the medial and lateral pain systems, including the insular cortex (INS), anterior cingulate cortex (ACC), and parietal operculum cortex (PO). The data set included a novel fMRI acquisition collected synchronously with M1 stimulation during rest and while performing a simple hand motor task. DCM and BMS showed a clear preference for the fully connected model in which all cortical areas receive input directly from M1, with facilitation of the connections INS→M1, PO→M1, and ACC→M1, plus increased inhibition of their reciprocal connections. An additional DCM analysis comparing the reduced models only corresponding to networks with a sparser connectivity within the full model showed that M1 input into the INS is the second-best model of plasticity following TMS manipulations. The results reported here provide a starting point for investigating whether pathway-specific targeting involving M1↔INS improves analgesic response beyond conventional targeting. We eagerly await future empirical data and models that tests this hypothesis.NEW & NOTEWORTHY Transcranial magnetic stimulation of the primary motor cortex (M1) is a promising treatment for chronic pain, but its mechanism of action remains unclear. Competing dynamic causal models of effective connectivity between M1 and medial and lateral pain systems suggest direct input into the insular, anterior cingulate cortex, and parietal operculum. This supports the hypothesis that analgesia produced from M1 stimulation most likely acts through the activation of top-down processes associated with intracortical modulation.
Collapse
Affiliation(s)
- Duncan J Hodkinson
- Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- National Institute for Health Research, Nottingham Biomedical Research Centre, Queens Medical Center, Nottingham, United Kingdom
- Versus Arthritis Pain Centre, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Bungert
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Stephen R Jackson
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - JeYoung Jung
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
8
|
Ptito M, Bleau M, Djerourou I, Paré S, Schneider FC, Chebat DR. Brain-Machine Interfaces to Assist the Blind. Front Hum Neurosci 2021; 15:638887. [PMID: 33633557 PMCID: PMC7901898 DOI: 10.3389/fnhum.2021.638887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The loss or absence of vision is probably one of the most incapacitating events that can befall a human being. The importance of vision for humans is also reflected in brain anatomy as approximately one third of the human brain is devoted to vision. It is therefore unsurprising that throughout history many attempts have been undertaken to develop devices aiming at substituting for a missing visual capacity. In this review, we present two concepts that have been prevalent over the last two decades. The first concept is sensory substitution, which refers to the use of another sensory modality to perform a task that is normally primarily sub-served by the lost sense. The second concept is cross-modal plasticity, which occurs when loss of input in one sensory modality leads to reorganization in brain representation of other sensory modalities. Both phenomena are training-dependent. We also briefly describe the history of blindness from ancient times to modernity, and then proceed to address the means that have been used to help blind individuals, with an emphasis on modern technologies, invasive (various type of surgical implants) and non-invasive devices. With the advent of brain imaging, it has become possible to peer into the neural substrates of sensory substitution and highlight the magnitude of the plastic processes that lead to a rewired brain. Finally, we will address the important question of the value and practicality of the available technologies and future directions.
Collapse
Affiliation(s)
- Maurice Ptito
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Maxime Bleau
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Ismaël Djerourou
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Fabien C. Schneider
- TAPE EA7423 University of Lyon-Saint Etienne, Saint Etienne, France
- Neuroradiology Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israël
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel, Israël
| |
Collapse
|
9
|
Somervail R, Zhang F, Novembre G, Bufacchi RJ, Guo Y, Crepaldi M, Hu L, Iannetti GD. Waves of Change: Brain Sensitivity to Differential, not Absolute, Stimulus Intensity is Conserved Across Humans and Rats. Cereb Cortex 2021; 31:949-960. [PMID: 33026425 PMCID: PMC7786352 DOI: 10.1093/cercor/bhaa267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022] Open
Abstract
Living in rapidly changing environments has shaped the mammalian brain toward high sensitivity to abrupt and intense sensory events-often signaling threats or affordances requiring swift reactions. Unsurprisingly, such events elicit a widespread electrocortical response (the vertex potential, VP), likely related to the preparation of appropriate behavioral reactions. Although the VP magnitude is largely determined by stimulus intensity, the relative contribution of the differential and absolute components of intensity remains unknown. Here, we dissociated the effects of these two components. We systematically varied the size of abrupt intensity increases embedded within continuous stimulation at different absolute intensities, while recording brain activity in humans (with scalp electroencephalography) and rats (with epidural electrocorticography). We obtained three main results. 1) VP magnitude largely depends on differential, and not absolute, stimulus intensity. This result held true, 2) for both auditory and somatosensory stimuli, indicating that sensitivity to differential intensity is supramodal, and 3) in both humans and rats, suggesting that sensitivity to abrupt intensity differentials is phylogenetically well-conserved. Altogether, the current results show that these large electrocortical responses are most sensitive to the detection of sensory changes that more likely signal the sudden appearance of novel objects or events in the environment.
Collapse
Affiliation(s)
- R Somervail
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - F Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - M Crepaldi
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - L Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 100101 Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - G D Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| |
Collapse
|
10
|
Du Y, Wang Y, Yu M, Tian X, Liu J. Resting-State Functional Connectivity of the Punishment Network Associated With Conformity. Front Behav Neurosci 2021; 14:617402. [PMID: 33390913 PMCID: PMC7772235 DOI: 10.3389/fnbeh.2020.617402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Fear of punishment prompts individuals to conform. However, why some people are more inclined than others to conform despite being unaware of any obvious punishment remains unclear, which means the dispositional determinants of individual differences in conformity propensity are poorly understood. Here, we explored whether such individual differences might be explained by individuals' stable neural markers to potential punishment. To do this, we first defined the punishment network (PN) by combining all potential brain regions involved in punishment processing. We subsequently used a voxel-based global brain connectivity (GBC) method based on resting-state functional connectivity (FC) to characterize the hubs in the PN, which reflected an ongoing readiness state (i.e., sensitivity) for potential punishment. Then, we used the within-network connectivity (WNC) of each voxel in the PN of 264 participants to explain their tendency to conform by using a conformity scale. We found that a stronger WNC in the right thalamus, left insula, postcentral gyrus, and dACC was associated with a stronger tendency to conform. Furthermore, the FC among the four hubs seemed to form a three-phase ascending pathway, contributing to conformity propensity at every phase. Thus, our results suggest that task-independent spontaneous connectivity in the PN could predispose individuals to conform.
Collapse
Affiliation(s)
- Yin Du
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yinan Wang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Mengxia Yu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Xue Tian
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Jia Liu
- Department of Psychology, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Hartmann H, Rütgen M, Riva F, Lamm C. Another's pain in my brain: No evidence that placebo analgesia affects the sensory-discriminative component in empathy for pain. Neuroimage 2021; 224:117397. [PMID: 32971262 DOI: 10.1016/j.neuroimage.2020.117397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
The shared representations account of empathy suggests that sharing other people's emotions relies on neural processes similar to those engaged when directly experiencing such emotions. Recent research corroborated this by showing that placebo analgesia induced for first-hand pain resulted in reduced pain empathy and decreased activation in shared neural networks. However, those studies did not report any placebo-related variation of somatosensory engagement during pain empathy. The experimental paradigms used in these studies did not direct attention towards a specific body part in pain, which may explain the absence of effects for somatosensation. The main objective of this preregistered study was to implement a paradigm overcoming this limitation, and to investigate whether placebo analgesia may also modulate the sensory-discriminative component of empathy for pain. We induced a localized, first-hand placebo analgesia effect in the right hand of 45 participants by means of a placebo gel and conditioning techniques, and compared this to the left hand as a control condition. Participants underwent a pain task in the MRI scanner, receiving painful or non-painful electrical stimulation on their left or right hand, or witnessing another person receiving such stimulation. In contrast to a robust localized placebo analgesia effect for self-experienced pain, the empathy condition showed no differences between the two hands, neither for behavioral nor neural responses. We thus report no evidence for somatosensory sharing in empathy, while replicating previous studies showing overlapping brain activity in the affective-motivational component for first-hand and empathy for pain. Hence, in a more rigorous test aiming to overcome limitations of previous work, we again find no causal evidence for the engagement of somatosensory sharing in empathy. Our study refines the understanding of the neural underpinnings of empathy for pain, and the use of placebo analgesia in investigating such models.
Collapse
Affiliation(s)
- Helena Hartmann
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Markus Rütgen
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Federica Riva
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria.
| |
Collapse
|
12
|
Schulz E, Stankewitz A, Winkler AM, Irving S, Witkovský V, Tracey I. Ultra-high-field imaging reveals increased whole brain connectivity underpins cognitive strategies that attenuate pain. eLife 2020; 9:55028. [PMID: 32876049 PMCID: PMC7498261 DOI: 10.7554/elife.55028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
We investigated how the attenuation of pain with cognitive interventions affects brain connectivity using neuroimaging and a whole brain novel analysis approach. While receiving tonic cold pain, 20 healthy participants performed three different pain attenuation strategies during simultaneous collection of functional imaging data at seven tesla. Participants were asked to rate their pain after each trial. We related the trial-by-trial variability of the attenuation performance to the trial-by-trial functional connectivity strength change of brain data. Across all conditions, we found that a higher performance of pain attenuation was predominantly associated with higher functional connectivity. Of note, we observed an association between low pain and high connectivity for regions that belong to brain regions long associated with pain processing, the insular and cingulate cortices. For one of the cognitive strategies (safe place), the performance of pain attenuation was explained by diffusion tensor imaging metrics of increased white matter integrity.
Collapse
Affiliation(s)
- Enrico Schulz
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anderson M Winkler
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Stephanie Irving
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktor Witkovský
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Berchicci M, Russo Y, Bianco V, Quinzi F, Rum L, Macaluso A, Committeri G, Vannozzi G, Di Russo F. Stepping forward, stepping backward: a movement-related cortical potential study unveils distinctive brain activities. Behav Brain Res 2020; 388:112663. [DOI: 10.1016/j.bbr.2020.112663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/16/2020] [Accepted: 04/21/2020] [Indexed: 01/03/2023]
|
14
|
Yang Z, Li X, Zhou J, Wu X, Ding Z. Functional clustering of whole brain white matter fibers. J Neurosci Methods 2020; 335:108626. [PMID: 32032716 PMCID: PMC7093303 DOI: 10.1016/j.jneumeth.2020.108626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/28/2019] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Large numbers of fibers produced by fiber tractography are often grouped into bundles with anatomical interpretations. Traditional clustering methods usually generate bundles with spatial anatomic coherences only. To associate bundles with function, some studies incorporate functional connectivity of grey matter to guide clustering on the premise that fibers provide the basis of information transmission for cortex. However, functional properties along fiber tracts were ignored by these methods. Considering several recent studies showing that BOLD (Blood-Oxygen-Level Dependent) signals of white matter contain functional information of axonal fibers, this work is motivated to demonstrate that whole brain white matter fibers can be clustered with integration of functional and structural information they contain. NEW METHODS We proposed a novel algorithm based on Gaussian mixture model and expectation maximization to achieve optimal bundling with both structural and functional coherences. The functional coherence between two fibers is defined as the average correlation in BOLD signal between corresponding points. Whole brain fibers under resting state and sensory stimulation conditions were used to demonstrate the effectiveness of the proposed technique. RESULTS Our in vivo experiments show the robustness of proposed algorithm and influences of weights between structure and function, and repeatability of reconstructed major bundles across individuals. COMPARISON WITH EXISTING METHODS In contrast to traditional methods, the proposed clustering method can achieve structurally more compact bundles, which are specifically related to evoking function. CONCLUSION The proposed concept and framework can be used to identify functional pathways and their structural features under specific function loading.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China; College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Xiaojie Li
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Jiliu Zhou
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Xi Wu
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, 610225, PR China
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Nashville, TN, 37232, United States; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37232, United States.
| |
Collapse
|
15
|
Heidinger L, Reilly JL, Wang L, Goldman MB. Circuit activity underlying a distinct modulator of prepulse inhibition. Psychiatry Res Neuroimaging 2019; 288:1-11. [PMID: 31030001 DOI: 10.1016/j.pscychresns.2019.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/01/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Prepulse inhibition (PPI), the diminished eye blink response to a startling pulse induced by a prepulse, is regulated by brainstem, and modulated by cerebral, processes. Attentional modulation by the prepulse (AMP), a potential biomarker of psychotic disorders, differs from other modulatory processes because it only occurs if the interval between the prepulse and pulse exceeds 100 ms (>PP100). Videotaped eye blinks were measured during fMRI scanning in 15 healthy subjects hearing 64 pulse alone, 64 PP60 and 64 PP120 trials in a rapid event-related design. Because attentional influences on PPI vary spontaneously, we posited AMP could be isolated by comparing eye blink and Blood Oxygen Level Dependent covariation during the two PP trial types. Behavioral regressor coefficients reflecting significant covariation covered the insula and auditory cortices during PP120 but not PP60 trials. Clusters within the right anterior insula and auditory cortex were specific to AMP. Functional connections (FCs) between cerebral ROIs implicated in PPI were stronger during PP120 trials. The four FCs that were individually stronger during PP120 trials involved the right insula or auditory cortex and three were not present during PP60 trials. Converging evidence indicates the right insula is the hub of a network underlying AMP.
Collapse
Affiliation(s)
- Linda Heidinger
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - James L Reilly
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA
| | - Lei Wang
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA; Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Morris B Goldman
- Department of Psychiatry, Northwestern University Feinberg School of Medicine, 446 East Ontario, Suite 7-100, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Gu J, Liu B, Li X, Wang P, Wang B. Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis. Brain Imaging Behav 2019; 14:1908-1920. [PMID: 31183774 DOI: 10.1007/s11682-019-00135-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Primary sensory cortices can respond not only to their defined sensory modality but also to cross-modal information. In addition to the observed cross-modal phenomenon, it is valuable to research further whether cross-modal information can be valuable for categorizing stimuli and what effect other factors, such as experience and imagination, may have on cross-modal processing. In this study, we researched cross-modal information processing in the early visual cortex (EVC, including the visual area 1, 2, and 3 (V1, V2, and V3)) and auditory cortex (primary (A1) and secondary (A2) auditory cortex). Images and sound clips were presented to participants separately in two experiments in which participants' imagination and expectations were restricted by an orthogonal fixation task and the data were collected by functional magnetic resonance imaging (fMRI). We successfully decoded categories of the cross-modal stimuli in the ROIs except for V1 by multi-voxel pattern analysis (MVPA). It was further shown that familiar sounds had the advantage of classification accuracies in V2 and V3 when compared with unfamiliar sounds. The results of the cross-classification analysis showed that there was no significant similarity between the activity patterns induced by different stimulus modalities. Even though the cross-modal representation is robust when considering the restriction of top-down expectations and mental imagery in our experiments, the sound experience showed effects on cross-modal representation in V2 and V3. In addition, primary sensory cortices may receive information from different modalities in different ways, so the activity patterns between two modalities were not similar enough to complete the cross-classification successfully.
Collapse
Affiliation(s)
- Jin Gu
- College of Intelligence and Computing, Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University, Tianjin, 300350, People's Republic of China
| | - Baolin Liu
- School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| | - Peiyuan Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| | - Bin Wang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong, 264003, People's Republic of China
| |
Collapse
|
17
|
Tiemann L, Hohn VD, Ta Dinh S, May ES, Nickel MM, Gross J, Ploner M. Distinct patterns of brain activity mediate perceptual and motor and autonomic responses to noxious stimuli. Nat Commun 2018; 9:4487. [PMID: 30367033 PMCID: PMC6203833 DOI: 10.1038/s41467-018-06875-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/01/2018] [Indexed: 12/16/2022] Open
Abstract
Pain is a complex phenomenon involving perceptual, motor, and autonomic responses, but how the brain translates noxious stimuli into these different dimensions of pain is unclear. Here, we assessed perceptual, motor, and autonomic responses to brief noxious heat stimuli and recorded brain activity using electroencephalography (EEG) in humans. Multilevel mediation analysis reveals that each pain dimension is subserved by a distinct pattern of EEG responses and, conversely, that each EEG response differentially contributes to the different dimensions of pain. In particular, the translation of noxious stimuli into autonomic and motor responses involved the earliest N1 wave, whereas pain perception was mediated by later N2 and P2 waves. Gamma oscillations mediated motor responses rather than pain perception. These findings represent progress towards a mechanistic understanding of the brain processes translating noxious stimuli into pain and suggest that perceptual, motor, and autonomic dimensions of pain are partially independent rather than serial processes. Pain is a complex phenomenon involving not just the perception of pain, but also autonomic and motor responses. Here, the authors show that these different dimensions of pain are associated with distinct patterns of neural responses to noxious stimuli as measured using EEG.
Collapse
Affiliation(s)
- Laura Tiemann
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Vanessa D Hohn
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Son Ta Dinh
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Elisabeth S May
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Moritz M Nickel
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Joachim Gross
- Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, 48149, Münster, Germany.,Centre for Cognitive Neuroimaging, University of Glasgow, 62 Hillhead Street, Glasgow, G12 8QB, UK
| | - Markus Ploner
- Department of Neurology and TUM-Neuroimaging Center, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
18
|
Moayedi M, Salomons TV, Atlas LY. Pain Neuroimaging in Humans: A Primer for Beginners and Non-Imagers. THE JOURNAL OF PAIN 2018; 19:961.e1-961.e21. [PMID: 29608974 PMCID: PMC6192705 DOI: 10.1016/j.jpain.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023]
Abstract
Human pain neuroimaging has exploded in the past 2 decades. During this time, the broader neuroimaging community has continued to investigate and refine methods. Another key to progress is exchange with clinicians and pain scientists working with other model systems and approaches. These collaborative efforts require that non-imagers be able to evaluate and assess the evidence provided in these reports. Likewise, new trainees must design rigorous and reliable pain imaging experiments. In this article we provide a guideline for designing, reading, evaluating, analyzing, and reporting results of a pain neuroimaging experiment, with a focus on functional and structural magnetic resonance imaging. We focus in particular on considerations that are unique to neuroimaging studies of pain in humans, including study design and analysis, inferences that can be drawn from these studies, and the strengths and limitations of the approach.
Collapse
Affiliation(s)
- Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Tim V Salomons
- School of Psychology and Clinical Language Science, University of Reading, Reading, UK; Centre for Integrated Neuroscience and Neurodynamics, University of Reading, Reading, UK
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland; National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Autonomic responses to tonic pain are more closely related to stimulus intensity than to pain intensity. Pain 2017; 158:2129-2136. [DOI: 10.1097/j.pain.0000000000001010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Marinovic W, Tresilian JR. Triggering prepared actions by sudden sounds: reassessing the evidence for a single mechanism. Acta Physiol (Oxf) 2016; 217:13-32. [PMID: 26548462 DOI: 10.1111/apha.12627] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
Abstract
Loud acoustic stimuli can unintentionally elicit volitional acts when a person is in a state of readiness to execute them (the StartReact effect). It has been assumed that the same subcortical pathways and brain regions underlie all instances of the StartReact effect. They are proposed to involve the startle reflex pathways, and the eliciting mechanism is distinct from other ways in which sound can affect the motor system. We present an integrative review which shows that there is no evidence to support these assumptions. We argue that motor command generation for learned, volitional orofacial, laryngeal and distal limb movements is cortical and the StartReact effect for such movements involves transcortical pathways. In contrast, command generation for saccades, locomotor corrections and postural adjustments is subcortical and subcortical pathways are implicated in the StartReact effect for these cases. We conclude that the StartReact effect is not a special phenomenon mediated by startle reflex pathways, but rather is a particular manifestation of the excitatory effects of intense stimulation on the central nervous system.
Collapse
Affiliation(s)
- W. Marinovic
- School of Health & Rehabilitation Sciences; The University of Queensland; Brisbane Qld Australia
- Centre for Sensorimotor Performance; School of Human Movement and Nutrition Sciences; The University of Queensland; Brisbane Qld Australia
| | - J. R. Tresilian
- Department of Psychology; University of Warwick; Coventry UK
| |
Collapse
|
21
|
Oppenheimer S, Cechetto D. The Insular Cortex and the Regulation of Cardiac Function. Compr Physiol 2016; 6:1081-133. [DOI: 10.1002/cphy.c140076] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Allen M, Fardo F, Dietz MJ, Hillebrandt H, Friston KJ, Rees G, Roepstorff A. Anterior insula coordinates hierarchical processing of tactile mismatch responses. Neuroimage 2016; 127:34-43. [PMID: 26584870 PMCID: PMC4758822 DOI: 10.1016/j.neuroimage.2015.11.030] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 11/24/2022] Open
Abstract
The body underlies our sense of self, emotion, and agency. Signals arising from the skin convey warmth, social touch, and the physical characteristics of external stimuli. Surprising or unexpected tactile sensations can herald events of motivational salience, including imminent threats (e.g., an insect bite) and hedonic rewards (e.g., a caressing touch). Awareness of such events is thought to depend upon the hierarchical integration of body-related mismatch responses by the anterior insula. To investigate this possibility, we measured brain activity using functional magnetic resonance imaging, while healthy participants performed a roving tactile oddball task. Mass-univariate analysis demonstrated robust activations in limbic, somatosensory, and prefrontal cortical areas previously implicated in tactile deviancy, body awareness, and cognitive control. Dynamic Causal Modelling revealed that unexpected stimuli increased the strength of forward connections along a caudal to rostral hierarchy-projecting from thalamic and somatosensory regions towards insula, cingulate and prefrontal cortices. Within this ascending flow of sensory information, the AIC was the only region to show increased backwards connectivity to the somatosensory cortex, augmenting a reciprocal exchange of neuronal signals. Further, participants who rated stimulus changes as easier to detect showed stronger modulation of descending PFC to AIC connections by deviance. These results suggest that the AIC coordinates hierarchical processing of tactile prediction error. They are interpreted in support of an embodied predictive coding model where AIC mediated body awareness is involved in anchoring a global neuronal workspace.
Collapse
Affiliation(s)
- Micah Allen
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom.
| | - Francesca Fardo
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Martin J Dietz
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus 8000, Denmark
| | - Hauke Hillebrandt
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Harvard University, Cambridge, MA, 02138, United States
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Geraint Rees
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom
| | - Andreas Roepstorff
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus 8000, Denmark; Interacting Minds Centre, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
23
|
Moving Toward Conscious Pain Processing Detection in Chronic Disorders of Consciousness: Anterior Cingulate Cortex Neuromodulation. THE JOURNAL OF PAIN 2015. [DOI: 10.1016/j.jpain.2015.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Guipponi O, Cléry J, Odouard S, Wardak C, Ben Hamed S. Whole brain mapping of visual and tactile convergence in the macaque monkey. Neuroimage 2015; 117:93-102. [DOI: 10.1016/j.neuroimage.2015.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 11/28/2022] Open
|
25
|
Newell FN, Mitchell KJ. Multisensory integration and cross-modal learning in synaesthesia: A unifying model. Neuropsychologia 2015; 88:140-150. [PMID: 26231979 DOI: 10.1016/j.neuropsychologia.2015.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/28/2015] [Accepted: 07/27/2015] [Indexed: 10/23/2022]
Abstract
Recent research into synaesthesia has highlighted the role of learning, yet synaesthesia is clearly a genetic condition. Here we ask how can the idea that synaesthesia reflects innate, genetic differences be reconciled with models that suggest it is driven by learning. A number of lines of evidence suggest that synaesthesia relies on, or at least interacts with, processes of multisensory integration that are common across all people. These include multisensory activations that arise in early regions of the brain as well as feedback from longer-term cross-modal associations generated in memory. These cognitive processes may interact independently to influence the phenomenology of the synaesthetic experience, as well as the individual differences within particular types of synaesthesia. The theoretical framework presented here is consistent with both an innate difference as the fundamental driver of the condition of synaesthesia, and with experiential and semantic influences on the eventual phenotype that emerges. In particular, it proposes that the internally generated synaesthetic percepts are treated similarly to other sensory information as the brain is learning the multisensory attributes of objects and developing cross-modal associations that merge in the concept of the object.
Collapse
Affiliation(s)
- Fiona N Newell
- School of Psychology, Trinity College Dublin, Ireland; Institute of Neuroscience, Trinity College Dublin, Ireland.
| | - Kevin J Mitchell
- Institute of Neuroscience, Trinity College Dublin, Ireland; Smurfit Institute of Genetics, Trinity College Dublin, Ireland.
| |
Collapse
|
26
|
de Vignemont F, Iannetti G. How many peripersonal spaces? Neuropsychologia 2015; 70:327-34. [PMID: 25448854 DOI: 10.1016/j.neuropsychologia.2014.11.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/17/2014] [Accepted: 11/15/2014] [Indexed: 10/24/2022]
|
27
|
Zhang Y, Li Z, Dong H, Yu T. Effects of general anesthesia with propofol on thalamocortical sensory processing in rats. J Pharmacol Sci 2014; 126:370-81. [PMID: 25427432 DOI: 10.1254/jphs.14153fp] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The effects of anesthetics on the transmission and processing of sensory information within the thalamocortical pathway and the underlying mechanism are not fully understood. Using the extracellular recording technique, we investigated the changes of spontaneous and stimulation-evoked activities within and between the ventral posteromedial nucleus (VPM) and primary somatosensory cortex barrel field (S1BF) of the rat in vivo during propofol anesthesia. Spontaneous local field potentials, whiskers deflection–elicited somatosensory evoked potentials, and multi-unit activities in VPM/S1BF were assessed at different depths of propofol anesthesia. In VPM and S1BF, powers of spontaneous and stimulation-evoked activities, coupled with stimulation-evoked multi-unit, were decreased with increasing of propofol anesthesia. Cortical onset latency increased during intermediate/deep level propofol anesthesia, whereas thalamic onset latencies were not changed even at different depths of anesthesia. In addition, spontaneous and whisker deflectionevoked alpha oscillations were observed during propofol anesthesia, which is similar to sleep spindles, These data suggest that propofol affects processing of sensory information by 1) attenuating respective neuronal activities in VPM and S1BF, 2) delaying the ascending signal transmission from VPM to S1BF, and 3) inducing a natural-sleep type of anesthesia.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, the Affiliated Hospital of Zunyi Medical College, Guizhou Key Laboratory of Anesthesia and Organ Protection, China
| | | | | | | |
Collapse
|
28
|
Chen C, Lee YH, Cheng Y. Anterior insular cortex activity to emotional salience of voices in a passive oddball paradigm. Front Hum Neurosci 2014; 8:743. [PMID: 25346670 PMCID: PMC4193252 DOI: 10.3389/fnhum.2014.00743] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/03/2014] [Indexed: 11/23/2022] Open
Abstract
The human voice, which has a pivotal role in communication, is processed in specialized brain regions. Although a general consensus holds that the anterior insular cortex (AIC) plays a critical role in negative emotional experience, previous studies have not observed AIC activation in response to hearing disgust in voices. We used magnetoencephalography to measure the magnetic counterparts of mismatch negativity (MMNm) and P3a (P3am) in healthy adults while the emotionally meaningless syllables dada, spoken as neutral, happy, or disgusted prosodies, along with acoustically matched simple and complex tones, were presented in a passive oddball paradigm. The results revealed that disgusted relative to happy syllables elicited stronger MMNm-related cortical activities in the right AIC and precentral gyrus along with the left posterior insular cortex, supramarginal cortex, transverse temporal cortex, and upper bank of superior temporal cortex. The AIC activity specific to disgusted syllables (corrected p < 0.05) was associated with the hit rate of the emotional categorization task. These findings may clarify the neural correlates of emotional MMNm and lend support to the role of AIC in the processing of emotional salience already at the preattentive level.
Collapse
Affiliation(s)
- Chenyi Chen
- Institute of Neuroscience, National Yang-Ming University Taipei, Taiwan
| | - Yu-Hsuan Lee
- Institute of Neuroscience, National Yang-Ming University Taipei, Taiwan
| | - Yawei Cheng
- Institute of Neuroscience, National Yang-Ming University Taipei, Taiwan ; Department of Rehabilitation, National Yang-Ming University Yilan, Taiwan ; Department of Education and Research, Taipei City Hospital Taipei, Taiwan
| |
Collapse
|
29
|
Bachmann T. A hidden ambiguity of the term "feedback" in its use as an explanatory mechanism for psychophysical visual phenomena. Front Psychol 2014; 5:780. [PMID: 25101037 PMCID: PMC4106009 DOI: 10.3389/fpsyg.2014.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/02/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Talis Bachmann
- Institute of Public Law, University of Tartu Tartu, Estonia
| |
Collapse
|
30
|
Morrison I, Perini I, Dunham J. Facets and mechanisms of adaptive pain behavior: predictive regulation and action. Front Hum Neurosci 2013; 7:755. [PMID: 24348358 PMCID: PMC3842910 DOI: 10.3389/fnhum.2013.00755] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 10/21/2013] [Indexed: 12/30/2022] Open
Abstract
Neural mechanisms underlying nociception and pain perception are considered to serve the ultimate goal of limiting tissue damage. However, since pain usually occurs in complex environments and situations that call for elaborate control over behavior, simple avoidance is insufficient to explain a range of mammalian pain responses, especially in the presence of competing goals. In this integrative review we propose a Predictive Regulation and Action (PRA) model of acute pain processing. It emphasizes evidence that the nervous system is organized to anticipate potential pain and to adjust behavior before the risk of tissue damage becomes critical. Regulatory processes occur on many levels, and can be dynamically influenced by local interactions or by modulation from other brain areas in the network. The PRA model centers on neural substrates supporting the predictive nature of pain processing, as well as on finely-calibrated yet versatile regulatory processes that ultimately affect behavior. We outline several operational categories of pain behavior, from spinally-mediated reflexes to adaptive voluntary action, situated at various neural levels. An implication is that neural processes that track potential tissue damage in terms of behavioral consequences are an integral part of pain perception.
Collapse
Affiliation(s)
- India Morrison
- 1Department of Clinical Neurophysiology, Sahlgrenska University Hospital Gothenburg, Sweden ; 2Institute of Neuroscience and Physiology, University of Gothenburg Gothenburg, Sweden ; 3Department of Cognitive Neuroscience and Philosophy, University of Skövde Skövde, Sweden
| | - Irene Perini
- 1Department of Clinical Neurophysiology, Sahlgrenska University Hospital Gothenburg, Sweden ; 2Institute of Neuroscience and Physiology, University of Gothenburg Gothenburg, Sweden
| | - James Dunham
- 1Department of Clinical Neurophysiology, Sahlgrenska University Hospital Gothenburg, Sweden
| |
Collapse
|
31
|
Abstract
Pain's complex influence on behavior implies that it involves an action component, although little is known about how the human brain adaptively translates painful sensations into actions. The consistent activation of premotor and motor-related regions during pain, including the midcingulate cortex (MCC), raises the question of whether these areas contribute to an action component. In this fMRI experiment, we controlled for voluntary action-related processing during pain by introducing a motor task during painful or nonpainful stimulation. The MCC (particularly the caudal cingulate motor zone [CCZ]), motor cortex, thalamus, and cerebellum responded during action regardless of pain. Crucially, however, these regions did not respond to pain unless an action was performed. Reaction times were fastest during painful stimulation and correlated with CCZ activation. These findings are consistent with the results of an activation likelihood estimate meta-analysis in which activation across experiments involving pain, action execution, or action preparation (with a total of 4929 subjects) converged in a similar network. These findings suggest that specific motor-related areas, including the CCZ, play a vital role in the control and execution of context-sensitive behavioral responses to pain. In contrast, bilateral insular cortex responded to pain stimulation regardless of action.
Collapse
|
32
|
Mouraux A, De Paepe AL, Marot E, Plaghki L, Iannetti GD, Legrain V. Unmasking the obligatory components of nociceptive event-related brain potentials. J Neurophysiol 2013; 110:2312-24. [DOI: 10.1152/jn.00137.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It has been hypothesized that the human cortical responses to nociceptive and nonnociceptive somatosensory inputs differ. Supporting this view, somatosensory-evoked potentials (SEPs) elicited by thermal nociceptive stimuli have been suggested to originate from areas 1 and 2 of the contralateral primary somatosensory (S1), operculo-insular, and cingulate cortices, whereas the early components of nonnociceptive SEPs mainly originate from area 3b of S1. However, to avoid producing a burn lesion, and sensitize or fatigue nociceptors, thermonociceptive SEPs are typically obtained by delivering a small number of stimuli with a large and variable interstimulus interval (ISI). In contrast, the early components of nonnociceptive SEPs are usually obtained by applying many stimuli at a rapid rate. Hence, previously reported differences between nociceptive and nonnociceptive SEPs could be due to differences in signal-to-noise ratio and/or differences in the contribution of cognitive processes related, for example, to arousal and attention. Here, using intraepidermal electrical stimulation to selectively activate Aδ-nociceptors at a fast and constant 1-s ISI, we found that the nociceptive SEPs obtained with a long ISI are no longer identified, indicating that these responses are not obligatory for nociception. Furthermore, using a blind source separation, we found that, unlike the obligatory components of nonnociceptive SEPs, the obligatory components of nociceptive SEPs do not receive a significant contribution from a contralateral source possibly originating from S1. Instead, they were best explained by sources compatible with bilateral operculo-insular and/or cingulate locations. Taken together, our results indicate that the obligatory components of nociceptive and nonnociceptive SEPs are fundamentally different.
Collapse
Affiliation(s)
- A. Mouraux
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| | - A. L. De Paepe
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; and
| | - E. Marot
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| | - L. Plaghki
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| | - G. D. Iannetti
- Department of Neuroscience, Physiology, and Pharmacology, University College London, London, United Kingdom
| | - V. Legrain
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; and
| |
Collapse
|
33
|
Brain activity for visual judgment of lifted weight. Hum Mov Sci 2013; 32:924-37. [DOI: 10.1016/j.humov.2013.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 03/19/2013] [Accepted: 06/05/2013] [Indexed: 11/20/2022]
|
34
|
Hu L, Valentini E, Zhang ZG, Liang M, Iannetti GD. The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. Neuroimage 2013; 84:383-93. [PMID: 24001456 DOI: 10.1016/j.neuroimage.2013.08.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 12/26/2022] Open
Abstract
Nociceptive laser pulses elicit temporally-distinct cortical responses (the N1, N2 and P2 waves of laser-evoked potentials, LEPs) mainly reflecting the activity of the primary somatosensory cortex (S1) contralateral to the stimulated side, and of the bilateral operculoinsular and cingulate cortices. Here, by performing two different EEG experiments and applying a range of analysis approaches (microstate analysis, scalp topography, single-trial estimation), we describe a distinct component in the last part of the human LEP response (P4 wave). We obtained three main results. First, the LEP is reliably decomposed in four main and distinct functional microstates, corresponding to the N1, N2, P2, and P4 waves, regardless of stimulus territory. Second, the scalp and source configurations of the P4 wave follow a clear somatotopical organization, indicating that this response is likely to be partly generated in contralateral S1. Third, single-trial latencies and amplitudes of the P4 are tightly coupled with those of the N1, and are similarly sensitive to experimental manipulations (e.g., to crossing the hands over the body midline), suggesting that the P4 and N1 may have common neural sources. These results indicate that the P4 wave is a clear and distinct LEP component, which should be considered in LEP studies to achieve a comprehensive understanding of the brain response to nociceptive stimulation.
Collapse
Affiliation(s)
- L Hu
- Key Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, China.
| | | | | | | | | |
Collapse
|
35
|
Iannetti GD, Salomons TV, Moayedi M, Mouraux A, Davis KD. Beyond metaphor: contrasting mechanisms of social and physical pain. Trends Cogn Sci 2013; 17:371-8. [PMID: 23796880 DOI: 10.1016/j.tics.2013.06.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Physical pain can be clearly distinguished from other states of distress. In recent years, however, the notion that social distress is experienced as physically painful has permeated the scientific literature and popular media. This conclusion is based on the overlap of brain regions that respond to nociceptive input and sociocultural distress. Here we challenge the assumption that underlies this conclusion - that physical pain can be easily inferred from a particular pattern of activated brain regions - by showing that patterns of activation commonly presumed to constitute the 'pain matrix' are largely unspecific to pain. We then examine recent analytical advances that may improve the specificity of imaging for parsing pain from a broad range of perceptually unique human experiences.
Collapse
Affiliation(s)
- Gian Domenico Iannetti
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | | | | | | | | |
Collapse
|
36
|
Liu JV, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC. fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. Neuroimage 2013; 78:186-95. [PMID: 23571417 DOI: 10.1016/j.neuroimage.2013.03.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 01/20/2023] Open
Abstract
Functional neuroimaging in animal models is essential for understanding the principles of neurovascular coupling and the physiological basis of fMRI signals that are widely used to study sensory and cognitive processing in the human brain. While hemodynamic responses to sensory stimuli have been characterized in humans, animal studies are able to combine very high resolution imaging with invasive measurements and pharmacological manipulation. To date, most high-resolution studies of neurovascular coupling in small animals have been carried out in anesthetized rodents. Here we report fMRI experiments in conscious, awake common marmosets (Callithrix jacchus), and compare responses to animals anesthetized with propofol. In conscious marmosets, robust BOLD fMRI responses to somatosensory stimulation of the forearm were found in contralateral and ipsilateral regions of the thalamus, primary (SI) and secondary (SII) somatosensory cortex, and the caudate nucleus. These responses were markedly stronger than those in anesthetized marmosets and showed a monotonic increase in the amplitude of the BOLD response with stimulus frequency. On the other hand, anesthesia significantly attenuated responses in thalamus, SI and SII, and abolished responses in caudate and ipsilateral SI. Moreover, anesthesia influenced several other aspects of the fMRI responses, including the shape of the hemodynamic response function and the interareal (SI-SII) spontaneous functional connectivity. Together, these findings demonstrate the value of the conscious, awake marmoset model for studying physiological responses in the somatosensory pathway, in the absence of anesthesia, so that the data can be compared most directly to fMRI in conscious humans.
Collapse
Affiliation(s)
- Junjie V Liu
- Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10, Room B1D106, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
AbstractThere is a strong interaction between multisensory processing and the neuroplasticity of the human brain. On one hand, recent research demonstrates that experience and training in various domains modifies how information from the different senses is integrated; and, on the other hand multisensory training paradigms seem to be particularly effective in driving functional and structural plasticity. Multisensory training affects early sensory processing within separate sensory domains, as well as the functional and structural connectivity between uni- and multisensory brain regions. In this review, we discuss the evidence for interactions of multisensory processes and brain plasticity and give an outlook on promising clinical applications and open questions.
Collapse
|
38
|
Ronga I, Valentini E, Mouraux A, Iannetti GD. Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty. J Neurophysiol 2012; 109:692-701. [PMID: 23136349 DOI: 10.1152/jn.00464.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Event-related potentials (ERPs) elicited by transient nociceptive stimuli in humans are largely sensitive to bottom-up novelty induced, for example, by changes in stimulus attributes (e.g., modality or spatial location) within a stream of repeated stimuli. Here we aimed 1) to test the contribution of a selective change of the intensity of a repeated stimulus in determining the magnitude of nociceptive ERPs, and 2) to dissect the effect of this change of intensity in terms of "novelty" and "saliency" (an increase of stimulus intensity is more salient than a decrease of stimulus intensity). Nociceptive ERPs were elicited by trains of three consecutive laser stimuli (S1-S2-S3) delivered to the hand dorsum at a constant 1-s interstimulus interval. Three, equally spaced intensities were used: low (L), medium (M), and high (H). While the intensities of S1 and S2 were always identical (L, M, or H), the intensity of S3 was either identical (e.g., HHH) or different (e.g., MMH) from the intensity of S1 and S2. Introducing a selective change in stimulus intensity elicited significantly larger N1 and N2 waves of the S3-ERP but only when the change consisted in an increase in stimulus intensity. This observation indicates that nociceptive ERPs do not simply reflect processes involved in the detection of novelty but, instead, are mainly determined by stimulus saliency.
Collapse
Affiliation(s)
- I Ronga
- Dept. of Neuroscience, Physiology and Pharmacology, Univ. College London, Gower St., WC1E 6BT London.
| | | | | | | |
Collapse
|
39
|
Central Mechanisms of Pain Revealed Through Functional and Structural MRI. J Neuroimmune Pharmacol 2012; 8:518-34. [DOI: 10.1007/s11481-012-9386-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/02/2012] [Indexed: 12/31/2022]
|