1
|
Martín-Signes M, Paz-Alonso PM, Thiebaut de Schotten M, Chica AB. Integrating brain function and structure in the study of the human attentional networks: a functionnectome study. Brain Struct Funct 2024; 229:1665-1679. [PMID: 38969933 PMCID: PMC11374869 DOI: 10.1007/s00429-024-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/16/2024] [Indexed: 07/07/2024]
Abstract
Attention is a heterogeneous function theoretically divided into different systems. While functional magnetic resonance imaging (fMRI) has extensively characterized their functioning, the role of white matter in cognitive function has gained recent interest due to diffusion-weighted imaging advancements. However, most evidence relies on correlations between white matter properties and behavioral or cognitive measures. This study used a new method that combines the signal from distant voxels of fMRI images using the probability of structural connection given by high-resolution normative tractography. We analyzed three fMRI datasets with a visual perceptual task and three attentional manipulations: phasic alerting, spatial orienting, and executive attention. The phasic alerting network engaged temporal areas and their communication with frontal and parietal regions, with left hemisphere dominance. The orienting network involved bilateral fronto-parietal and midline regions communicating by association tracts and interhemispheric fibers. The executive attention network engaged a broad set of brain regions and white matter tracts connecting them, with a particular involvement of frontal areas and their connections with the rest of the brain. These results partially confirm and extend previous knowledge on the neural substrates of the attentional system, offering a more comprehensive understanding through the integration of structure and function.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Centre (CIMCYC), University of Granada, Granada, 18071, Spain.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, 33000, France.
| | - Pedro M Paz-Alonso
- BCBL. Basque Center on Cognition, Brain and Language, Donostia-San Sebastian, 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, 33000, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Ana B Chica
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Centre (CIMCYC), University of Granada, Granada, 18071, Spain
| |
Collapse
|
2
|
Martín-Signes M, Chica AB, Bartolomeo P, Thiebaut de Schotten M. Streams of conscious visual experience. Commun Biol 2024; 7:908. [PMID: 39068236 PMCID: PMC11283449 DOI: 10.1038/s42003-024-06593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Consciousness, a cornerstone of human cognition, is believed to arise from complex neural interactions. Traditional views have focused on localized fronto-parietal networks or broader inter-regional dynamics. In our study, we leverage advanced fMRI techniques, including the novel Functionnectome framework, to unravel the intricate relationship between brain circuits and functional activity shaping visual consciousness. Our findings underscore the importance of the superior longitudinal fasciculus within the fronto-parietal fibers, linking conscious perception with spatial neglect. Additionally, our data reveal the critical contribution of the temporo-parietal fibers and the splenium of the corpus callosum in connecting visual information with conscious representation and their verbalization. Central to these networks is the thalamus, posited as a conductor in synchronizing these interactive processes. Contrasting traditional fMRI analyses with the Functionnectome approach, our results emphasize the important explanatory power of interactive mechanisms over localized activations for visual consciousness. This research paves the way for a comprehensive understanding of consciousness, highlighting the complex network of neural connections that lead to awareness.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
| | - Ana B Chica
- Experimental Psychology Department, and Brain, Mind, and Behavior Research Center (CIMCYC-UGR), University of Granada, Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France.
- Brain Connectivity and Behaviour Laboratory, Sorbonne Université, Paris, France.
| |
Collapse
|
3
|
Liu J, Bayle DJ, Spagna A, Sitt JD, Bourgeois A, Lehongre K, Fernandez-Vidal S, Adam C, Lambrecq V, Navarro V, Seidel Malkinson T, Bartolomeo P. Fronto-parietal networks shape human conscious report through attention gain and reorienting. Commun Biol 2023; 6:730. [PMID: 37454150 PMCID: PMC10349830 DOI: 10.1038/s42003-023-05108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
How do attention and consciousness interact in the human brain? Rival theories of consciousness disagree on the role of fronto-parietal attentional networks in conscious perception. We recorded neural activity from 727 intracerebral contacts in 13 epileptic patients, while they detected near-threshold targets preceded by attentional cues. Clustering revealed three neural patterns: first, attention-enhanced conscious report accompanied sustained right-hemisphere fronto-temporal activity in networks connected by the superior longitudinal fasciculus (SLF) II-III, and late accumulation of activity (>300 ms post-target) in bilateral dorso-prefrontal and right-hemisphere orbitofrontal cortex (SLF I-III). Second, attentional reorienting affected conscious report through early, sustained activity in a right-hemisphere network (SLF III). Third, conscious report accompanied left-hemisphere dorsolateral-prefrontal activity. Task modeling with recurrent neural networks revealed multiple clusters matching the identified brain clusters, elucidating the causal relationship between clusters in conscious perception of near-threshold targets. Thus, distinct, hemisphere-asymmetric fronto-parietal networks support attentional gain and reorienting in shaping human conscious experience.
Collapse
Affiliation(s)
- Jianghao Liu
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
- Dassault Systèmes, Vélizy-Villacoublay, France.
| | | | - Alfredo Spagna
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Department of Psychology, Columbia University in the City of New York, New York, NY, 10027, USA
| | - Jacobo D Sitt
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Alexia Bourgeois
- Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, 1206, Geneva, Switzerland
| | - Katia Lehongre
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Sara Fernandez-Vidal
- CENIR - Centre de Neuro-Imagerie de Recherche, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
| | - Claude Adam
- Epilepsy Unit, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Epilepsy Unit, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Clinical Neurophysiology Department, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France
- Epilepsy Unit, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
- Clinical Neurophysiology Department, AP-HP, Pitié-Salpêtrière Hospital, 75013, Paris, France
| | - Tal Seidel Malkinson
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
- CNRS, CRAN, Université de Lorraine, F-54000, Nancy, France.
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm, CNRS, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013, Paris, France.
| |
Collapse
|
4
|
Spagna A, Bayle DJ, Romeo Z, Seidel-Malkinson T, Liu J, Yahia-Cherif L, Chica AB, Bartolomeo P. The cost of attentional reorienting on conscious visual perception: an MEG study. Cereb Cortex 2023; 33:2048-2060. [PMID: 35609335 DOI: 10.1093/cercor/bhac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
How do attentional networks influence conscious perception? To answer this question, we used magnetoencephalography in human participants and assessed the effects of spatially nonpredictive or predictive supra-threshold peripheral cues on the conscious perception of near-threshold Gabors. Three main results emerged. (i) As compared with invalid cues, both nonpredictive and predictive valid cues increased conscious detection. Yet, only predictive cues shifted the response criterion toward a more liberal decision (i.e. willingness to report the presence of a target under conditions of greater perceptual uncertainty) and affected target contrast leading to 50% detections. (ii) Conscious perception following valid predictive cues was associated to enhanced activity in frontoparietal networks. These responses were lateralized to the left hemisphere during attentional orienting and to the right hemisphere during target processing. The involvement of frontoparietal networks occurred earlier in valid than in invalid trials, a possible neural marker of the cost of re-orienting attention. (iii) When detected targets were preceded by invalid predictive cues, and thus reorienting to the target was required, neural responses occurred in left hemisphere temporo-occipital regions during attentional orienting, and in right hemisphere anterior insular and temporo-occipital regions during target processing. These results confirm and specify the role of frontoparietal networks in modulating conscious processing and detail how invalid orienting of spatial attention disrupts conscious processing.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, New York, NY 10027, USA.,Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Dimitri J Bayle
- Licae Lab, Université Paris Nanterre, 92001 Nanterre, France
| | - Zaira Romeo
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Tal Seidel-Malkinson
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Lydia Yahia-Cherif
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Ana B Chica
- Department of Experimental Psychology; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, 18071 Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
5
|
Clarke S, Farron N, Crottaz-Herbette S. Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Front Psychol 2022; 13:909686. [PMID: 35814089 PMCID: PMC9260393 DOI: 10.3389/fpsyg.2022.909686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Seminal studies revealed differences between the effect of adaptation to left- vs. right-deviating prisms (L-PA, R-PA) in normal subjects. Whereas L-PA leads to neglect-like shift in attention, demonstrated in numerous visuo-spatial and cognitive tasks, R-PA has only minor effects in specific aspects of a few tasks. The paucity of R-PA effects in normal subjects contrasts with the striking alleviation of neglect symptoms in patients with right hemispheric lesions. Current evidence from activation studies in normal subjects highlights the contribution of regions involved in visuo-motor control during prism exposure and a reorganization of spatial representations within the ventral attentional network (VAN) after the adaptation. The latter depends on the orientation of prisms used. R-PA leads to enhancement of the ipsilateral visual and auditory space within the left inferior parietal lobule (IPL), switching thus the dominance of VAN from the right to the left hemisphere. L-PA leads to enhancement of the ipsilateral space in right IPL, emphasizing thus the right hemispheric dominance of VAN. Similar reshaping has been demonstrated in patients. We propose here a model, which offers a parsimonious explanation of the effect of L-PA and R-PA both in normal subjects and in patients with hemispheric lesions. The model posits that prismatic adaptation induces instability in the synaptic organization of the visuo-motor system, which spreads to the VAN. The effect is lateralized, depending on the side of prism deviation. Successful pointing with prisms implies reaching into the space contralateral, and not ipsilateral, to the direction of prism deviation. Thus, in the hemisphere contralateral to prism deviation, reach-related neural activity decreases, leading to instability of the synaptic organization, which induces a reshuffling of spatial representations in IPL. Although reshuffled spatial representations in IPL may be functionally relevant, they are most likely less efficient than regular representations and may thus cause partial dysfunction. The former explains, e.g., the alleviation of neglect symptoms after R-PA in patients with right hemispheric lesions, the latter the occurrence of neglect-like symptoms in normal subjects after L-PA. Thus, opting for R- vs. L-PA means choosing the side of major IPL reshuffling, which leads to its partial dysfunction in normal subjects and to recruitment of alternative or enhanced spatial representations in patients with hemispheric lesions.
Collapse
Affiliation(s)
- Stephanie Clarke
- Neuropsychology and Neurorehabilitation Service, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
6
|
Cobos MI, Chica AB. EXPRESS: Attention does not always help: the role of expectancy, divided, and spatial attention on illusory conjunctions. Q J Exp Psychol (Hove) 2022; 75:2087-2104. [PMID: 35274574 DOI: 10.1177/17470218221089625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Humans have the subjective impression of a rich perceptual experience, but this perception is riddled with errors that might be produced by top-down expectancies or failures in feature integration. The role of attention in feature integration is still unclear. Some studies support the importance of attention in feature integration (Paul & Schyns, 2003), whereas others suggest that feature integration does not require attention (Humphreys, 2016). Understanding attention as a heterogeneous system, in this study we explored the role of divided (as opposed to focused - Experiment 1) attention, and endogenous-exogenous spatial orienting (Experiments 2 and 3) in feature integration. We also explored the role of feature expectancy, by presenting stimulus features that were completely unexpected to the participants. Results demonstrated that both endogenous and exogenous orienting improved feature integration while divided attention did not. Moreover, a strong and consistent feature expectancy effect was observed, demonstrating perceptual completion when an unexpected perceptual feature was presented in the scene. These results support the feature confirmation account (Humphreys, 2016), which proposes that attention is important for top-down matching of stable representations.
Collapse
Affiliation(s)
- María I Cobos
- Brain, Mind, and Behavior Research Center (CIMCYC) and Faculty of Psychology, University of Granada, Spain 16741
| | - Ana B Chica
- Brain, Mind, and Behavior Research Center (CIMCYC) and Faculty of Psychology, University of Granada, Spain 16741
| |
Collapse
|
7
|
Functional correlates of response inhibition in impulse control disorders in Parkinson's disease. Neuroimage Clin 2022; 32:102822. [PMID: 34536820 PMCID: PMC8449263 DOI: 10.1016/j.nicl.2021.102822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/10/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022]
Abstract
PD patients with ICD behave like controls in proactive and reactive inhibition. PD patients with ICD recruit different mechanisms depending on the inhibition type. Proactive inhibition is executed hyperactivating the stopping network bilaterally. Restrained inhibition is accomplished with the coactivation of attentional areas. In restrained inhibition, connectivity between right STN and precuneus is reduced.
Impulse control disorder is a prevalent side-effect of Parkinson’s disease (PD) medication, with a strong negative impact on the quality of life of those affected. Although impulsivity has classically been associated with response inhibition deficits, previous evidence from PD patients with impulse control disorder (ICD) has not revealed behavioral dysfunction in response inhibition. In this study, 18 PD patients with ICD, 17 PD patients without this complication, and 15 healthy controls performed a version of the conditional Stop Signal Task during functional magnetic resonance imaging. Whole-brain contrasts, regions of interest, and functional connectivity analyses were conducted. Our aim was to investigate the neural underpinnings of two aspects of response inhibition: proactive inhibition, inhibition that has been prepared beforehand, and restrained inhibition, inhibition of an invalid inhibitory tendency. We observed that, in respect to the other two groups, PD patients with ICD exhibited hyperactivation of the stopping network bilaterally while performing proactive inhibition. When engaged in restrained inhibition, they showed hyperactivation of the left inferior frontal gyrus, an area linked to action monitoring. Restrained inhibition also resulted in changes to the functional co-activation between inhibitory regions and left inferior parietal cortex and right supramarginal gyrus. Our findings indicate that PD patients with ICD completed the inhibition task correctly, showing altered engagement of inhibitory and attentional areas. During proactive inhibition they showed bilateral hyperactivation of two inhibitory regions, while during restrained inhibition they showed additional involvement of attentional areas responsible for alerting and orienting.
Collapse
|
8
|
Yordanova J, Kolev V, Nicolardi V, Simione L, Mauro F, Garberi P, Raffone A, Malinowski P. Attentional and cognitive monitoring brain networks in long-term meditators depend on meditation states and expertise. Sci Rep 2021; 11:4909. [PMID: 33649378 PMCID: PMC7921394 DOI: 10.1038/s41598-021-84325-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/15/2021] [Indexed: 01/23/2023] Open
Abstract
Meditation practice is suggested to engage training of cognitive control systems in the brain. To evaluate the functional involvement of attentional and cognitive monitoring processes during meditation, the present study analysed the electroencephalographic synchronization of fronto-parietal (FP) and medial-frontal (MF) brain networks in highly experienced meditators during different meditation states (focused attention, open monitoring and loving kindness meditation). The aim was to assess whether and how the connectivity patterns of FP and MF networks are modulated by meditation style and expertise. Compared to novice meditators, (1) highly experienced meditators exhibited a strong theta synchronization of both FP and MF networks in left parietal regions in all mediation styles, and (2) only the connectivity of lateralized beta MF networks differentiated meditation styles. The connectivity of intra-hemispheric theta FP networks depended non-linearly on meditation expertise, with opposite expertise-dependent patterns found in the left and the right hemisphere. In contrast, inter-hemispheric FP connectivity in faster frequency bands (fast alpha and beta) increased linearly as a function of expertise. The results confirm that executive control systems play a major role in maintaining states of meditation. The distinctive lateralized involvement of FP and MF networks appears to represent a major functional mechanism that supports both generic and style-specific meditation states. The observed expertise-dependent effects suggest that functional plasticity within executive control networks may underpin the emergence of unique meditation states in expert meditators.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 23, 1113, Sofia, Bulgaria.
| | - Valentina Nicolardi
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Social and Cognitive Neurosciences Laboratory, IRCCS, Santa Lucia Foundation, Rome, Italy
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Federica Mauro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Garberi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| |
Collapse
|
9
|
Spagna A, Hajhajate D, Liu J, Bartolomeo P. Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev 2021; 122:201-217. [PMID: 33422567 DOI: 10.1016/j.neubiorev.2020.12.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
The dominant neural model of visual mental imagery (VMI) stipulates that memories from the medial temporal lobe acquire sensory features in early visual areas. However, neurological patients with damage restricted to the occipital cortex typically show perfectly vivid VMI, while more anterior damages extending into the temporal lobe, especially in the left hemisphere, often cause VMI impairments. Here we present two major results reconciling neuroimaging findings in neurotypical subjects with the performance of brain-damaged patients: (1) A large-scale meta-analysis of 46 fMRI studies, of which 27 investigated specifically visual mental imagery, revealed that VMI engages fronto-parietal networks and a well-delimited region in the left fusiform gyrus. (2) A Bayesian analysis showed no evidence for imagery-related activity in early visual cortices. We propose a revised neural model of VMI that draws inspiration from recent cytoarchitectonic and lesion studies, whereby fronto-parietal networks initiate, modulate, and maintain activity in a core temporal network centered on the fusiform imagery node, a high-level visual region in the left fusiform gyrus.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA; Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Dounia Hajhajate
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France; Dassault Systèmes, Vélizy-Villacoublay, France
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France.
| |
Collapse
|
10
|
Pedersini CA, Lingnau A, Sanchez-Lopez J, Cardobi N, Savazzi S, Marzi CA. Visuo-spatial attention to the blind hemifield of hemianopic patients: Can it survive the impairment of visual awareness? Neuropsychologia 2020; 149:107673. [PMID: 33186572 DOI: 10.1016/j.neuropsychologia.2020.107673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/13/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
The general aim of this study was to assess the effect produced by visuo-spatial attention on both behavioural performance and brain activation in hemianopic patients following visual stimulus presentation to the blind hemifield. To do that, we tested five hemianopic patients and six age-matched healthy controls in an MRI scanner during the execution of a Posner-like paradigm using a predictive central cue. Participants were instructed to covertly orient attention toward the blind or sighted hemifield in different blocks while discriminating the orientation of a visual grating. In patients, we found significantly faster reaction times (RT) in valid and neutral than invalid trials not only in the sighted but also in the blind hemifield, despite the impairment of consciousness and performance at chance. As to the fMRI signal, in valid trials we observed the activation of ipsilesional visual areas (mainly lingual gyrus - area 19) during the orientation of attention toward the blind hemifield. Importantly, this activation was similar in patients and controls. In order to assess the related functional network, we performed a psychophysiological interactions (PPI) analysis that revealed an increased functional connectivity (FC) in patients with respect to controls between the ipsilesional lingual gyrus and ipsilateral fronto-parietal as well as contralesional parietal regions. Moreover, the shift of attention from the blind to the sighted hemifield revealed stronger FC between the contralesional visual areas V3/V4 and ipsilateral parietal regions in patients than controls. These results indicate a higher cognitive effort in patients when paying attention to the blind hemifiled or when shifting attention from the blind to the sighted hemfield, possibly as an attempt to compensate for the visual loss. Taken together, these results show that hemianopic patients can covertly orient attention toward the blind hemifield with a top-down mechanism by activating a functional network mainly including fronto-parietal regions belonging to the dorsal attentional network.
Collapse
Affiliation(s)
- Caterina A Pedersini
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Angelika Lingnau
- Faculty of Psychology, Education and Sport Science, Institute of Psychology, University of Regensburg, Germany; Centre For Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | - Javier Sanchez-Lopez
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicolo Cardobi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Silvia Savazzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| | - Carlo A Marzi
- Physiology and Psychology Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; National Institute of Neuroscience, Verona, Italy
| |
Collapse
|
11
|
Martín-Signes M, Cano-Melle C, Chica AB. Fronto-parietal networks underlie the interaction between executive control and conscious perception: Evidence from TMS and DWI. Cortex 2020; 134:1-15. [PMID: 33248337 DOI: 10.1016/j.cortex.2020.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/19/2020] [Accepted: 09/29/2020] [Indexed: 01/21/2023]
Abstract
The executive control network is involved in novel situations or those in which prepotent responses need to be overridden. Previous studies have demonstrated that when control is exerted, conscious perception is impaired, and this effect is related to the functional connectivity of fronto-parietal regions. In the present study, we explored the causal involvement of one of the nodes of this fronto-parietal network (the right Supplementary Motor Area, SMA) in the interaction between executive control and conscious perception. Participants performed a dual task in which they responded to a Stroop task while detecting the presence/absence of a near-threshold Gabor stimulus. Concurrently, transcranial magnetic stimulation (TMS) was applied over the right SMA or a control site (vertex; Experiment 1). As a further control, the right Frontal Eye Field (FEF) was stimulated in Experiment 2. Diffusion-weighted imaging (DWI) tractography was used to isolate the three branches of the superior longitudinal fasciculus (SLF I, II and III), and the frontal aslant tract (FAT), and to explore if TMS effects were related to their micro- and macrostructural characteristics. Results demonstrated reduced perceptual sensitivity on incongruent as compared to congruent Stroop trials. A causal role of the right SMA on the modulation of perceptual sensitivity by executive control was only demonstrated when the microstructure of the right SLF III or the left FAT were taken into account. The volume of the right SLF III was also related to the modulation of response criterion by executive control when the right FEF was stimulated. These results add evidence in favor of shared neural correlates for attention and conscious perception in fronto-parietal regions and highlight the role of white matter in TMS effects.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain.
| | - Cristina Cano-Melle
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
12
|
Martín-Signes M, Paz-Alonso PM, Chica AB. Connectivity of Frontoparietal Regions Reveals Executive Attention and Consciousness Interactions. Cereb Cortex 2019; 29:4539-4550. [PMID: 30590403 DOI: 10.1093/cercor/bhy332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 11/13/2022] Open
Abstract
The executive control network is involved in the voluntary control of novel and complex situations. Solving conflict situations or detecting errors have demonstrated to impair conscious perception of near-threshold stimuli. The aim of this study was to explore the neural mechanisms underlying executive control and its interaction with conscious perception using functional magnetic resonance imaging and diffusion-weighted imaging. To this end, we used a dual-task paradigm involving Stroop and conscious detection tasks with near-threshold stimuli. A set of prefrontal and frontoparietal regions were more strongly engaged for incongruent than congruent trials while a distributed set of frontoparietal regions showed stronger activation for consciously than nonconsciously perceived trials. Functional connectivity analysis revealed an interaction between executive control and conscious perception in frontal and parietal nodes. The microstructural properties of the middle branch of the superior longitudinal fasciculus were associated with neural measures of the interaction between executive control and consciousness. These results demonstrate that conscious perception and executive control share neural resources in frontoparietal networks, as proposed by some influential models.
Collapse
Affiliation(s)
- Mar Martín-Signes
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | | | - Ana B Chica
- Department of Experimental Psychology, and Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| |
Collapse
|
13
|
Abstract
According to some theoretical models, information contained in visual short-term memory (VSTM) consists of two main memory stages/storages: sensory memory, a system wherein information is stored for a brief time with high detail and low resistance to visual interference, and visual working memory, a low-capacity system wherein information is protected from visual interference and maintained for longer delays. Previous studies have consistently shown a strong relationship between attention and visual working memory. However, evidence is contradictory on whether or not attention modulates the construction and maintenance of visual representations in sensory memory. Here, we examined whether and how spatial attention differentially affects sensory and working memory contents, by separately analysing attentional costs and attentional benefits. Results showed that both sensory memory and visual working memory were reliably affected by the distribution of spatial attention, suggesting that spatial attention modulates the VSTM content starting from very early stages of memory storage. Moreover, endogenously attending a specific location led to similar performance in sensory and working memory, and therefore to larger attentional benefits in working memory (where there was more room for improvement than in sensory memory, because of worse performance in unattended locations). On the other hand, exogenous attentional capture by peripheral unpredictive cues produced invariant attentional costs and invariant attentional benefits regardless of the memory type, with performance being higher in sensory memory than in working memory even at the attended location.
Collapse
|
14
|
Tamber-Rosenau BJ, Asplund CL, Marois R. Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control. J Neurophysiol 2018; 120:2498-2512. [PMID: 30156458 PMCID: PMC6295539 DOI: 10.1152/jn.00506.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022] Open
Abstract
The posterior lateral prefrontal cortex-specifically, the inferior frontal junction (IFJ)-is thought to exert a key role in the control of attention. However, the precise nature of that role remains elusive. During the voluntary deployment and maintenance of visuospatial attention, the IFJ is typically coactivated with a core dorsal network consisting of the frontal eye field and superior parietal cortex. During stimulus-driven attention, IFJ instead couples with a ventrolateral network, suggesting that IFJ plays a role in attention distinct from the dorsal network. Because IFJ rapidly switches activation patterns to accommodate conditions of goal-directed and stimulus-driven attention (Asplund CL, Todd JJ, Snyder AP, Marois R. Nat Neurosci 13: 507-512, 2010), we hypothesized that IFJ's primary role is to dynamically reconfigure attention rather than to maintain attention under steady-state conditions. This hypothesis predicts that in a goal-directed visuospatial cuing paradigm IFJ would transiently deploy attention toward the cued location, whereas the dorsal attention network would maintain attentional weights during the delay between cue and target presentation. Here we tested this hypothesis with functional magnetic resonance imaging while subjects were engaged in a Posner cuing task with variable cue-target delays. Both IFJ and dorsal network regions were involved in transient processes, but sustained activity was far more evident in the dorsal network than in IFJ. These results support the account that IFJ primarily acts to shift attention whereas the dorsal network is the main locus for the maintenance of stable attentional states. NEW & NOTEWORTHY Goal-directed visuospatial attention is controlled by a dorsal fronto-parietal network and lateral prefrontal cortex. However, the relative roles of these regions in goal-directed attention are unknown. Here we present evidence for their dissociable roles in the transient reconfiguration and sustained maintenance of attentional settings: while maintenance of attentional settings is confined to the dorsal network, the configuration of these settings at the beginning of an attentional episode is a function of lateral prefrontal cortex.
Collapse
Affiliation(s)
- Benjamin J Tamber-Rosenau
- Department of Psychology, Vanderbilt University , Nashville, Tennessee
- Department of Psychology, University of Houston , Houston, Texas
| | | | - René Marois
- Department of Psychology, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
15
|
Colás I, Capilla A, Chica AB. Neural modulations of interference control over conscious perception. Neuropsychologia 2018; 112:40-49. [DOI: 10.1016/j.neuropsychologia.2018.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 10/17/2022]
|
16
|
White matter microstructure of attentional networks predicts attention and consciousness functional interactions. Brain Struct Funct 2017; 223:653-668. [PMID: 28905109 DOI: 10.1007/s00429-017-1511-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
Attention is considered as one of the pre-requisites of conscious perception. Phasic alerting and exogenous orienting improve conscious perception of near-threshold information through segregated brain networks. Using a multimodal neuroimaging approach, combining data from functional MRI (fMRI) and diffusion-weighted imaging (DWI), we investigated the influence of white matter properties of the ventral branch of superior longitudinal fasciculus (SLF III) in functional interactions between attentional systems and conscious perception. Results revealed that (1) reduced integrity of the left hemisphere SLF III was predictive of the neural interactions observed between exogenous orienting and conscious perception, and (2) increased integrity of the left hemisphere SLF III was predictive of the neural interactions observed between phasic alerting and conscious perception. Our results combining fMRI and DWI data demonstrate that structural properties of the white matter organization determine attentional modulations over conscious perception.
Collapse
|
17
|
Synchronization of fronto-parietal beta and theta networks as a signature of visual awareness in neglect. Neuroimage 2016; 146:341-354. [PMID: 27840240 DOI: 10.1016/j.neuroimage.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 12/31/2022] Open
Abstract
In the neglect syndrome, the perceptual deficit for contra-lesional hemi-space is increasingly viewed as a dysfunction of fronto-parietal cortical networks, the disruption of which has been described in neuroanatomical and hemodynamic studies. Here we exploit the superior temporal resolution of electroencephalography (EEG) to study dynamic transient connectivity of fronto-parietal circuits at early stages of visual perception in neglect. As reflected by inter-regional phase synchronization in a full-field attention task, two functionally distinct fronto-parietal networks, in beta (15-25Hz) and theta (4-8Hz) frequency bands, were related to stimulus discrimination within the first 200 ms of visual processing. Neglect pathology was specifically associated with significant suppressions of both beta and theta networks engaging right parietal regions. These connectivity abnormalities occurred in a pattern that was distinctly different from what was observed in right-hemisphere lesion patients without neglect. Also, both beta and theta abnormalities contributed additively to visual awareness decrease, quantified in the Behavioural Inattention Test. These results provide evidence for the impairment of fast dynamic fronto-parietal interactions during early stages of visual processing in neglect pathology. Also, they reveal that different modes of fronto-parietal dysfunction contribute independently to deficits in visual awareness at the behavioural level.
Collapse
|
18
|
Chica AB, Bayle DJ, Botta F, Bartolomeo P, Paz-Alonso PM. Interactions between phasic alerting and consciousness in the fronto-striatal network. Sci Rep 2016; 6:31868. [PMID: 27555378 PMCID: PMC4995394 DOI: 10.1038/srep31868] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/27/2016] [Indexed: 11/24/2022] Open
Abstract
Only a small fraction of all the information reaching our senses can be the object of conscious report or voluntary action. Although some models propose that different attentional states (top-down amplification and vigilance) are necessary for conscious perception, few studies have explored how the brain activations associated with different attentional systems (such as top-down orienting and phasic alerting) lead to conscious perception of subsequent visual stimulation. The aim of the present study was to investigate the neural mechanisms associated with endogenous spatial attention and phasic alertness, and their interaction with the conscious perception of near-threshold stimuli. The only region demonstrating a neural interaction between endogenous attention and conscious perception was the thalamus, while a larger network of cortical and subcortical brain activations, typically associated with phasic alerting, was highly correlated with participants' conscious reports. Activation of the anterior cingulate cortex, supplementary motor area, frontal eye fields, thalamus, and caudate nucleus was related to perceptual consciousness. These data suggest that not all attentional systems are equally effective in enhancing conscious perception, highlighting the importance of thalamo-cortical circuits on the interactions between alerting and consciousness.
Collapse
Affiliation(s)
- Ana B. Chica
- Department of Experimental Psychology, and Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Dimitri J. Bayle
- Sport and Movement Research Center (CeRSM, EA 2931), Université Paris Ouest-La Défense, Nanterre, France
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France
| | - Fabiano Botta
- Department of Experimental Psychology, and Brain, Mind, and Behavior Research Center (CIMCYC), University of Granada, Spain
| | - Paolo Bartolomeo
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, and Université Pierre et Marie Curie-Paris 6, UMR S 1127, Institut du Cerveau et de la Moelle épinière (ICM), F-75013 Paris, France
| | | |
Collapse
|
19
|
Abstract
The present article introduces the multivariate Elo-type algorithm (META), which is inspired by the Elo rating system, a tool for the measurement of the performance of chess players. The META is intended for adaptive experiments with correlated traits. The relationship of the META to other existing procedures is explained, and useful variants and modifications are discussed. The META was investigated within three simulation studies. The gain in efficiency of the univariate Elo-type algorithm was compared to standard univariate procedures; the impact of using correlational information in the META was quantified; and the adaptability to learning and fatigue was investigated. Our results show that the META is a powerful tool to efficiently control task performance in a short time period and to assess correlated traits. The R code of the simulations, the implementation of the META in MATLAB, and an example of how to use the META in the context of neuroscience are provided in supplemental materials.
Collapse
|
20
|
Norman LJ, Heywood CA, Kentridge RW. Exogenous attention to unseen objects? Conscious Cogn 2015; 35:319-29. [PMID: 25922174 DOI: 10.1016/j.concog.2015.02.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 11/15/2022]
Abstract
Attention and awareness are closely related phenomena, but recent evidence has shown that not all attended stimuli give rise to awareness. Controversy still remains over whether, and the extent to which, a dissociation between attention and awareness encompasses all forms of attention. For example, it has been suggested that attention without awareness is more readily demonstrated for voluntary, endogenous attention than its reflexive, exogenous counterpart. Here we examine whether exogenous attentional cueing can have selective behavioural effects on stimuli that nevertheless remain unseen. Using a task in which object-based attention has been shown in the absence of awareness, we remove all possible contingencies between cues and target stimuli to ensure that any cueing effects must be under purely exogenous control, and find evidence of exogenous object-based attention without awareness. In a second experiment we address whether this dissociation crucially depends on the method used to establish that the objects indeed remain unseen. Specifically, to confirm that objects are unseen we adopt appropriate signal detection task procedures, including those that retain parity with the primary attentional task (by requiring participants to discriminate the two types of trial that are used to measure an effect of attention). We show a significant object-based attention effect is apparent under conditions where the selected object indeed remains undetectable.
Collapse
Affiliation(s)
- Liam J Norman
- Psychology Department, University of Durham, Durham DH1 3LE, UK
| | | | | |
Collapse
|
21
|
Voss P, Zatorre RJ. Early visual deprivation changes cortical anatomical covariance in dorsal-stream structures. Neuroimage 2015; 108:194-202. [PMID: 25562825 DOI: 10.1016/j.neuroimage.2014.12.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/17/2014] [Accepted: 12/24/2014] [Indexed: 11/19/2022] Open
Abstract
Early blind individuals possess thicker occipital cortex compared to sighted ones. Occipital cortical thickness is also predictive of performance on several auditory discrimination tasks in the blind, which suggests that it can serve as a neuroanatomical marker of auditory behavioural abilities. In light of this atypical relationship between occipital thickness and auditory function, we sought to investigate here the covariation of occipital cortical morphology in occipital areas with that of all other areas across the cortical surface, to assess whether the anatomical covariance with the occipital cortex differs between early blind and sighted individuals. We observed a reduction in anatomical covariance between the right occipital cortex and several areas of the visual dorsal stream in a group of early blind individuals relative to sighted controls. In a separate analysis, we show that the performance of the early blind in a transposed melody discrimination task was strongly predicted by the strength of the cortical covariance between the occipital cortex and intraparietal sulcus, a region for which cortical thickness in the sighted was previously shown to predict performance in the same task. These findings therefore constitute the first evidence linking altered anatomical covariance to early sensory deprivation. Moreover, since covariation of cortical morphology could potentially be related to anatomical connectivity or driven by experience-dependent plasticity, it could consequently help guide future functional connectivity and diffusion tractography studies.
Collapse
Affiliation(s)
- Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, Canada; International laboratory for Brain, Music and Sound research (BRAMS), Montreal, Canada.
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, Montreal, Canada; International laboratory for Brain, Music and Sound research (BRAMS), Montreal, Canada
| |
Collapse
|
22
|
Abstract
Familiar stimuli are typically accompanied by decreases in neural response relative to the presentation of novel items, but these studies often include explicit instructions to discriminate old and new items; this creates difficulties in partialling out the contribution of top-down intentional orientation to the items based on recognition goals. Here, we used an incidental recognition functional MRI paradigm to compare response to repetition of novel and familiar stimuli in the absence of any ongoing memory task demand. The inferior frontal gyrus and hippocampus both displayed enhanced response to novelty and suppressed response to familiar stimuli, notably, under conditions which did not encourage intentional orientation to recognize novel or old items. Functional connectivity analyses additionally suggested that familiarity processing is associated with a network incorporating the hippocampus and prefrontal cortex. We conclude that recognition memory substrates can be fractionated even in the absence of memory goals.
Collapse
|
23
|
Landry M, Appourchaux K, Raz A. Elucidating unconscious processing with instrumental hypnosis. Front Psychol 2014; 5:785. [PMID: 25120504 PMCID: PMC4112913 DOI: 10.3389/fpsyg.2014.00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/03/2014] [Indexed: 11/13/2022] Open
Abstract
Most researchers leverage bottom-up suppression to unlock the underlying mechanisms of unconscious processing. However, a top-down approach - for example via hypnotic suggestion - paves the road to experimental innovation and complementary data that afford new scientific insights concerning attention and the unconscious. Drawing from a reliable taxonomy that differentiates subliminal and preconscious processing, we outline how an experimental trajectory that champions top-down suppression techniques, such as those practiced in hypnosis, is uniquely poised to further contextualize and refine our scientific understanding of unconscious processing. Examining subliminal and preconscious methods, we demonstrate how instrumental hypnosis provides a reliable adjunct that supplements contemporary approaches. Specifically, we provide an integrative synthesis of the advantages and shortcomings that accompany a top-down approach to probe the unconscious mind. Our account provides a larger framework for complementing the results from core studies involving prevailing subliminal and preconscious techniques.
Collapse
Affiliation(s)
- Mathieu Landry
- Integrated Program in Neuroscience, McGill University Montreal, QC, Canada
| | | | - Amir Raz
- Department of Psychiatry, McGill University Montreal, QC, Canada ; Lady Davis Institute for Medical Research, Jewish General Hospital Montreal, QC, Canada
| |
Collapse
|
24
|
Langel J, Hakun J, Zhu DC, Ravizza SM. Functional specialization of the left ventral parietal cortex in working memory. Front Hum Neurosci 2014; 8:440. [PMID: 24994977 PMCID: PMC4061583 DOI: 10.3389/fnhum.2014.00440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/31/2014] [Indexed: 11/21/2022] Open
Abstract
The function of the ventral parietal cortex (VPC) is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.
Collapse
Affiliation(s)
- Jennifer Langel
- Neuroscience Program, Michigan State University East Lansing, MI, USA
| | - Jonathan Hakun
- Department of Psychology, Michigan State University East Lansing, MI, USA
| | - David C Zhu
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA ; Department of Radiology, Michigan State University East Lansing, MI, USA
| | - Susan M Ravizza
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
25
|
The Spatial Orienting paradigm: How to design and interpret spatial attention experiments. Neurosci Biobehav Rev 2014; 40:35-51. [DOI: 10.1016/j.neubiorev.2014.01.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/03/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022]
|
26
|
Shine JM, O'Callaghan C, Halliday GM, Lewis SJG. Tricks of the mind: Visual hallucinations as disorders of attention. Prog Neurobiol 2014; 116:58-65. [PMID: 24525149 DOI: 10.1016/j.pneurobio.2014.01.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 10/25/2022]
Abstract
Visual hallucinations are common across a number of disorders but to date, a unifying pathophysiology underlying these phenomena has not been described. In this manuscript, we combine insights from neuropathological, neuropsychological and neuroimaging studies to propose a testable common neural mechanism for visual hallucinations. We propose that 'simple' visual hallucinations arise from disturbances within regions responsible for the primary processing of visual information, however with no further modulation of perceptual content by attention. In contrast, 'complex' visual hallucinations reflect dysfunction within and between the Attentional Control Networks, leading to the inappropriate interpretation of ambiguous percepts. The incorrect information perceived by hallucinators is often differentially interpreted depending on the time-course and the neuroarchitecture underlying the interpretation. Disorders with 'complex' hallucinations without retained insight are proposed to be associated with a reduction in the activity within the Dorsal Attention Network. The review concludes by showing that a variety of pathological processes can ultimately manifest in any of these three categories, depending on the precise location of the impairment.
Collapse
Affiliation(s)
- James M Shine
- Parkinson's Disease Research Clinic, Brain and Mind Research Institute, The University of Sydney, NSW, Australia.
| | - Claire O'Callaghan
- Parkinson's Disease Research Clinic, Brain and Mind Research Institute, The University of Sydney, NSW, Australia; Neuroscience Research Australia and the University of New South Wales, Sydney, NSW, Australia.
| | - Glenda M Halliday
- Neuroscience Research Australia and the University of New South Wales, Sydney, NSW, Australia.
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Research Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
27
|
Greene CM, Soto D. Functional connectivity between ventral and dorsal frontoparietal networks underlies stimulus-driven and working memory-driven sources of visual distraction. Neuroimage 2013; 84:290-8. [PMID: 24004695 DOI: 10.1016/j.neuroimage.2013.08.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/21/2013] [Accepted: 08/25/2013] [Indexed: 11/29/2022] Open
Abstract
We investigate the neural basis of two routes to visual distraction: salient stimuli capture attention in a bottom-up fashion and the reappearance of task-irrelevant items that are being actively maintained in working memory can lead to distraction via top-down, but automatic, guidance of attention. Bottom-up, stimulus-driven distraction has typically been associated with a ventral network incorporating the inferior frontal gyrus and temporoparietal junction. A dorsal network including the superior frontal gyrus, superior parietal cortex and intraparietal sulcus is known to underlie the voluntary, top-down control of attention. Here we show that the ventral attention network may be modulated in a top-down manner by task-irrelevant memory signals. Furthermore, we delineate how the biasing of attention by these bottom-up and top-down sources of visual distraction is modulated by changes in connectivity among critical nodes of ventral and dorsal frontoparietal regions. The findings further our understanding of the neural circuitry that mediates the control of human visual attention.
Collapse
Affiliation(s)
- Ciara M Greene
- Imperial College London, Department of Medicine, Division of Brain Sciences, St. Dunstan's Road, London, W6 8RP, UK; University College Cork, School of Applied Psychology, Cork, Ireland.
| | | |
Collapse
|
28
|
Abstract
Emerging hypotheses suggest that efficient cognitive functioning requires the integration of separate, but interconnected cortical networks in the brain. Although task-related measures of brain activity suggest that a frontoparietal network is associated with the control of attention, little is known regarding how components within this distributed network act together or with other networks to achieve various attentional functions. This review considers both functional and structural studies of brain connectivity, as complemented by behavioral and task-related neuroimaging data. These studies show converging results: The frontal and parietal cortical regions are active together, over time, and identifiable frontoparietal networks are active in relation to specific task demands. However, the spontaneous, low-frequency fluctuations of brain activity that occur in the resting state, without specific task demands, also exhibit patterns of connectivity that closely resemble the task-related, frontoparietal attention networks. Both task-related and resting-state networks exhibit consistent relations to behavioral measures of attention. Further, anatomical structure, particularly white matter pathways as defined by diffusion tensor imaging, places constraints on intrinsic functional connectivity. Lastly, connectivity analyses applied to investigate cognitive differences across individuals in both healthy and diseased states suggest that disconnection of attentional networks is linked to deficits in cognitive functioning, and in extreme cases, to disorders of attention. Thus, comprehensive theories of visual attention and their clinical translation depend on the continued integration of behavioral, task-related neuroimaging, and brain connectivity measures.
Collapse
Affiliation(s)
- Emily L Parks
- Department of Psychiatry and Behavioral Sciences, Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|