1
|
Schwark R, Andrade R, Bykhovskaia M. Synapsin II Directly Suppresses Epileptic Seizures In Vivo. Brain Sci 2022; 12:brainsci12030325. [PMID: 35326282 PMCID: PMC8946686 DOI: 10.3390/brainsci12030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The synapsin family offers a strong linkage between synaptic mechanisms and the epileptic phenotype. Synapsins are phosphoproteins reversibly associated with synaptic vesicles. Synapsin deficiency can cause epilepsy in humans, and synapsin II (SynII) in knockout (KO) mice causes generalized epileptic seizures. To differentiate between the direct effect of SynII versus its secondary adaptations, we used neonatal intracerebroventricular injections of the adeno-associated virus (AAV) expressing SynII. We found that SynII reintroduction diminished the enhanced synaptic activity in Syn2 KO hippocampal slices. Next, we employed the epileptogenic agent 4-aminopyridine (4-AP) and found that SynII reintroduction completely rescued the epileptiform activity observed in Syn2 KO slices upon 4-AP application. Finally, we developed a protocol to provoke behavioral seizures in young Syn2 KO animals and found that SynII reintroduction balances the behavioral seizures. To elucidate the mechanisms through which SynII suppresses hyperexcitability, we injected the phospho-incompetent version of Syn2 that had the mutated protein kinase A (PKA) phosphorylation site. The introduction of the phospho-incompetent SynII mutant suppressed the epileptiform and seizure activity in Syn2 KO mice, but not to the extent observed upon the reintroduction of native SynII. These findings show that SynII can directly suppress seizure activity and that PKA phosphorylation contributes to this function.
Collapse
Affiliation(s)
- Ryan Schwark
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- The Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- Correspondence:
| |
Collapse
|
2
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
3
|
Hou X, Yang F, Li A, Zhao D, Ma N, Chen L, Lin S, Lin Y, Wang L, Yan X, Zheng M, Lee TH, Zhou XZ, Lu KP, Liu H. The Pin1-CaMKII-AMPA Receptor Axis Regulates Epileptic Susceptibility. Cereb Cortex 2021; 31:3082-3095. [PMID: 33569579 DOI: 10.1093/cercor/bhab004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 10/28/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pin1 is a unique isomerase that regulates protein conformation and function after phosphorylation. Pin1 aberration contributes to some neurological diseases, notably Alzheimer's disease, but its role in epilepsy is not fully understood. We found that Pin1-deficient mice had significantly increased seizure susceptibility in multiple chemical inducing models and developed age-dependent spontaneous epilepsy. Electrophysiologically, Pin1 ablation enhanced excitatory synaptic transmission to prefrontal cortex (PFC) pyramidal neurons without affecting their intrinsic excitability. Biochemically, Pin1 ablation upregulated AMPA receptors and GluA1 phosphorylation by acting on phosphorylated CaMKII. Clinically, Pin1 was decreased significantly, whereas phosphorylated CaMKII and GluA1 were increased in the neocortex of patients with epilepsy. Moreover, Pin1 expression restoration in the PFC of Pin1-deficient mice using viral gene transfer significantly reduced phosphorylated CaMKII and GluA1 and effectively suppressed their seizure susceptibility. Thus, Pin1-CaMKII-AMPA receptors are a novel axis controlling epileptic susceptibility, highlighting attractive new therapeutic strategies.
Collapse
Affiliation(s)
- Xiaojun Hou
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Fuzhou Children's Hospital of Fujian Medical University, Fuzhou, Fujian, 350005, China
| | - Fan Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Angcheng Li
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Debao Zhao
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Nengjun Ma
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Linying Chen
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Suijin Lin
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yuanxiang Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Long Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Xingxue Yan
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Min Zheng
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Tae Ho Lee
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Hekun Liu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
4
|
Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110135. [PMID: 33058959 DOI: 10.1016/j.pnpbp.2020.110135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022]
Abstract
Synapsins (Syns) are a family of phosphoproteins associated with synaptic vesicles (SVs). Their main function is to regulate neurotransmitter release by maintaining a reserve pool of SVs at the presynaptic terminal. Previous studies reported that the deletion of one or more Syn genes in mice results in an epileptic phenotype and autism-related behavioral abnormalities. Here we aimed at characterizing the behavioral phenotype and neurobiological correlates of the deletion of Syns in a Syn triple knockout (TKO) mouse model. Wild type (WT) and TKO mice were tested in the open field, novelty suppressed feeding, light-dark box, forced swim, tail suspension and three-chamber sociability tests. Using in vivo electrophysiology, we recorded the spontaneous activity of dorsal raphe nucleus (DRN) serotonin (5-HT) and ventral tegmental area (VTA) dopamine (DA) neurons. Levels of 5-HT and DA in the frontal cortex and hippocampus of WT and TKO mice were also assessed using a High-Performance Liquid Chromatography. TKO mice displayed hyperactivity and impaired social and anxiety-like behavior. Behavioral dysfunctions were accompanied by reduced firing activity of DRN 5-HT, but not VTA DA, neurons. TKO mice also showed increased responsiveness of DRN 5-HT-1A autoreceptors, measured as a reduced dose of the 5-HT-1A agonist 8-OH-DPAT necessary to inhibit DRN 5-HT firing activity by 50%. Finally, hippocampal 5-HT levels were lower in TKO than in WT mice. Overall, Syns deletion in mice leads to a reduction in DRN 5-HT firing activity and hippocampal 5-HT levels along with behavioral alterations reminiscent of human neuropsychiatric conditions associated with Syn dysfunction.
Collapse
|
5
|
Shi XY, Wang G, Li T, Li Z, Leo P, Liu Z, Wu G, Zhu H, Zhang Y, Li D, Gao L, Yang L, Wang W, Liao J, Wang J, Zhou S, Wang H, Li X, Gao J, Zhang L, Shu X, Li D, Li Y, Chen C, Zhang X, Partida GC, Lundberg M, Reutens D, Bartlett P, Brown MA, Zou LP, Xu H. Identification of susceptibility variants to benign childhood epilepsy with centro-temporal spikes (BECTS) in Chinese Han population. EBioMedicine 2020; 57:102840. [PMID: 32580138 PMCID: PMC7317238 DOI: 10.1016/j.ebiom.2020.102840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Benign Childhood Epilepsy with Centro-temporal Spikes (BECTS) is the most common form of idiopathic epilepsy in children, accounting for up to 23% of pediatric epilepsy. The pathogenesis of BECTS is unknown, but it is thought that genetic factors play a role in susceptibility to the disease. METHODS To investigate the role of common genetic variants in BECTS pathogenesis, a 2-stage genome-wide association study (GWAS) was performed in 1,800 Chinese Han BECTS patients, and 7,090 healthy controls. Genetic findings were used in a Mendelian Randomization study in the UK Biobank dataset to investigate the potential role of smoking in BECTS. FINDINGS Definitive evidence of a role for common-variant heritability was demonstrated, with heritability of BECTS of >10% observed even with conservative disease prevalence assumptions. Although no individual locus achieved genome-wide significance, twelve loci achieved suggestive evidence of association (5 × 10-8<P<10-5). Using combined genetic and brain tissue gene expression data analyzed by Summary-data-based Mendelian Randomization (SMR), causative association of BECTS was demonstrated with SNP rs1948 and the CHRNA5 t3603436 transcript (Peqtl = 2·10 × 10-12, Psmr = 7·9 × 10-5). This finding indicates rs1948 is significantly associated with BECTS through effects on expression of CHRNA5 in brain tissue. The identification of novel loci suggests involvements of KALRN and the CHRNA5-A3-B4 cluster in BECTS. Using a generalized SMR approach we demonstrate that maternal smoking around birth is significantly associated with increased risk of BECTS (odds ratio = 3·90, P = 0·0099). INTERPRETATION This study shows that BECTS risk is at least partially heritable and due to common genetic variants. Additionally, we demonstrate that BECTS risk is substantially increased by maternal smoking around birth.
Collapse
Affiliation(s)
- Xiu-Yu Shi
- Department of Pediatrics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian district, Beijing, China
| | - Geng Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhixiu Li
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Paul Leo
- Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, Australia
| | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei, China
| | - Gefei Wu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei, China
| | - Hongmin Zhu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology Wuhan, Hubei, China
| | - Yuqin Zhang
- Department of Neurology, Tian Jin Children's hospital, 238 Longyan road, Beichen district, Tianjin, China
| | - Dong Li
- Department of Neurology, Tian Jin Children's hospital, 238 Longyan road, Beichen district, Tianjin, China
| | - Li Gao
- Department of Pediatrics, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, China
| | - Liu Yang
- Department of Pediatrics, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Neurology, Harbin Children's Hospital, 57 YouYi Road, DaoLi District, Harbin, Heilongjiang Province, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children's Hospital, 7019 Yitian Road Futian, Shenzhen, Guangdong Province, China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, New Pudong district, Shanghai, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, China
| | - Hua Wang
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province, China
| | - Xiaojing Li
- Department of Neurology, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Tianhe district, Guangzhou, Guangdong Province, China
| | - Jingyun Gao
- Department of Pediatric Neurology, Hebei Tangshan City maternal and child health care hospital,14 South Jianhe Road, Tangshan, Hebei Province, China
| | - Li Zhang
- Department of Pediatrics, Linyi People's Hospital, 130 Yizhou Road, Lanshan, Linyi, Shandong Province, China
| | - Xiaomei Shu
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, 149 Dalian Road, Zunyi, Guizhou Province, China
| | - Dan Li
- Department of Pediatrics, the Second affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an, Shaanxi Province, China
| | - Yan Li
- Department of Neurology, Children's Hospital Affiliated to Soochow University, 92 Zhongnan Street, Suzhou, Jiangsu Province, China
| | - Chunhong Chen
- Department of Neurology, Beijing Children's Hospital, 56 South Lishi Road, Xicheng District, Beijing, China
| | - Xiuju Zhang
- Department of Pediatrics, Xingtai People's Hospital,16 Hongxing Street, Xingtai, Hebei Province, China
| | - Gabriel Cuellar Partida
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Mischa Lundberg
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - David Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Perry Bartlett
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Matthew A Brown
- Guy's & St Thomas' NHS Foundation Trust and King's College London, NIHR Biomedical Research Centre, London, England United Kingdom.
| | - Li-Ping Zou
- Department of Pediatrics, Chinese PLA General Hospital, 28 Fuxing Road, Haidian district, Beijing, China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China; Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F. Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing. eLife 2019; 8:41586. [PMID: 31081751 PMCID: PMC6533085 DOI: 10.7554/elife.41586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Information processing by cerebellar molecular layer interneurons (MLIs) plays a crucial role in motor behavior. MLI recruitment is tightly controlled by the profile of short-term plasticity (STP) at granule cell (GC)-MLI synapses. While GCs are the most numerous neurons in the brain, STP diversity at GC-MLI synapses is poorly documented. Here, we studied how single MLIs are recruited by their distinct GC inputs during burst firing. Using slice recordings at individual GC-MLI synapses of mice, we revealed four classes of connections segregated by their STP profile. Each class differentially drives MLI recruitment. We show that GC synaptic diversity is underlain by heterogeneous expression of synapsin II, a key actor of STP and that GC terminals devoid of synapsin II are associated with slow MLI recruitment. Our study reveals that molecular, structural and functional diversity across GC terminals provides a mechanism to expand the coding range of MLIs.
Collapse
Affiliation(s)
- Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Valérie Demais
- Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Yannick Bailly
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France.,Plateforme Imagerie in vitro, CNRS UPS 3156, Strasbourg, France
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| | - Frédéric Doussau
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Matos H, Quiles R, Andrade R, Bykhovskaia M. Growth and excitability at synapsin II deficient hippocampal neurons. Mol Cell Neurosci 2019; 96:25-34. [PMID: 30858140 DOI: 10.1016/j.mcn.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
Abstract
Synapsins are neuronal phosphoproteins that fine-tune synaptic transmission and suppress seizure activity. Synapsin II (SynII) deletion produces epileptic seizures and overexcitability in neuronal networks. Early studies in primary neuronal cultures have shown that SynII deletion results in a delay in synapse formation. More recent studies at hippocampal slices have revealed increased spontaneous activity in SynII knockout (SynII(-)) mice. To reconcile these observations, we systematically re-examined synaptic transmission, synapse formation, and neurite growth in primary hippocampal neuronal cultures. We find that spontaneous glutamatergic synaptic activity was suppressed in SynII(-) neurons during the initial developmental epoch (7 days in vitro, DIV) but was enhanced at later times (12 and18 DIV). The density of synapses, transmission between connected pairs of neurons, and the number of docked synaptic vesicles were not affected by SynII deletion. However, we found that neurite outgrowth in SynII(-) neurons was suppressed during the initial developmental epoch (7 DIV) but enhanced at subsequent developmental stages (12 and18 DIV). This finding can account for the observed effect of SynII deletion on synaptic activity. To test whether the observed phenotype resulted directly from the deletion of SynII we expressed SynII in SynII(-) cultures using an adeno-associated virus (AAV). Expression of SynII at 2 DIV rescued the SynII deletion-dependent alterations in both synaptic activity and neuronal growth. To test whether the increased neurite outgrowth in SynII(-) observed at DIV 12 and18 represents an overcompensation for the initial developmental delay or results directly from SynII deletion we performed "late expression" experiments, transfecting SynII(-) cultures with AAV at 7 DIV. The late SynII expression suppressed neurite outgrowth at 12 and 18 DIV to the levels observed in control neurons, suggesting that these phenotypes directly depend on SynII. These results reveal a novel developmentally regulated role for SynII function in the control of neurite growth.
Collapse
Affiliation(s)
- Heidi Matos
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Raymond Quiles
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America.
| |
Collapse
|
8
|
Cicvaric A, Bulat T, Bormann D, Yang J, Auer B, Milenkovic I, Cabatic M, Milicevic R, Monje FJ. Sustained consumption of cocoa-based dark chocolate enhances seizure-like events in the mouse hippocampus. Food Funct 2018; 9:1532-1544. [PMID: 29431797 DOI: 10.1039/c7fo01668a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While the consumption of caffeine and cocoa has been associated with a variety of health benefits to humans, some authors have proposed that excessive caffeine intake may increase the frequency of epileptic seizures in humans and reduce the efficiency of antiepileptic drugs. Little is known, however, about the proconvulsant potential of the sustained, excessive intake of cocoa on hippocampal neural circuits. Using the mouse as an experimental model, we examined the effects of the chronic consumption of food enriched in cocoa-based dark chocolate on motor and mood-related behaviours as well as on the excitability properties of hippocampal neurons. Cocoa food enrichment did not affect body weights or mood-related behaviours but rather promoted general locomotion and improved motor coordination. However, ex vivo electrophysiological analysis revealed a significant enhancement in seizure-like population spike bursting at the neurogenic dentate gyrus, which was paralleled by a significant reduction in the levels of GABA-α1 receptors thus suggesting that an excessive dietary intake of cocoa-enriched food might alter some of the synaptic elements involved in epileptogenesis. These data invite further multidisciplinary research aiming to elucidate the potential deleterious effects of chocolate abuse on behaviour and brain hyperexcitability.
Collapse
Affiliation(s)
- Ana Cicvaric
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Tanja Bulat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Daniel Bormann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Jiaye Yang
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Bastian Auer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Ivan Milenkovic
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Maureen Cabatic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Radoslav Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Francisco J Monje
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| |
Collapse
|
9
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
10
|
Synapsin II Regulation of GABAergic Synaptic Transmission Is Dependent on Interneuron Subtype. J Neurosci 2017; 37:1757-1771. [PMID: 28087765 DOI: 10.1523/jneurosci.0844-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 11/21/2022] Open
Abstract
Synapsins are epilepsy susceptibility genes that encode phosphoproteins reversibly associated with synaptic vesicles. Synapsin II (SynII) gene deletion produces a deficit in inhibitory synaptic transmission, and this defect is thought to cause epileptic activity. We systematically investigated how SynII affects synchronous and asynchronous release components of inhibitory transmission in the CA1 region of the mouse hippocampus. We found that the asynchronous GABAergic release component is diminished in SynII-deleted (SynII(-)) slices. To investigate this defect at different interneuron subtypes, we selectively blocked either N-type or P/Q-type Ca2+ channels. SynII deletion suppressed the asynchronous release component at synapses dependent on N-type Ca2+ channels but not at synapses dependent on P/Q-type Ca2+ channels. We then performed paired double-patch recordings from inhibitory basket interneurons connected to pyramidal neurons and used cluster analysis to classify interneurons according to their spiking and synaptic parameters. We identified two cell subtypes, presumably parvalbumin (PV) and cholecystokinin (CCK) expressing basket interneurons. To validate our interneuron classification, we took advantage of transgenic animals with fluorescently labeled PV interneurons and confirmed that their spiking and synaptic parameters matched the parameters of presumed PV cells identified by the cluster analysis. The analysis of the release time course at the two interneuron subtypes demonstrated that the asynchronous release component was selectively reduced at SynII(-) CCK interneurons. In contrast, the transmission was desynchronized at SynII(-) PV interneurons. Together, our results demonstrate that SynII regulates the time course of GABAergic release, and that this SynII function is dependent on the interneuron subtype.SIGNIFICANCE STATEMENT Deletion of the neuronal protein synapsin II (SynII) leads to the development of epilepsy, probably due to impairments in inhibitory synaptic transmission. We systematically investigated SynII function at different subtypes of inhibitory neurons in the hippocampus. We discovered that SynII affects the time course of GABA release, and that this effect is interneuron subtype specific. Within one of the subtypes, SynII deficiency synchronizes the release and suppresses the asynchronous release component, while at the other subtype SynII deficiency suppresses the synchronous release component. These results reveal a new SynII function in the regulation of the time course of GABA release and demonstrate that this function is dependent on the interneuron subtype.
Collapse
|
11
|
Subconvulsant doses of pentylenetetrazol uncover the epileptic phenotype of cultured synapsin-deficient Helix serotonergic neurons in the absence of excitatory and inhibitory inputs. Epilepsy Res 2016; 127:241-251. [PMID: 27639349 DOI: 10.1016/j.eplepsyres.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
Synapsins are a family of presynaptic proteins related to several processes of synaptic functioning. A variety of reports have linked mutations in synapsin genes with the development of epilepsy. Among the proposed mechanisms, a main one is based on the synapsin-mediated imbalance towards network hyperexcitability due to differential effects on neurotransmitter release in GABAergic and glutamatergic synapses. Along this line, a non-synaptic effect of synapsin depletion increasing neuronal excitability has recently been described in Helix neurons. To further investigate this issue, we examined the effect of synapsin knock-down on the development of pentylenetetrazol (PTZ)-induced epileptic-like activity using single neurons or isolated monosynaptic circuits reconstructed on microelectrode arrays (MEAs). Compared to control neurons, synapsin-silenced neurons showed a lower threshold for the development of epileptic-like activity and prolonged periods of activity, together with the occurrence of spontaneous firing after recurrent PTZ-induced epileptic-like activity. These findings highlight the crucial role of synapsin on neuronal excitability regulation in the absence of inhibitory or excitatory inputs.
Collapse
|
12
|
Synapsin II and Rab3a cooperate in the regulation of epileptic and synaptic activity in the CA1 region of the hippocampus. J Neurosci 2014; 33:18319-30. [PMID: 24227741 DOI: 10.1523/jneurosci.5293-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Some forms of idiopathic epilepsy in animals and humans are associated with deficiency of synapsin, a phosphoprotein that reversibly associates with synaptic vesicles. We have previously shown that the epileptic phenotype seen in synapsin II knock-out mice (SynII(-)) can be rescued by the genetic deletion of the Rab3a protein. Here we have examined the cellular basis for this rescue using whole-cell recordings from CA1 hippocampal pyramidal cells in brain slices. We find that SynII(-) neurons have increased spontaneous activity and a reduced threshold for the induction of epileptiform activity by 4-aminopyridine (4-AP). Using selective recordings of glutamatergic and GABAergic activity we show that in wild-type neurons low concentrations of 4-AP facilitate glutamatergic and GABAergic transmission in a balanced way, whereas in SynII(-) neurons this balance is shifted toward excitation. This imbalance reflects a deficit in inhibitory synaptic transmission that appears to be secondary to reduced Ca(2+) sensitivity in SynII(-) neurons. This suggestion is supported by our finding that synaptic and epileptiform activity at SynII(-) and wild-type synapses is similar when GABAergic transmission is blocked. Deletion of Rab3a results in glutamatergic synapses that have a compromised responsiveness to either low 4-AP concentrations or elevated extracellular Ca(2+). These changes mitigate the overexcitable phenotype observed in SynII(-) neurons. Thus, Rab3a deletion appears to restore the excitatory/inhibitory imbalance observed in SynII(-) hippocampal slices indirectly, not by correcting the deficit in GABAergic synaptic transmission but rather by impairing excitatory glutamatergic synaptic transmission.
Collapse
|