1
|
Fiez JA, Stoodley CJ. Small but Mighty: Ten Myths and Misunderstandings About the Cerebellum. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:628-634. [PMID: 39175784 PMCID: PMC11338294 DOI: 10.1162/nol_e_00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Affiliation(s)
- Julie A. Fiez
- Departments of Psychology, Neuroscience, and Communication Science and Disorders, Learning Research and Development Center, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine J. Stoodley
- Developing Brain Institute and Center for Prenatal, Neonatal and Maternal Health Research, Children’s National Hospital, Washington DC, USA
- Departments of Neuroscience and Pediatrics, The George Washington School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
2
|
Fromm D, Chern S, Geng Z, Kim M, Greenhouse J, MacWhinney B. Automated Analysis of Fluency Behaviors in Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:2333-2342. [PMID: 38875483 PMCID: PMC11253798 DOI: 10.1044/2024_jslhr-23-00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/10/2024] [Accepted: 03/25/2024] [Indexed: 06/16/2024]
Abstract
PURPOSE This study explored the use of an automated language analysis tool, FLUCALC, for measuring fluency in aphasia. The purpose was to determine whether CLAN's FLUCALC command could produce efficient, objective outcome measures for salient aspects of fluency in aphasia. METHOD The FLUCALC command was used on CHAT transcripts of Cinderella stories from people with aphasia (PWA; n = 281) and controls (n = 257) in the AphasiaBank database. RESULTS PWA produced significantly fewer total words, fewer words per minute, more pausing, more repetitions, more revisions, and more phonological fragments than controls, with only one exception: The Wernicke's group was similar to the control group in percentage of filled pauses. Individuals with Broca's aphasia had significantly longer inter-utterance pauses and fewer total words than all other aphasia groups. Both the Broca's and conduction aphasia groups had higher percentages of phrase repetitions than the NABW (NotAphasicByWAB) group. The conduction aphasia group also had a higher percentage of phrase revisions than the NABW and the anomic aphasia groups. Principal components analysis revealed two principal components that accounted for around 60% of the variance and related to quantity of output, rate of speech, and quality of output. The Gaussian mixture models showed that the participants clustered in three groups, which corresponded predominantly to the controls, the nonfluent aphasia group, and the remaining aphasia groups (all classically fluent aphasia types). CONCLUSIONS FLUCALC is an efficient way to measure objective fluency behaviors in language samples in aphasia. Automated analyses of objective fluency behaviors on large samples of adults with and without aphasia can produce measures that can be used by researchers and clinicians to better understand and track salient aspects of fluency in aphasia. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.25979863.
Collapse
Affiliation(s)
- Davida Fromm
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA
| | - Steffi Chern
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA
| | - Zihan Geng
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA
| | - Mason Kim
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA
| | - Joel Greenhouse
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA
| | - Brian MacWhinney
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA
| |
Collapse
|
3
|
Arvidsson C, Torubarova E, Pereira A, Uddén J. Conversational production and comprehension: fMRI-evidence reminiscent of but deviant from the classical Broca-Wernicke model. Cereb Cortex 2024; 34:bhae073. [PMID: 38501383 PMCID: PMC10949358 DOI: 10.1093/cercor/bhae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024] Open
Abstract
A key question in research on the neurobiology of language is to which extent the language production and comprehension systems share neural infrastructure, but this question has not been addressed in the context of conversation. We utilized a public fMRI dataset where 24 participants engaged in unscripted conversations with a confederate outside the scanner, via an audio-video link. We provide evidence indicating that the two systems share neural infrastructure in the left-lateralized perisylvian language network, but diverge regarding the level of activation in regions within the network. Activity in the left inferior frontal gyrus was stronger in production compared to comprehension, while comprehension showed stronger recruitment of the left anterior middle temporal gyrus and superior temporal sulcus, compared to production. Although our results are reminiscent of the classical Broca-Wernicke model, the anterior (rather than posterior) temporal activation is a notable difference from that model. This is one of the findings that may be a consequence of the conversational setting, another being that conversational production activated what we interpret as higher-level socio-pragmatic processes. In conclusion, we present evidence for partial overlap and functional asymmetry of the neural infrastructure of production and comprehension, in the above-mentioned frontal vs temporal regions during conversation.
Collapse
Affiliation(s)
- Caroline Arvidsson
- Department of Linguistics, Stockholm University, Universitetsvägen 10 C, 114 18 Stockholm, Sweden
| | - Ekaterina Torubarova
- Division of Speech, Music, and Hearing, KTH Royal Institute of Technology, Lindstedtsvägen 24, 114 28 Stockholm, Sweden
| | - André Pereira
- Division of Speech, Music, and Hearing, KTH Royal Institute of Technology, Lindstedtsvägen 24, 114 28 Stockholm, Sweden
| | - Julia Uddén
- Department of Linguistics, Stockholm University, Universitetsvägen 10 C, 114 18 Stockholm, Sweden
- Department of Psychology, Stockholm University, Albanovägen 12, 114 19 Stockholm, Sweden
| |
Collapse
|
4
|
Kram L, Ohlerth AK, Ille S, Meyer B, Krieg SM. CompreTAP: Feasibility and reliability of a new language comprehension mapping task via preoperative navigated transcranial magnetic stimulation. Cortex 2024; 171:347-369. [PMID: 38086145 DOI: 10.1016/j.cortex.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/01/2023] [Accepted: 09/25/2023] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Stimulation-based language mapping approaches that are used pre- and intraoperatively employ predominantly overt language tasks requiring sufficient language production abilities. Yet, these production-based setups are often not feasible in brain tumor patients with severe expressive aphasia. This pilot study evaluated the feasibility and reliability of a newly developed language comprehension task with preoperative navigated transcranial magnetic stimulation (nTMS). METHODS Fifteen healthy subjects and six brain tumor patients with severe expressive aphasia unable to perform classic overt naming tasks underwent preoperative nTMS language mapping based on an auditory single-word Comprehension TAsk for Perioperative mapping (CompreTAP). Comprehension was probed by button-press responses to auditory stimuli, hence not requiring overt language responses. Positive comprehension areas were identified when stimulation elicited an incorrect or delayed button press. Error categories, case-wise cortical error rate distribution and inter-rater reliability between two experienced specialists were examined. RESULTS Overall, the new setup showed to be feasible. Comprehension-disruptions induced by nTMS manifested in no responses, delayed or hesitant responses, searching behavior or selection of wrong target items across all patients and controls and could be performed even in patients with severe expressive aphasia. The analysis agreement between both specialists was substantial for classifying comprehension-positive and -negative sites. Extensive left-hemispheric individual cortical comprehension sites were identified for all patients. Apart from one case presenting with transient worsening of aphasic symptoms, pre-existing language deficits did not aggravate if results were used for subsequent surgical planning. CONCLUSION Employing this new comprehension-based nTMS setup allowed to identify language relevant cortical sites in all healthy subjects and severely aphasic patients who were thus far precluded from classic production-based mapping. This pilot study, moreover, provides first indications that the CompreTAP mapping results may support the preservation of residual language function if used for subsequent surgical planning.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Ann-Katrin Ohlerth
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; TUM Neuroimaging Center, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Germany; Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany.
| |
Collapse
|
5
|
Levy DF, Entrup JL, Schneck SM, Onuscheck CF, Rahman M, Kasdan A, Casilio M, Willey E, Davis LT, de Riesthal M, Kirshner HS, Wilson SM. Multivariate lesion symptom mapping for predicting trajectories of recovery from aphasia. Brain Commun 2024; 6:fcae024. [PMID: 38370445 PMCID: PMC10873140 DOI: 10.1093/braincomms/fcae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Individuals with post-stroke aphasia tend to recover their language to some extent; however, it remains challenging to reliably predict the nature and extent of recovery that will occur in the long term. The aim of this study was to quantitatively predict language outcomes in the first year of recovery from aphasia across multiple domains of language and at multiple timepoints post-stroke. We recruited 217 patients with aphasia following acute left hemisphere ischaemic or haemorrhagic stroke and evaluated their speech and language function using the Quick Aphasia Battery acutely and then acquired longitudinal follow-up data at up to three timepoints post-stroke: 1 month (n = 102), 3 months (n = 98) and 1 year (n = 74). We used support vector regression to predict language outcomes at each timepoint using acute clinical imaging data, demographic variables and initial aphasia severity as input. We found that ∼60% of the variance in long-term (1 year) aphasia severity could be predicted using these models, with detailed information about lesion location importantly contributing to these predictions. Predictions at the 1- and 3-month timepoints were somewhat less accurate based on lesion location alone, but reached comparable accuracy to predictions at the 1-year timepoint when initial aphasia severity was included in the models. Specific subdomains of language besides overall severity were predicted with varying but often similar degrees of accuracy. Our findings demonstrate the feasibility of using support vector regression models with leave-one-out cross-validation to make personalized predictions about long-term recovery from aphasia and provide a valuable neuroanatomical baseline upon which to build future models incorporating information beyond neuroanatomical and demographic predictors.
Collapse
Affiliation(s)
- Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian L Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah M Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin F Onuscheck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maysaa Rahman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anna Kasdan
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marianne Casilio
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emma Willey
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Howard S Kirshner
- Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
6
|
Rheinländer A, Weih M. [Henry Head (1861-1940) and his importance for neurology]. DER NERVENARZT 2024; 95:162-168. [PMID: 37823921 PMCID: PMC10850193 DOI: 10.1007/s00115-023-01556-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 10/13/2023]
Abstract
Nowadays, Henry Head is best known for his Head zones. The concept was understood very differently by Head in comparison to what current medical books falsely describe them to be. In reality, there is no direct relationship between one particular skin zone and one single organ. It is certain that the drawings considered depictions of the Head zones in today's medical textbooks were actually not created by Head. From a neurological point of view, Head is important for two reasons: his self-experiment in 1909 to damage one of his own peripheral nerves followed by regeneration was heroic. It has helped generations of neurologists to have a better understanding of the pathophysiology of peripheral nerve damage and thus make a better assessment of the prognosis of such injuries. Head's second contribution pertains to the radicular organization at the level of the spinal cord. The pathophysiology of herpes zoster radiculitis enabled him to develop the concept of the dermatomes on the basis of preliminary work around 1900. Henry Head's contribution was the systematic compilation of the existing publications of the time and amendment of his own cases. As he was the most important neurologist at that time, at least in the English speaking world, and was well connected with people in the German neurology community, it was probably easy for him to make his dermatome maps well known. In retrospect, Head was less successful in neuropsychology with holistic concepts for higher cognitive functions which were in vogue during his lifetime. His late work on aphasia is now considered refuted. Head's criticism of the strict localization was well in syncronization with the zeitgeist of the early twentieth century. Establishing the fact that Broca's aphasia and Wernicke's aphasia are not easily diagnostically distinguishable from each other was more an achievement of subsequent generations of neurologists and neuropsychologists as well as technical advances.
Collapse
Affiliation(s)
| | - Markus Weih
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Deutschland.
- MVZ Medic Center Nürnberg, Schweinauer Hauptstraße 43, 90441, Nürnberg, Deutschland.
| |
Collapse
|
7
|
Riccardi N, Zhao X, den Ouden DB, Fridriksson J, Desai RH, Wang Y. Network-based statistics distinguish anomic and Broca's aphasia. Brain Struct Funct 2023:10.1007/s00429-023-02738-4. [PMID: 38160205 DOI: 10.1007/s00429-023-02738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Aphasia is a speech-language impairment commonly caused by damage to the left hemisphere. The neural mechanisms that underpin different types of aphasia and their symptoms are still not fully understood. This study aims to identify differences in resting-state functional connectivity between anomic and Broca's aphasia measured through resting-state functional magnetic resonance imaging (rs-fMRI). METHODS We used the network-based statistic (NBS) method, as well as voxel- and connectome-based lesion symptom mapping (V-, CLSM), to identify distinct neural correlates of the anomic and Broca's groups. To control for lesion effect, we included lesion volume as a covariate in both the NBS method and LSM. RESULTS NBS identified a subnetwork located in the dorsal language stream bilaterally, including supramarginal gyrus, primary sensory, motor, and auditory cortices, and insula. The connections in the subnetwork were weaker in the Broca's group than the anomic group. The properties of the subnetwork were examined through complex network measures, which indicated that regions in right inferior frontal sulcus, right paracentral lobule, and bilateral superior temporal gyrus exhibit intensive interaction. Left superior temporal gyrus, right postcentral gyrus, and left supramarginal gyrus play an important role in information flow and overall communication efficiency. Disruption of this network underlies the constellation of symptoms associated with Broca's aphasia. Whole-brain CLSM did not detect any significant connections, suggesting an advantage of NBS when thousands of connections are considered. However, CLSM identified connections that differentiated Broca's from anomic aphasia when analysis was restricted to a hypothesized network of interest. DISCUSSION We identified novel signatures of resting-state brain network differences between groups of individuals with anomic and Broca's aphasia. We identified a subnetwork of connections that statistically differentiated the resting-state brain networks of the two groups, in comparison with standard CLSM results that yielded isolated connections. Network-level analyses are useful tools for the investigation of the neural correlates of language deficits post-stroke.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Xingpei Zhao
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
8
|
Vlasova RM, Panikratova YR, Pechenkova EV. Systematic Review and Meta-analysis of Language Symptoms due to Cerebellar Injury. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1274-1286. [PMID: 36205825 DOI: 10.1007/s12311-022-01482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
To date, cerebellar contribution to language is well established via clinical and neuroimaging studies. However, the particular functional role of the cerebellum in language remains to be clarified. In this study, we present the first systematic review of the diverse language symptoms in spoken language after cerebellar lesion that were reported in case studies for the last 30 years (18 clinical cases from 13 papers), and meta-analysis using cluster analysis with bootstrap and symptom co-occurrence analysis. Seven clusters of patients with similar language symptoms after cerebellar lesions were found. Co-occurrence analysis revealed pairs of symptoms that tend to be comorbid. Our results imply that the "linguistic cerebellum" has a multiform contribution to language function. The most possible mechanism of such contribution is the cerebellar reciprocal connectivity with supratentorial brain regions, where the cerebellar level of the language network has a general modulation function and the supratentorial level is more functionally specified. Based on cerebellar connectivity with supratentorial components of the language network, the "linguistic cerebellum" might be further functionally segregated.
Collapse
Affiliation(s)
- Roza M Vlasova
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| | - Yana R Panikratova
- Laboratory of Neuroimaging and Multimodal Analysis, Mental Health Research Center, Moscow, Russia
| | | |
Collapse
|
9
|
Sajid N, Gajardo-Vidal A, Ekert JO, Lorca-Puls DL, Hope TMH, Green DW, Friston KJ, Price CJ. Degeneracy in the neurological model of auditory speech repetition. Commun Biol 2023; 6:1161. [PMID: 37957231 PMCID: PMC10643365 DOI: 10.1038/s42003-023-05515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Both classic and contemporary models of auditory word repetition involve at least four left hemisphere regions: primary auditory cortex for processing sounds; pSTS (within Wernicke's area) for processing auditory images of speech; pOp (within Broca's area) for processing motor images of speech; and primary motor cortex for overt speech articulation. Previous functional-MRI (fMRI) studies confirm that auditory repetition activates these regions, in addition to many others. Crucially, however, contemporary models do not specify how regions interact and drive each other during auditory repetition. Here, we used dynamic causal modelling, to test the functional interplay among the four core brain regions during single auditory word and pseudoword repetition. Our analysis is grounded in the principle of degeneracy-i.e., many-to-one structure-function relationships-where multiple neural pathways can execute the same function. Contrary to expectation, we found that, for both word and pseudoword repetition, (i) the effective connectivity between pSTS and pOp was predominantly bidirectional and inhibitory; (ii) activity in the motor cortex could be driven by either pSTS or pOp; and (iii) the latter varied both within and between individuals. These results suggest that different neural pathways can support auditory speech repetition. This degeneracy may explain resilience to functional loss after brain damage.
Collapse
Affiliation(s)
- Noor Sajid
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK.
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
- Centro de Investigación en Complejidad Social (CICS), Universidad del Desarrollo, Concepción, Chile
| | - Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
- Sección de Neurología, Departamento de Especialidades, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| | - David W Green
- Experimental Psychology, University College London, London, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, QS Institute of Neurology, University College London, London, UK
| |
Collapse
|
10
|
Matchin W, den Ouden DB, Basilakos A, Stark BC, Fridriksson J, Hickok G. Grammatical Parallelism in Aphasia: A Lesion-Symptom Mapping Study. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:550-574. [PMID: 37946730 PMCID: PMC10631800 DOI: 10.1162/nol_a_00117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/19/2023] [Indexed: 11/12/2023]
Abstract
Sentence structure, or syntax, is potentially a uniquely creative aspect of the human mind. Neuropsychological experiments in the 1970s suggested parallel syntactic production and comprehension deficits in agrammatic Broca's aphasia, thought to result from damage to syntactic mechanisms in Broca's area in the left frontal lobe. This hypothesis was sometimes termed overarching agrammatism, converging with developments in linguistic theory concerning central syntactic mechanisms supporting language production and comprehension. However, the evidence supporting an association among receptive syntactic deficits, expressive agrammatism, and damage to frontal cortex is equivocal. In addition, the relationship among a distinct grammatical production deficit in aphasia, paragrammatism, and receptive syntax has not been assessed. We used lesion-symptom mapping in three partially overlapping groups of left-hemisphere stroke patients to investigate these issues: grammatical production deficits in a primary group of 53 subjects and syntactic comprehension in larger sample sizes (N = 130, 218) that overlapped with the primary group. Paragrammatic production deficits were significantly associated with multiple analyses of syntactic comprehension, particularly when incorporating lesion volume as a covariate, but agrammatic production deficits were not. The lesion correlates of impaired performance of syntactic comprehension were significantly associated with damage to temporal lobe regions, which were also implicated in paragrammatism, but not with the inferior and middle frontal regions implicated in expressive agrammatism. Our results provide strong evidence against the overarching agrammatism hypothesis. By contrast, our results suggest the possibility of an alternative grammatical parallelism hypothesis rooted in paragrammatism and a central syntactic system in the posterior temporal lobe.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Brielle Caserta Stark
- Department of Speech, Language and Hearing Sciences, Program for Neuroscience, Indiana University Bloomington, Bloomington, IN, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, Department of Language Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
11
|
Smits AR, van Zandvoort MJE, Ramsey NF, de Haan EHF, Raemaekers M. Reliability and validity of DTI-based indirect disconnection measures. Neuroimage Clin 2023; 39:103470. [PMID: 37459698 PMCID: PMC10368919 DOI: 10.1016/j.nicl.2023.103470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
White matter connections enable the interaction within and between brain networks. Brain lesions can cause structural disconnections that disrupt networks and thereby cognitive functions supported by them. In recent years, novel methods have been developed to quantify the extent of structural disconnection after focal lesions, using tractography data from healthy controls. These methods, however, are indirect and their reliability and validity have yet to be fully established. In this study, we present our implementation of this approach, in a tool supplemented by uncertainty metrics for the predictions overall and at voxel-level. These metrics give an indication of the reliability and are used to compare predictions with direct measures from patients' diffusion tensor imaging (DTI) data in a sample of 95 first-ever stroke patients. Results show that, except for small lesions, the tool can predict fiber loss with high reliability and compares well to direct patient DTI estimates. Clinical utility of the method was demonstrated using lesion data from a subset of patients suffering from hemianopia. Both tract-based measures outperformed lesion localization in mapping visual field defects and showed a network consistent with the known anatomy of the visual system. This study offers an important contribution to the validation of structural disconnection mapping. We show that indirect measures of structural disconnection can be a reliable and valid substitute for direct estimations of fiber loss after focal lesions. Moreover, based on these results, we argue that indirect structural disconnection measures may even be preferable to lower-quality single subject diffusion MRI when based on high-quality healthy control datasets.
Collapse
Affiliation(s)
- A R Smits
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands; Department of Psychology, University of Amsterdam, the Netherlands.
| | - M J E van Zandvoort
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands; Department of Experimental Psychology, Helmholtz Institute, Utrecht University, the Netherlands
| | - N F Ramsey
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| | - E H F de Haan
- Department of Psychology, University of Amsterdam, the Netherlands; St. Hugh's College, Oxford University, United Kingdom
| | - M Raemaekers
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
12
|
Akkad H, Hope TMH, Howland C, Ondobaka S, Pappa K, Nardo D, Duncan J, Leff AP, Crinion J. Mapping spoken language and cognitive deficits in post-stroke aphasia. Neuroimage Clin 2023; 39:103452. [PMID: 37321143 PMCID: PMC10275719 DOI: 10.1016/j.nicl.2023.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Aphasia is an acquired disorder caused by damage, most commonly due to stroke, to brain regions involved in speech and language. While language impairment is the defining symptom of aphasia, the co-occurrence of non-language cognitive deficits and their importance in predicting rehabilitation and recovery outcomes is well documented. However, people with aphasia (PWA) are rarely tested on higher-order cognitive functions, making it difficult for studies to associate these functions with a consistent lesion correlate. Broca's area is a particular brain region of interest that has long been implicated in speech and language production. Contrary to classic models of speech and language, cumulative evidence shows that Broca's area and surrounding regions in the left inferior frontal cortex (LIFC) are involved in, but not specific to, speech production. In this study we aimed to explore the brain-behaviour relationships between tests of cognitive skill and language abilities in thirty-six adults with long-term speech production deficits caused by post-stroke aphasia. Our findings suggest that non-linguistic cognitive functions, namely executive functions and verbal working memory, explain more of the behavioural variance in PWA than classical language models imply. Additionally, lesions to the LIFC, including Broca's area, were associated with non-linguistic executive (dys)function, suggesting that lesions to this area are associated with non-language-specific higher-order cognitive deficits in aphasia. Whether executive (dys)function - and its neural correlate in Broca's area - contributes directly to PWA's language production deficits or simply co-occurs with it, adding to communication difficulties, remains unclear. These findings support contemporary models of speech production that place language processing within the context of domain-general perception, action and conceptual knowledge. An understanding of the covariance between language and non-language deficits and their underlying neural correlates will inform better targeted aphasia treatment and outcomes.
Collapse
Affiliation(s)
- Haya Akkad
- Institute of Cognitive Neuroscience, University College London, UK.
| | - Thomas M H Hope
- Institute of Cognitive Neuroscience, University College London, UK; Wellcome Centre for Human Neuroimaging, University College London, UK
| | | | - Sasha Ondobaka
- Institute of Cognitive Neuroscience, University College London, UK
| | | | - Davide Nardo
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Education, University of Roma Tre, Italy
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK; Department of Experimental Psychology, University of Oxford, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, UK; Wellcome Centre for Human Neuroimaging, University College London, UK; Institute of Neurology, University College London, UK
| | - Jenny Crinion
- Institute of Cognitive Neuroscience, University College London, UK; Wellcome Centre for Human Neuroimaging, University College London, UK
| |
Collapse
|
13
|
Ntemou E, Rybka L, Lubbers J, Tuncer MS, Vajkoczy P, Rofes A, Picht T, Faust K. Lesion-symptom mapping of language impairments in people with brain tumours: The influence of linguistic stimuli. J Neuropsychol 2023; 17:400-416. [PMID: 36651346 DOI: 10.1111/jnp.12305] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
People with tumours in specific brain sites might face difficulties in tasks with different linguistic material. Previous lesion-symptom mapping studies (VLSM) demonstrated that people with tumours in posterior temporal regions have more severe linguistic impairments. However, to the best of our knowledge, preoperative performance and lesion location on tasks with different linguistic stimuli have not been examined. In the present study, we performed VLSM on 52 people with left gliomas to examine whether tumour distribution differs depending on the tasks of the Aachen Aphasia Test. The VLSM analysis revealed that single-word production (e.g. object naming) was associated with the inferior parietal lobe and that compound and sentence production were additionally associated with posterior temporal gyri. Word repetition was affected in people with tumours in inferior parietal areas, whereas sentence repetition was the only task to be associated with frontal regions. Subcortically, word and sentence production were found to be affected in people with tumours reaching the arcuate fasciculus, and compound production was primarily associated with tumours affecting the inferior longitudinal and inferior fronto-occipital fasciculus. Our work shows that tasks with linguistic stimuli other than single-word naming (e.g. compound and sentence production) relate to additional cortical and subcortical brain areas. At a clinical level, we show that tasks that target the same processes (e.g. repetition) can have different neural correlates depending on the linguistic stimuli used. Also, we highlight the importance of left temporoparietal areas.
Collapse
Affiliation(s)
- Effrosyni Ntemou
- International Doctorate for Approaches to Language and Brain (IDEALAB), University of Groningen, Groningen, The Netherlands
- International Doctorate for Approaches to Language and Brain (IDEALAB), University of Potsdam, Potsdam, Germany
- International Doctorate for Approaches to Language and Brain (IDEALAB), Newcastle University, Newcastle upon Tyne, UK
- International Doctorate for Approaches to Language and Brain (IDEALAB), Macquarie University, Sydney, New South Wales, Australia
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Rybka
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jocelyn Lubbers
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehmet Salih Tuncer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Adrià Rofes
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
14
|
Bianco MG, Quattrone A, Sarica A, Aracri F, Calomino C, Caligiuri ME, Novellino F, Nisticò R, Buonocore J, Crasà M, Vaccaro MG, Quattrone A. Cortical involvement in essential tremor with and without rest tremor: a machine learning study. J Neurol 2023:10.1007/s00415-023-11747-6. [PMID: 37145157 DOI: 10.1007/s00415-023-11747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION There is some debate on the relationship between essential tremor with rest tremor (rET) and the classic ET syndrome, and only few MRI studies compared ET and rET patients. This study aimed to explore structural cortical differences between ET and rET, to improve the knowledge of these tremor syndromes. METHODS Thirty-three ET patients, 30 rET patients and 45 control subjects (HC) were enrolled. Several MR morphometric variables (thickness, surface area, volume, roughness, mean curvature) of brain cortical regions were extracted using Freesurfer on T1-weighted images and compared among groups. The performance of a machine learning approach (XGBoost) using the extracted morphometric features was tested in discriminating between ET and rET patients. RESULTS rET patients showed increased roughness and mean curvature in some fronto-temporal areas compared with HC and ET, and these metrics significantly correlated with cognitive scores. Cortical volume in the left pars opercularis was also lower in rET than in ET patients. No differences were found between ET and HC. XGBoost discriminated between rET and ET with mean AUC of 0.86 ± 0.11 in cross-validation analysis, using a model based on cortical volume. Cortical volume in the left pars opercularis was the most informative feature for classification between the two ET groups. CONCLUSION Our study demonstrated higher cortical involvement in fronto-temporal areas in rET than in ET patients, which may be linked to the cognitive status. A machine learning approach based on MR volumetric data demonstrated that these two ET subtypes can be distinguished using structural cortical features.
Collapse
Affiliation(s)
- Maria Giovanna Bianco
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Alessia Sarica
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Federica Aracri
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Camilla Calomino
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Maria Eugenia Caligiuri
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Fabiana Novellino
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Rita Nisticò
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Jolanda Buonocore
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Marianna Crasà
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Maria Grazia Vaccaro
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy
| | - Aldo Quattrone
- Department of Medical and Surgical Sciences, Neuroscience Research Center, University "Magna Graecia", Catanzaro, Italy.
| |
Collapse
|
15
|
Murphy E. ROSE: A Neurocomputational Architecture for Syntax. ARXIV 2023:arXiv:2303.08877v1. [PMID: 36994166 PMCID: PMC10055479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A comprehensive model of natural language processing in the brain must accommodate four components: representations, operations, structures and encoding. It further requires a principled account of how these different components mechanistically, and causally, relate to each another. While previous models have isolated regions of interest for structure-building and lexical access, and have utilized specific neural recording measures to expose possible signatures of syntax, many gaps remain with respect to bridging distinct scales of analysis that map onto these four components. By expanding existing accounts of how neural oscillations can index various linguistic processes, this article proposes a neurocomputational architecture for syntax, termed the ROSE model (Representation, Operation, Structure, Encoding). Under ROSE, the basic data structures of syntax are atomic features, types of mental representations (R), and are coded at the single-unit and ensemble level. Elementary computations (O) that transform these units into manipulable objects accessible to subsequent structure-building levels are coded via high frequency broadband γ activity. Low frequency synchronization and cross-frequency coupling code for recursive categorial inferences (S). Distinct forms of low frequency coupling and phase-amplitude coupling (δ-θ coupling via pSTS-IFG; θ-γ coupling via IFG to conceptual hubs in lateral and ventral temporal cortex) then encode these structures onto distinct workspaces (E). Causally connecting R to O is spike-phase/LFP coupling; connecting O to S is phase-amplitude coupling; connecting S to E is a system of frontotemporal traveling oscillations; connecting E back to lower levels is low-frequency phase resetting of spike-LFP coupling. This compositional neural code has important implications for algorithmic accounts, since it makes concrete predictions for the appropriate level of study for psycholinguistic parsing models. ROSE is reliant on neurophysiologically plausible mechanisms, is supported at all four levels by a range of recent empirical research, and provides an anatomically precise and falsifiable grounding for the basic property of natural language syntax: hierarchical, recursive structure-building.
Collapse
Affiliation(s)
- Elliot Murphy
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, UTHealth, Houston, TX, USA
- Texas Institute for Restorative Neurotechnologies, UTHealth, Houston, TX, USA
| |
Collapse
|
16
|
Andrews JP, Cahn N, Speidel BA, Chung JE, Levy DF, Wilson SM, Berger MS, Chang EF. Dissociation of Broca's area from Broca's aphasia in patients undergoing neurosurgical resections. J Neurosurg 2023; 138:847-857. [PMID: 35932264 PMCID: PMC9899289 DOI: 10.3171/2022.6.jns2297] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Broca's aphasia is a syndrome of impaired fluency with retained comprehension. The authors used an unbiased algorithm to examine which neuroanatomical areas are most likely to result in Broca's aphasia following surgical lesions. METHODS Patients were prospectively evaluated with standardized language batteries before and after surgery. Broca's area was defined anatomically as the pars opercularis and triangularis of the inferior frontal gyrus. Broca's aphasia was defined by the Western Aphasia Battery language assessment. Resections were outlined from MRI scans to construct 3D volumes of interest. These were aligned using a nonlinear transformation to Montreal Neurological Institute brain space. A voxel-based lesion-symptom mapping (VLSM) algorithm was used to test for areas statistically associated with Broca's aphasia when incorporated into a resection, as well as areas associated with deficits in fluency independent of Western Aphasia Battery classification. Postoperative MRI scans were reviewed in blinded fashion to estimate the percentage resection of Broca's area compared to areas identified using the VLSM algorithm. RESULTS A total of 289 patients had early language evaluations, of whom 19 had postoperative Broca's aphasia. VLSM analysis revealed an area that was highly correlated (p < 0.001) with Broca's aphasia, spanning ventral sensorimotor cortex and supramarginal gyri, as well as extending into subcortical white matter tracts. Reduced fluency scores were significantly associated with an overlapping region of interest. The fluency score was negatively correlated with fraction of resected precentral, postcentral, and supramarginal components of the VLSM area. CONCLUSIONS Broca's aphasia does not typically arise from neurosurgical resections in Broca's area. When Broca's aphasia does occur after surgery, it is typically in the early postoperative period, improves by 1 month, and is associated with resections of ventral sensorimotor cortex and supramarginal gyri.
Collapse
Affiliation(s)
- John P. Andrews
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California; and
| | - Nathan Cahn
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California; and
| | - Benjamin A. Speidel
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California; and
| | - Jason E. Chung
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California; and
| | - Deborah F. Levy
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California; and
| | - Stephen M. Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California; and
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, California; and
| |
Collapse
|
17
|
Wilson SM, Entrup JL, Schneck SM, Onuscheck CF, Levy DF, Rahman M, Willey E, Casilio M, Yen M, Brito AC, Kam W, Davis LT, de Riesthal M, Kirshner HS. Recovery from aphasia in the first year after stroke. Brain 2023; 146:1021-1039. [PMID: 35388420 PMCID: PMC10169426 DOI: 10.1093/brain/awac129] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/02/2022] [Accepted: 03/27/2022] [Indexed: 11/13/2022] Open
Abstract
Most individuals who experience aphasia after a stroke recover to some extent, with the majority of gains taking place in the first year. The nature and time course of this recovery process is only partially understood, especially its dependence on lesion location and extent, which are the most important determinants of outcome. The aim of this study was to provide a comprehensive description of patterns of recovery from aphasia in the first year after stroke. We recruited 334 patients with acute left hemisphere supratentorial ischaemic or haemorrhagic stroke and evaluated their speech and language function within 5 days using the Quick Aphasia Battery (QAB). At this initial time point, 218 patients presented with aphasia. Individuals with aphasia were followed longitudinally, with follow-up evaluations of speech and language at 1 month, 3 months, and 1 year post-stroke, wherever possible. Lesions were manually delineated based on acute clinical MRI or CT imaging. Patients with and without aphasia were divided into 13 groups of individuals with similar, commonly occurring patterns of brain damage. Trajectories of recovery were then investigated as a function of group (i.e. lesion location and extent) and speech/language domain (overall language function, word comprehension, sentence comprehension, word finding, grammatical construction, phonological encoding, speech motor programming, speech motor execution, and reading). We found that aphasia is dynamic, multidimensional, and gradated, with little explanatory role for aphasia subtypes or binary concepts such as fluency. Patients with circumscribed frontal lesions recovered well, consistent with some previous observations. More surprisingly, most patients with larger frontal lesions extending into the parietal or temporal lobes also recovered well, as did patients with relatively circumscribed temporal, temporoparietal, or parietal lesions. Persistent moderate or severe deficits were common only in patients with extensive damage throughout the middle cerebral artery distribution or extensive temporoparietal damage. There were striking differences between speech/language domains in their rates of recovery and relationships to overall language function, suggesting that specific domains differ in the extent to which they are redundantly represented throughout the language network, as opposed to depending on specialized cortical substrates. Our findings have an immediate clinical application in that they will enable clinicians to estimate the likely course of recovery for individual patients, as well as the uncertainty of these predictions, based on acutely observable neurological factors.
Collapse
Affiliation(s)
- Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jillian L Entrup
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sarah M Schneck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlin F Onuscheck
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Deborah F Levy
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maysaa Rahman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emma Willey
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marianne Casilio
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melodie Yen
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Wayneho Kam
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - L Taylor Davis
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael de Riesthal
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Howard S Kirshner
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Stroke and Cerebrovascular Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
18
|
Krause CD, Fengler A, Pino D, Sehm B, Friederici AD, Obrig H. The role of left temporo-parietal and inferior frontal cortex in comprehending syntactically complex sentences: A brain stimulation study. Neuropsychologia 2023; 180:108465. [PMID: 36586718 DOI: 10.1016/j.neuropsychologia.2022.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Syntactic competence relies on a left-lateralized network converging on hubs in inferior-frontal and posterior-temporal cortices. We address the question whether anodal transcranial direct current stimulation (a-tDCS) over these hubs can modulate comprehension of sentences, whose syntactic complexity systematically varied along the factors embedding depths and canonicity. Semantic content and length of the sentences were kept identical and forced choice picture matching was required after the full sentence had been presented. METHODS We used a single-blind, within-subject, sham-controlled design, applying a-tDCS targeting left posterior tempo-parietal (TP) and left inferior frontal cortex (FC). Stimulation sites were determined by individual neuro-navigation. 20 participants were included of whom 19 entered the analysis. Results were analysed using (generalized) mixed models. In a pilot-experiment in another group of 20 participants we validated the manipulation of syntactic complexity by the two factors embedding depth and argument-order. RESULTS Reaction times increased and accuracy decreased with higher embedding depth and non-canonical argument order in both experiments. Notably a-tDCS over TP enhanced sentence-to-picture matching, while FC-stimulation showed no consistent effect. Moreover, the analysis disclosed a session effect, indicating improvements of task performance especially regarding speed. CONCLUSIONS We conclude that the posterior 'hub' of the neuronal network affording syntactic analysis represents a 'bottleneck', likely due to working-memory capacity and the challenges of mapping semantic to syntactic information allowing for role assignment. While this does not challenge the role of left inferior-frontal cortex for syntax processing and novel-grammar learning, the application of highly established syntactic rules during sentence comprehension may be considered optimized, thus not augmentable by a-tDCS in the uncompromised network. SIGNIFICANCE STATEMENT Anodal transcranial direct current stimulation (a-tDCS) over left temporo-parietal cortex enhances comprehension of complex sentences in uncompromised young speakers. Since a-tDCS over left frontal cortex did not elicit any change, the 'bottleneck' for the understanding of complex sentences seems to be the posterior, temporo-parietal rather than the anterior inferior-frontal 'hub' of language processing. Regarding the attested role of inferior-frontal cortex in syntax processing, we suggest that its function is optimized in competent young speakers, preventing further enhancement by (facilitatory) tDCS. Results shed light on the functional anatomy of syntax processing during sentence comprehension; moreover, they open perspectives for research in the lesioned language network of people with syntactic deficits due to aphasia.
Collapse
Affiliation(s)
- Carina D Krause
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| | - Anja Fengler
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Martin Luther University Halle-Wittenberg, Department of Special and Inclusive Education, Speech and Language Pedagogy and Pathology, 06110 Halle, Germany
| | - Danièle Pino
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Neurology, University Medicine Halle, 06120, Halle (Saale), Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| |
Collapse
|
19
|
Gilardone G, Viganò M, Costantini G, Monti A, Corbo M, Cecchetto C, Papagno C. The role of verbal short-term memory in complex sentence comprehension: An observational study on aphasia. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2023. [PMID: 36726040 DOI: 10.1111/1460-6984.12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND The comprehension profile of people with agrammatism is a debated topic. Syntactic complexity and cognitive resources, in particular phonological short-term memory (pSTM), are considered as crucial components by different interpretative accounts. AIM To investigate the interaction of syntactic complexity and of pSTM in sentence comprehension in a group of persons with aphasia with and without agrammatism. METHODS & PROCEDURES A cohort of 30 participants presenting with aphasia was assessed for syntactic comprehension and for pSTM. A total of 15 presented with agrammatism and 15 had fluent aphasia. OUTCOMES & RESULTS Linear nested mixed-model analyses revealed a significant interaction between sentence type and pSTM. In particular, participants with lower pSTM scores showed a reduced comprehension of centre-embedded object relatives and long coordinated sentences. Moreover, a significant interaction was found between sentence type and agrammatism, with a lower performance for passives within the agrammatic group. CONCLUSIONS & IMPLICATIONS These results confirm that pSTM is involved in the comprehension of complex structures with an important computational load, in particular coordinated sentences, and long-distance filler gap dependencies. On the contrary, the specific deficit of the agrammatic group with passives is a pure syntactic deficit, with no involvement of pSTM.
Collapse
Affiliation(s)
- Giulia Gilardone
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Mauro Viganò
- UMR 7023 Structures Formelles du Langage, CNRS & Université Paris 8, Paris, France
| | - Giulio Costantini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Alessia Monti
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Carlo Cecchetto
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- UMR 7023 Structures Formelles du Langage, CNRS & Université Paris 8, Paris, France
| | - Costanza Papagno
- CIMeC (Center for Mind/Brain Sciences), University of Trento, Rovereto, Italy
| |
Collapse
|
20
|
Qu X, Wang Z, Cheng Y, Xue Q, Li Z, Li L, Feng L, Hartwigsen G, Chen L. Neuromodulatory effects of transcranial magnetic stimulation on language performance in healthy participants: Systematic review and meta-analysis. Front Hum Neurosci 2022; 16:1027446. [PMID: 36545349 PMCID: PMC9760723 DOI: 10.3389/fnhum.2022.1027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Background The causal relationships between neural substrates and human language have been investigated by transcranial magnetic stimulation (TMS). However, the robustness of TMS neuromodulatory effects is still largely unspecified. This study aims to systematically examine the efficacy of TMS on healthy participants' language performance. Methods For this meta-analysis, we searched PubMed, Web of Science, PsycINFO, Scopus, and Google Scholar from database inception until October 15, 2022 for eligible TMS studies on language comprehension and production in healthy adults published in English. The quality of the included studies was assessed with the Cochrane risk of bias tool. Potential publication biases were assessed by funnel plots and the Egger Test. We conducted overall as well as moderator meta-analyses. Effect sizes were estimated using Hedges'g (g) and entered into a three-level random effects model. Results Thirty-seven studies (797 participants) with 77 effect sizes were included. The three-level random effects model revealed significant overall TMS effects on language performance in healthy participants (RT: g = 0.16, 95% CI: 0.04-0.29; ACC: g = 0.14, 95% CI: 0.04-0.24). Further moderator analyses indicated that (a) for language tasks, TMS induced significant neuromodulatory effects on semantic and phonological tasks, but didn't show significance for syntactic tasks; (b) for cortical targets, TMS effects were not significant in left frontal, temporal or parietal regions, but were marginally significant in the inferior frontal gyrus in a finer-scale analysis; (c) for stimulation parameters, stimulation sites extracted from previous studies, rTMS, and intensities calibrated to the individual resting motor threshold are more prone to induce robust TMS effects. As for stimulation frequencies and timing, both high and low frequencies, online and offline stimulation elicited significant effects; (d) for experimental designs, studies adopting sham TMS or no TMS as the control condition and within-subject design obtained more significant effects. Discussion Overall, the results show that TMS may robustly modulate healthy adults' language performance and scrutinize the brain-and-language relation in a profound fashion. However, due to limited sample size and constraints in the current meta-analysis approach, analyses at a more comprehensive level were not conducted and results need to be confirmed by future studies. Systematic review registration [https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=366481], identifier [CRD42022366481].
Collapse
Affiliation(s)
- Xingfang Qu
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zichao Wang
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Yao Cheng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Qingwei Xue
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Zimu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Lu Li
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Liping Feng
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Luyao Chen
- Max Planck Partner Group, School of International Chinese Language Education, Beijing Normal University, Beijing, China
| |
Collapse
|
21
|
White RD, Turner RP, Arnold N, Bernica A, Lewis BN, Swatzyna RJ. Treating Severe Traumatic Brain Injury: Combining Neurofeedback and Hyperbaric Oxygen Therapy in a Single Case Study. Clin EEG Neurosci 2022; 53:519-531. [PMID: 34931544 DOI: 10.1177/15500594211068255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In 2014, a 26-year-old male was involved in a motor vehicle accident resulting in a severe traumatic brain injury (TBI). The patient sustained a closed-head left temporal injury with coup contrecoup impact to the frontal region. The patient underwent a left side craniotomy and was comatose for 26 days. After gaining consciousness, he was discharged to a brain injury treatment center that worked with physical, speech, and occupational issues. He was discharged after eight months with significant speech, ambulation, spasticity, and cognitive issues as well as the onset of posttraumatic epilepsy. His parents sought hyperbaric oxygen treatment (HBOT) from a doctor in Louisiana. After 165 dives, the HBOT doctor recommended an addition of neurofeedback (NFB) therapy. In March 2019 the patient started NFB therapy intermixed with HBOT. The combination of NFB and HBOT improved plasticity and functionality in the areas of injury and the correlated symptoms including short-term memory, personality, language, and executive function, as well as significantly reducing the incidence of seizures. Severe brain injuries often leave lasting deficits with little hope for major recovery and there is a need for further research into long-term, effective neurological treatments for severe brain injuries. These results suggest that HBOT combined with NFB may be a viable option in treating severe brain injuries and should be investigated.
Collapse
Affiliation(s)
| | | | - Noah Arnold
- Houston Neuroscience Brain Center, Houston, TX, USA
| | | | | | | |
Collapse
|
22
|
Steiner A, Abbas K, Brzyski D, Pączek K, Randolph TW, Goñi J, Harezlak J. Incorporation of spatial- and connectivity-based cortical brain region information in regularized regression: Application to Human Connectome Project data. Front Neurosci 2022; 16:957282. [PMID: 36248659 PMCID: PMC9555077 DOI: 10.3389/fnins.2022.957282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Studying the association of the brain's structure and function with neurocognitive outcomes requires a comprehensive analysis that combines different sources of information from a number of brain-imaging modalities. Recently developed regularization methods provide a novel approach using information about brain structure to improve the estimation of coefficients in the linear regression models. Our proposed method, which is a special case of the Tikhonov regularization, incorporates structural connectivity derived with Diffusion Weighted Imaging and cortical distance information in the penalty term. Corresponding to previously developed methods that inform the estimation of the regression coefficients, we incorporate additional information via a Laplacian matrix based on the proximity measure on the cortical surface. Our contribution consists of constructing a principled formulation of the penalty term and testing the performance of the proposed approach via extensive simulation studies and a brain-imaging application. The penalty term is constructed as a weighted combination of structural connectivity and proximity between cortical areas. Simulation studies mimic the real brain-imaging settings. We apply our approach to the study of data collected in the Human Connectome Project, where the cortical properties of the left hemisphere are found to be associated with vocabulary comprehension.
Collapse
Affiliation(s)
- Aleksandra Steiner
- Department of Mathematics, Institute of Mathematics, University of Wroclaw, Wroclaw, Poland
- *Correspondence: Aleksandra Steiner
| | - Kausar Abbas
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
- School of Industrial Engineering, Purdue University, West Lafayette, IN, United States
| | - Damian Brzyski
- Centre for Quantitative Research in Political Science, Jagiellonian University, Krakow, Poland
| | - Kewin Pączek
- Faculty of Mathematics and Computer Science, Institute of Mathematics, Jagiellonian University, Kraków, Poland
| | - Timothy W. Randolph
- Clinical Research Division and Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States
- School of Industrial Engineering, Purdue University, West Lafayette, IN, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health - Bloomington, Bloomington, IN, United States
| |
Collapse
|
23
|
Rogalsky C, Basilakos A, Rorden C, Pillay S, LaCroix AN, Keator L, Mickelsen S, Anderson SW, Love T, Fridriksson J, Binder J, Hickok G. The Neuroanatomy of Speech Processing: A Large-scale Lesion Study. J Cogn Neurosci 2022; 34:1355-1375. [PMID: 35640102 PMCID: PMC9274306 DOI: 10.1162/jocn_a_01876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The neural basis of language has been studied for centuries, yet the networks critically involved in simply identifying or understanding a spoken word remain elusive. Several functional-anatomical models of critical neural substrates of receptive speech have been proposed, including (1) auditory-related regions in the left mid-posterior superior temporal lobe, (2) motor-related regions in the left frontal lobe (in normal and/or noisy conditions), (3) the left anterior superior temporal lobe, or (4) bilateral mid-posterior superior temporal areas. One difficulty in comparing these models is that they often focus on different aspects of the sound-to-meaning pathway and are supported by different types of stimuli and tasks. Two auditory tasks that are typically used in separate studies-syllable discrimination and word comprehension-often yield different conclusions. We assessed syllable discrimination (words and nonwords) and word comprehension (clear speech and with a noise masker) in 158 individuals with focal brain damage: left (n = 113) or right (n = 19) hemisphere stroke, left (n = 18) or right (n = 8) anterior temporal lobectomy, and 26 neurologically intact controls. Discrimination and comprehension tasks are doubly dissociable both behaviorally and neurologically. In support of a bilateral model, clear speech comprehension was near ceiling in 95% of left stroke cases and right temporal damage impaired syllable discrimination. Lesion-symptom mapping analyses for the syllable discrimination and noisy word comprehension tasks each implicated most of the left superior temporal gyrus. Comprehension but not discrimination tasks also implicated the left posterior middle temporal gyrus, whereas discrimination but not comprehension tasks also implicated more dorsal sensorimotor regions in posterior perisylvian cortex.
Collapse
|
24
|
Matchin W, den Ouden DB, Hickok G, Hillis AE, Bonilha L, Fridriksson J. The Wernicke conundrum revisited: evidence from connectome-based lesion-symptom mapping. Brain 2022; 145:3916-3930. [PMID: 35727949 DOI: 10.1093/brain/awac219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Wernicke's area has been assumed since the 1800s to be the primary region supporting word and sentence comprehension. However, in 2015 and 2019, Mesulam and colleagues raised what they termed the 'Wernicke conundrum', noting widespread variability in the anatomical definition of this area and presenting data from primary progressive aphasia that challenged this classical assumption. To resolve the conundrum, they posited a 'double disconnection' hypothesis: that word and sentence comprehension deficits in stroke-based aphasia result from disconnection of anterior temporal and inferior frontal regions from other parts of the brain due to white matter damage, rather than dysfunction of Wernicke's area itself. To test this hypothesis, we performed lesion-deficit correlations, including connectome-based lesion-symptom mapping, in four large, partially overlapping groups of English-speaking chronic left hemisphere stroke survivors. After removing variance due to object recognition and associative semantic processing, the same middle and posterior temporal lobe regions were implicated in both word comprehension deficits and complex noncanonical sentence comprehension deficits. Connectome lesion-symptom mapping revealed similar temporal-occipital white matter disconnections for impaired word and noncanonical sentence comprehension, including the temporal pole. We found an additional significant temporal-parietal disconnection for noncanonical sentence comprehension deficits, which may indicate a role for phonological working memory in processing complex syntax, but no significant frontal disconnections. Moreover, damage to these middle-posterior temporal lobe regions was associated with both word and noncanonical sentence comprehension deficits even when accounting for variance due to the strongest anterior temporal and inferior frontal white matter disconnections, respectively. Our results largely agree with the classical notion that Wernicke's area, defined here as middle superior temporal gyrus and middle-posterior superior temporal sulcus, supports both word and sentence comprehension, suggest a supporting role for temporal pole in both word and sentence comprehension, and speak against the hypothesis that comprehension deficits in Wernicke's aphasia result from double disconnection.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Dirk Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.,Department of Language Science, University of California, Irvine, Irvine, CA 92697, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
25
|
Ramazanu S, Chisale MRO, Baby P, Wu VX, Mbakaya BC. Meta-synthesis of family communication patterns during post-stroke vascular aphasia: Evidence to guide practice. Worldviews Evid Based Nurs 2022; 19:282-296. [PMID: 35587739 DOI: 10.1111/wvn.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/14/2021] [Accepted: 02/10/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Previous studies have predominantly focused on the needs of persons with aphasia (PWA), after a stroke diagnosis. However, aphasia is found to cause communication challenges in persons with stroke and their family caregivers as a unit. Evidence is inconclusive about the communication patterns of both persons with aphasia and their family caregivers after a stroke. Studies have not been synthesized on facilitators and barriers of communication patterns between PWA and family caregivers after a stroke. AIMS A meta-synthesis of qualitative evidence was conducted to explore family communication patterns after post-stroke vascular aphasia. METHODS An electronic literature search of PubMed, CINAHL, Cochrane Library, PsyINFO, and Scopus was performed from January to March 2021. The methods of qualitative meta-synthesis were underpinned by Sandelowski and Barosso's guidelines. Data analysis was facilitated by Braun and Clarke thematic analysis, using NVivo 11 software. RESULTS A total of twenty studies were included for meta-synthesis. Three themes with corresponding subthemes were identified: (1) changes in family communication patterns (subthemes: adapting to the changes in PWA after a stroke, striving toward communication recovery); (2) facilitators of family communication patterns (subthemes: supportive communication techniques, hope of recovery, time to re-adjust, and community engagement [recreational activities]); and (3) barriers of communication (subthemes: emotional turmoil and daunting tasks of rehabilitation). LINKING EVIDENCE TO ACTION Although persons with aphasia and family caregivers are striving to achieve normalcy in communication, they are often challenged by communication deficits and protective family behaviors. Therefore, to establish effective communication, it is of paramount importance for nursing professionals to educate PWAs and their caregivers on facilitators and barriers of family communication patterns. Technology-based family communication facilitation and support groups for PWA and their family caregivers are recommended to promote family communication. The review was registered with PROSPERO (CRD42021235519).
Collapse
Affiliation(s)
- Sheena Ramazanu
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Level 3, Clinical Research Centre, Singapore, Singapore
| | | | - Priya Baby
- College of Nursing, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vivien Xi Wu
- Alice Lee Centre for Nursing Studies, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
26
|
Riccardi N, Rorden C, Fridriksson J, Desai RH. Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection? NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:318-344. [PMID: 37215558 PMCID: PMC10158581 DOI: 10.1162/nol_a_00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/21/2022] [Indexed: 05/24/2023]
Abstract
The role of left inferior frontal cortex (LIFC) in canonical sentence comprehension is controversial. Many studies have found involvement of LIFC in sentence production or complex sentence comprehension, but negative or mixed results are often found in comprehension of simple or canonical sentences. We used voxel-, region-, and connectivity-based lesion symptom mapping (VLSM, RLSM, CLSM) in left-hemisphere chronic stroke survivors to investigate canonical sentence comprehension while controlling for lexical-semantic, executive, and phonological processes. We investigated how damage and disrupted white matter connectivity of LIFC and two other language-related regions, the left anterior temporal lobe (LATL) and posterior temporal-inferior parietal area (LpT-iP), affected sentence comprehension. VLSM and RLSM revealed that LIFC damage was not associated with canonical sentence comprehension measured by a sensibility judgment task. LIFC damage was associated instead with impairments in a lexical semantic similarity judgment task with high semantic/executive demands. Damage to the LpT-iP, specifically posterior middle temporal gyrus (pMTG), predicted worse sentence comprehension after controlling for visual lexical access, semantic knowledge, and auditory-verbal short-term memory (STM), but not auditory single-word comprehension, suggesting pMTG is vital for auditory language comprehension. CLSM revealed that disruption of left-lateralized white-matter connections from LIFC to LATL and LpT-iP was associated with worse sentence comprehension, controlling for performance in tasks related to lexical access, auditory word comprehension, and auditory-verbal STM. However, the LIFC connections were accounted for by the lexical semantic similarity judgment task, which had high semantic/executive demands. This suggests that LIFC connectivity is relevant to canonical sentence comprehension when task-related semantic/executive demands are high.
Collapse
Affiliation(s)
- Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| | - Julius Fridriksson
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC
| | - Rutvik H. Desai
- Department of Psychology, University of South Carolina, Columbia, SC
- Institute for Mind and Brain, University of South Carolina, Columbia, SC
| |
Collapse
|
27
|
Sheppard SM, Meier EL, Kim KT, Breining BL, Keator LM, Tang B, Caffo BS, Hillis AE. Neural correlates of syntactic comprehension: A longitudinal study. BRAIN AND LANGUAGE 2022; 225:105068. [PMID: 34979477 PMCID: PMC9232253 DOI: 10.1016/j.bandl.2021.105068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Broca's area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca's area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca's area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca's area can support syntactic processing after functional reorganization occurs.
Collapse
Affiliation(s)
- Shannon M Sheppard
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Communication Sciences & Disorders, Chapman University, Irvine, CA 92618, United States.
| | - Erin L Meier
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Kevin T Kim
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bonnie L Breining
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Lynsey M Keator
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Bohao Tang
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Brian S Caffo
- Department of Biostatics, Johns Hopkins School of Public Health, Baltimore, MD 21287, United States
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Department of Cognitive Science, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
28
|
Bunker LD, Hillis AE. Vascular syndromes: Revisiting classification of poststroke aphasia. HANDBOOK OF CLINICAL NEUROLOGY 2022; 185:37-55. [PMID: 35078609 DOI: 10.1016/b978-0-12-823384-9.00002-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over 150 years have passed since the first formal description of aphasia associated with localized neurologic damage. In the years since that time, a significant amount of research has been conducted to identify/explain the locations and functions of the brain regions responsible for (or associated with) language as well as to describe the various types of aphasia resulting from injury to these locations. Many of these attempts to associate somewhat predictable patterns of language deficits with damage to specific structures have been confounded by atypical reports and considerable variability in either the behavioral presentation and/or structural damage that directly contradict/oppose some of the proposed theories. However, considering the aphasias as vascular syndromes, or a collection of symptoms associated with damage to various structures supplied by a specific artery, accounts for both the predictability and the variability seen. This chapter presents a brief history of aphasia classification, the vascular territories commonly associated with aphasia, the different aphasic vascular syndromes, and the typical recovery/evolution of aphasia presentation over time.
Collapse
Affiliation(s)
- Lisa D Bunker
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Argye Elizabeth Hillis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
29
|
Abstract
The Wernicke-Lichtheim-Geschwind model of the neurology of language has served the field well despite its limited scope. More recent work has updated the basic architecture of the classical model and expanded its scope. This chapter briefly reviews the Wernicke-Lichtheim-Geschwind model and points out its shortcomings, then describes and motivates the dual stream model and how it solves several empirical shortcomings of the classical model. The chapter also (i) underscores how the dual stream model relates to the organization of nonlinguistic cortical networks, integrating language systems with the broader functional-anatomical landscape, (ii) describes recent work that further specifies the computational architecture and neural correlates of the dorsal speech production system, and (iii) summarizes recent extensions of the architectural framework to include syntax.
Collapse
|
30
|
Johnson L, Yourganov G, Basilakos A, Newman-Norlund RD, Thors H, Keator L, Rorden C, Bonilha L, Fridriksson J. Functional Connectivity and Speech Entrainment Speech Entrainment Improves Connectivity Between Anterior and Posterior Cortical Speech Areas in Non-fluent Aphasia. Neurorehabil Neural Repair 2021; 36:164-174. [PMID: 34968159 DOI: 10.1177/15459683211064264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Speech entrainment (SE), the online mimicking of an audio-visual speech model, has been shown to increase speech fluency in individuals with non-fluent aphasia. One theory that may explain why SE improves speech output is that it synchronizes functional connectivity between anterior and posterior language regions to be more similar to that of neurotypical speakers. OBJECTIVES The present study tested this by measuring functional connectivity between 2 regions shown to be necessary for speech production, and their right hemisphere homologues, in 24 persons with aphasia compared to 20 controls during both free (spontaneous) speech and SE. METHODS Regional functional connectivity in participants with aphasia were normalized to the control data. Two analyses were then carried out: (1) normalized functional connectivity was compared between persons with aphasia and controls during free speech and SE and (2) stepwise linear models with leave-one-out cross-validation including normed functional connectivity during both tasks and proportion damage to the left hemisphere as independent variables were created for each language score. RESULTS Left anterior-posterior functional connectivity and left posterior to right anterior functional connectivity were significantly more similar to connectivity of the control group during SE compared to free speech. Additionally, connectivity during free speech was more associated with language measures than connectivity during SE. CONCLUSIONS Overall, these results suggest that SE promotes normalization of functional connectivity (i.e., return to patterns observed in neurotypical controls), which may explain why individuals with non-fluent aphasia produce more fluent speech during SE compared to spontaneous speech.
Collapse
Affiliation(s)
- Lisa Johnson
- Department of Communication Sciences and Disorders, 2629University of South Carolina, Columbia, SC, USA
| | - Grigori Yourganov
- Cyberinfrastructure and Technology Integration, 2545Clemson University, Clemson, SC, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, 2629University of South Carolina, Columbia, SC, USA
| | | | - Helga Thors
- 37557Landspitali University Hospital, Iceland
| | - Lynsey Keator
- Department of Communication Sciences and Disorders, 2629University of South Carolina, Columbia, SC, USA
| | - Chris Rorden
- Department of Psychology, 2629University of South Carolina, Columbia, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, 2345Medical University of South Carolina, Charleston, SC, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, 2629University of South Carolina, Columbia, SC, USA
| |
Collapse
|
31
|
G A, Cuddapah GV, Shukla A, Shighakolli R. An Atypical Presentation of Motor Aphasia: A Case Report and Review of Literature. Cureus 2021; 13:e19495. [PMID: 34912635 PMCID: PMC8664399 DOI: 10.7759/cureus.19495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Broca's aphasia results due to lesions involving the anterior perisylvian speech area. Patients have intact comprehension and writing but have labored, nonfluent speech with decreased linguistic output. We hereby present a case of a 47-year-old female who was operated on for left ventricular trigonal meningioma by a modified middle temporal gyrus approach and developed motor aphasia as a complication. She had intact comprehension and writing but had decreased linguistic, labored output. It could not be labeled as subcortical aphasia as she had no repetition. Eventually, her aphasia improved completely. Our case is the first of its kind and hence we propose that the posterior middle temporal gyrus area has speech output function, the lesion of which could cause motor aphasia.
Collapse
Affiliation(s)
- Ananth G
- Department of Neurosurgery, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, IND
| | - Gaurav Venkat Cuddapah
- Department of Neurosurgery, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, IND
| | - Amit Shukla
- Department of Neurosurgery, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, IND
| | - Ramesh Shighakolli
- Department of Neurosurgery, Kamineni Academy of Medical Sciences and Research Centre, Hyderabad, IND
| |
Collapse
|
32
|
Rajashekar D, Wilms M, MacDonald ME, Schimert S, Hill MD, Demchuk A, Goyal M, Dukelow SP, Forkert ND. Lesion-symptom mapping with NIHSS sub-scores in ischemic stroke patients. Stroke Vasc Neurol 2021; 7:124-131. [PMID: 34824139 PMCID: PMC9067270 DOI: 10.1136/svn-2021-001091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Lesion-symptom mapping (LSM) is a statistical technique to investigate the population-specific relationship between structural integrity and post-stroke clinical outcome. In clinical practice, patients are commonly evaluated using the National Institutes of Health Stroke Scale (NIHSS), an 11-domain clinical score to quantitate neurological deficits due to stroke. So far, LSM studies have mostly used the total NIHSS score for analysis, which might not uncover subtle structure–function relationships associated with the specific sub-domains of the NIHSS evaluation. Thus, the aim of this work was to investigate the feasibility to perform LSM analyses with sub-score information to reveal category-specific structure–function relationships that a total score may not reveal. Methods Employing a multivariate technique, LSM analyses were conducted using a sample of 180 patients with NIHSS assessment at 48-hour post-stroke from the ESCAPE trial. The NIHSS domains were grouped into six categories using two schemes. LSM was conducted for each category of the two groupings and the total NIHSS score. Results Sub-score LSMs not only identify most of the brain regions that are identified as critical by the total NIHSS score but also reveal additional brain regions critical to each function category of the NIHSS assessment without requiring extensive, specialised assessments. Conclusion These findings show that widely available sub-scores of clinical outcome assessments can be used to investigate more specific structure–function relationships, which may improve predictive modelling of stroke outcomes in the context of modern clinical stroke assessments and neuroimaging. Trial registration number NCT01778335.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Biomedical Engineering Graduate Program, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada .,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Wilms
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Ethan MacDonald
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Serena Schimert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Hill
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Demchuk
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mayank Goyal
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Nils Daniel Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
33
|
Wang Y, Behroozmand R, Johnson LP, Bonilha L, Fridriksson J. Topological signal processing and inference of event-related potential response. J Neurosci Methods 2021; 363:109324. [PMID: 34428514 DOI: 10.1016/j.jneumeth.2021.109324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Topological signal processing is a novel approach for decoding multiscale features of signals recorded through electroencephalography (EEG) based on topological data analysis (TDA). New method: We establish stability properties of the TDA descriptor persistence landscape (PL) in event-related potential (ERP) across multi-trial EEG signals, state algorithms for computing PL, and propose an exact inference framework on persistence and PLs. RESULTS We apply the topological signal processing and inference framework to compare ERPs between individuals with post-stroke aphasia and healthy controls under a speech altered auditory feedback (AAF) paradigm. Results show significant PL difference in the ERP response of aphasic individuals and healthy controls over the parietal-occipital and occipital regions with respect to speech onset, and no significant PL difference in any regions with respect to the two pitch-shift stimuli. Comparison with existing methods: In comparison, spatial patterns of difference between aphasic individuals and healthy controls by persistence, local variance, and spectral powers are much more diffuse than the PL patterns. In simulation results, the exact test on persistence and PLs has more robust performance than the baseline tests on local variance and spectral powers. CONCLUSIONS Persistence features provide a more robust EEG marker than local variance, and spectral powers. It could be a potentially powerful tool for comparing electrophysiological correlates in neurological disorders.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Epidemiology and Biostatistics, University of South Carolina, USA.
| | - Roozbeh Behroozmand
- Department of Communication Sciences and Disorders, University of South Carolina, USA
| | | | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, USA
| |
Collapse
|
34
|
Fromm D, Greenhouse J, Pudil M, Shi Y, MacWhinney B. Enhancing the Classification of Aphasia: A Statistical Analysis Using Connected Speech. APHASIOLOGY 2021; 36:1492-1519. [PMID: 36457942 PMCID: PMC9708051 DOI: 10.1080/02687038.2021.1975636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/30/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Large shared databases and automated language analyses allow for the application of new data analysis techniques that can shed new light on the connected speech of people with aphasia (PWA). AIMS To identify coherent clusters of PWA based on language output using unsupervised statistical algorithms and to identify features that are most strongly associated with those clusters. METHODS & PROCEDURES Clustering and classification methods were applied to language production data from 168 PWA. Language samples were from a standard discourse protocol tapping four genres: free speech personal narratives, picture descriptions, Cinderella storytelling, procedural discourse. OUTCOMES & RESULTS Seven distinct clusters of PWA were identified by the K-means algorithm. Using the random forests algorithm, a classification tree was proposed and validated, showing 91% agreement with the cluster assignments. This representative tree used only two variables to divide the data into distinct groups: total words from free speech tasks and total closed class words from the Cinderella storytelling task. CONCLUSION Connected speech data can be used to distinguish PWA into coherent groups, providing insight into traditional aphasia classifications, factors that may guide discourse research and clinical work.
Collapse
Affiliation(s)
- Davida Fromm
- Department of Psychology, Carnegie Mellon University
| | - Joel Greenhouse
- Department of Statistics & Data Science, Carnegie Mellon University
| | - Mitchell Pudil
- Department of Statistics & Data Science, Carnegie Mellon University
| | - Yichun Shi
- Department of Statistics & Data Science, Carnegie Mellon University
| | | |
Collapse
|
35
|
Bethard JD, Ainger TJ, Gonciar A, Nyárádi Z. Surviving (but not thriving) after cranial vault trauma: A case study from Transylvania. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2021; 34:122-129. [PMID: 34243131 DOI: 10.1016/j.ijpp.2021.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To link an antemortem cranial injury on the left parietal bone with potential neurocognitive consequences. MATERIALS The skeleton of a male individual from a Székely archaeological site in Transylvania was examined. The skeleton was radiocarbon dated to Cal AD 1450 and AD 1640 and presented a well-healed antemortem penetrating cranial injury on the left parietal bone. METHODS Macroscopic and radiographic analyses were conducted and the cranium was also archived digitally with a Faro FreeStyle3D scanner. In addition, well-known literature from neuroscience was synthesized in order to better understand the likely neurological consequences of the injury. RESULTS The literature suggests that tasks of attention and working memory, sensory processing, language processing, and vision are affected when the parietal lobe of the brain is injured. CONCLUSIONS Burial 195 did not likely return to a 'normal' life after he survived the cranial injury. SIGNIFICANCE This study demonstrates that bioarcheological interpretations involving antemortem cranial injuries can be enhanced by collaboration with neuroscientists. Bioarcheological interpretations are improved when the consequences of soft tissue injuries are understood. LIMITATIONS This study was limited by a lack of historical documents relevant to the region, time period, and specific case study. In addition, interpretations are cautionary because brain functioning cannot be assessed in vivo in the absence of life. SUGGESTIONS FOR FURTHER RESEARCH Bioarcheologists who study antemortem cranial injuries should continue to collaborate with neuroscientists.
Collapse
Affiliation(s)
- Jonathan D Bethard
- University of South Florida, Department of Anthropology, 4202 East Fowler Avenue, SOC107, Tampa, FL 33620, USA.
| | - Timothy J Ainger
- University of Kentucky College of Medicine, Department of Neurology, 740 S. Limestone, Kentucky Clinic J-414, Lexington, KY 40536, USA
| | | | - Zsolt Nyárádi
- Haáz Rezső Múzeum, Strada Beclean 2-6, Odorheiu Secuiesc 535600, Romania
| |
Collapse
|
36
|
Gajardo-Vidal A, Lorca-Puls DL, Team P, Warner H, Pshdary B, Crinion JT, Leff AP, Hope TMH, Geva S, Seghier ML, Green DW, Bowman H, Price CJ. Damage to Broca's area does not contribute to long-term speech production outcome after stroke. Brain 2021; 144:817-832. [PMID: 33517378 PMCID: PMC8041045 DOI: 10.1093/brain/awaa460] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 02/03/2023] Open
Abstract
Broca's area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The current view is that long-term speech production outcome in patients with Broca's area damage is best explained by the combination of damage to Broca's area and neighbouring regions including the underlying white matter, which was also damaged in Paul Broca's two historic cases. Here, we dissociate the effect of damage to Broca's area from the effect of damage to surrounding areas by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively, these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44 and 45 (together known as Broca's area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the Comprehensive Aphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely predicted by the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fasciculus, with no contribution from the degree of damage to Broca's area (as confirmed with Bayesian statistics). The effect of white matter damage cannot be explained by a disconnection of Broca's area, because speech production scores were worse after damage to the anterior arcuate fasciculus with relative sparing of Broca's area than after damage to Broca's area with relative sparing of the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca's area damage does not contribute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after damage to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca's area; and (iii) the prior association between persistent speech production impairments and Broca's area damage can be explained by co-occurring white matter damage, above the insula, in the vicinity of the anterior part of the arcuate fasciculus.
Collapse
Affiliation(s)
- Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK.,Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK.,Department of Speech, Language and Hearing Sciences, Faculty of Medicine, Universidad de Concepcion, Concepcion, Chile
| | - Ploras Team
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Holly Warner
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Bawan Pshdary
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexander P Leff
- Institute of Cognitive Neuroscience, University College London, London, UK.,Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Sharon Geva
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Mohamed L Seghier
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education, Abu Dhabi, UAE.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - David W Green
- Department of Experimental Psychology, University College London, London, UK
| | - Howard Bowman
- Centre for Cognitive Neuroscience and Cognitive Systems and the School of Computing, University of Kent, Canterbury, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
37
|
Breining BL, Faria AV, Caffo B, Meier EL, Sheppard SM, Sebastian R, Tippett DC, Hillis AE. Neural regions underlying object and action naming: Complementary evidence from acute stroke and primary progressive aphasia. APHASIOLOGY 2021; 36:732-760. [PMID: 35832655 PMCID: PMC9272983 DOI: 10.1080/02687038.2021.1907291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Naming impairment is commonly noted in individuals with aphasia. However, object naming receives more attention than action naming. Furthermore, most studies include participants with aphasia due to only one aetiology, commonly stroke. We developed a new assessment, the Hopkins Action Naming Assessment (HANA), to evaluate action naming impairments. AIMS Our aims were to show that the HANA is a useful tool that can (1) identify action naming impairments and (2) be used to investigate the neural substrates underlying naming. We paired the HANA with the Boston Naming Test (BNT) to compare action and object naming. We considered participants with aphasia due to primary progressive aphasia (PPA) or acute left hemisphere stroke to provide a more comprehensive picture of brain-behaviour relationships critical for naming. Behaviourally, we hypothesised that there would be a double dissociation between object and action naming performance. Neuroanatomically, we hypothesised that different neural substrates would be implicated in object vs. action naming and that different lesion-deficit associations would be identified in participants with PPA vs. acute stroke. METHODS & PROCEDURES Participants (N=138 with PPA, N=37 with acute stroke) completed the BNT and HANA. Behavioural performance was compared. A subset of participants (N=31 with PPA, N=37 with acute stroke) provided neuroimaging data. The whole brain was automatically segmented into regions of interest (ROIs). For participants with PPA, the image variables were the ROI volumes, normalised by the brain volume. For participants with acute stroke, the image variables were the percentage of each ROI affected by the lesion. The relationship between ROIs likely to be involved in naming performance was modelled with LASSO regression. OUTCOMES & RESULTS Behavioural results showed a double dissociation in performance: in each group, some participants displayed intact performance relative to healthy controls on actions but not objects and/or significantly better performance on actions than objects, while others showed the opposite pattern. These results support the need to assess both objects and actions when evaluating naming deficits. Neuroimaging results identified different regions associated with object vs. action naming, implicating overlapping but distinct networks of regions. Furthermore, results differed for participants with PPA vs. acute stroke, indicating that critical information may be missed when only one aetiology is considered. CONCLUSIONS Overall, the study provides a more comprehensive picture of the neural bases of naming, underscoring the importance of assessing both objects and actions and considering different aetiologies of damage. It demonstrates the utility of the HANA.
Collapse
Affiliation(s)
- Bonnie L. Breining
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Andreia V. Faria
- Department of Radiology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Brian Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD 21287, USA
| | - Erin L. Meier
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shannon M. Sheppard
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Communication Sciences & Disorders, Chapman University, Irvine, CA 92618, USA
| | - Rajani Sebastian
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Donna C. Tippett
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E. Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Cognitive Science, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
38
|
Similar activation patterns in the bilateral dorsal inferior frontal gyrus for monolingual and bilingual contexts in second language production. Neuropsychologia 2021; 156:107857. [PMID: 33857531 DOI: 10.1016/j.neuropsychologia.2021.107857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022]
Abstract
Language production is a vital process of communication. Although many studies have devoted to the neural mechanisms of language production in bilinguals, they mainly focused on the mechanisms of cognitive control during language switching. Therefore, it is not clear how naming context influences the neural representations of linguistic information during language production in bilinguals. To address that question, the present study adopted representational similarity analysis (RSA) to investigate the neural pattern similarity (PS) between the monolingual and bilingual contexts separately for native and second languages. Consistent with previous findings, bilinguals behaviorally performed worse, and showed greater activation in brain regions for cognitive control including the anterior cingulate cortex and dorsolateral prefrontal cortex in the bilingual context relative to the monolingual context. More importantly, RSA revealed that bilinguals exhibited similar neural activation patterns in the bilateral dorsal inferior frontal gyrus between the monolingual and bilingual contexts in the production of the second language. Moreover, higher cross-context PS in the right inferior frontal gyrus was associated with smaller differences in naming speed of second language between the monolingual and bilingual contexts. These results suggest that similar linguistic representations are encoded for the monolingual and bilingual contexts in the production of non-dominant language.
Collapse
|
39
|
Scalise M, Brechtel L, Conn Z, Bailes B, Gainey J, Nathaniel TI. Predicting ambulatory recovery in acute ischemic stroke patients with thrombolytic therapy. FUTURE NEUROLOGY 2020. [DOI: 10.2217/fnl-2020-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aim: The aim of this study was to determine the predictive value of clinical presentations on functional ambulation following thrombolytic therapy. Materials & methods: Logistic regression analysis was used to determine associations between functional ambulation and thrombolytic therapy. Results & conclusion: In the results, Hispanic ethnicity (odds ratio (OR): 2.808; p = 0.034; 95% CI: 1.08–7.30), high National Institute of Health Stroke Scale (NIHSS) (OR: 1.112; p ≤ 0.001; 95% CI: 1.06–1.17), weakness/paresis (OR: 1.796; p = 0.005; 95% CI: 1.19–2.71), Broca’s aphasia (OR: 1.571; p = 0.003; 95% CI = 1.16–2.12) and antihypertensive medication (OR: 1.530; p = 0.034; 95% CI: 1.03–2.26) were associated with an improved ambulation in patients without thrombolytic therapy. In thrombolytic treated patients, Broca’s aphasia was associated with improved functional outcome.
Collapse
Affiliation(s)
- Matthew Scalise
- University of South Carolina School of Medicine Greenville, 607 Grove Rd, Greenville, SC 29605 USA
| | - Leanne Brechtel
- University of South Carolina School of Medicine Greenville, 607 Grove Rd, Greenville, SC 29605 USA
| | - Zachary Conn
- University of South Carolina School of Medicine Greenville, 607 Grove Rd, Greenville, SC 29605 USA
| | - Benjamin Bailes
- University of South Carolina School of Medicine Greenville, 607 Grove Rd, Greenville, SC 29605 USA
| | - Jordan Gainey
- University of South Carolina School of Medicine Greenville, 607 Grove Rd, Greenville, SC 29605 USA
| | - Thomas I Nathaniel
- University of South Carolina School of Medicine Greenville, 607 Grove Rd, Greenville, SC 29605 USA
| |
Collapse
|
40
|
Wypych A, Wierzchowska M, Burduk P, Zawada E, Nadolska K, Serafin Z. Cortical presentation of language functions in patients after total laryngectomy: a fMRI study. Neuroradiology 2020; 62:843-849. [PMID: 32253455 PMCID: PMC7311494 DOI: 10.1007/s00234-020-02407-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
Purpose The aim of this study is to use functional magnetic resonance (fMRI) to analyse the cortical presentation of selected language functions in patients after a total laryngectomy. Methods Eighteen patients after total laryngectomy treated with electrolarynx speech and 18 volunteers were included. The mean number of patients’ post-operative speech rehabilitation sessions was five (range of 3–8 sessions). Four paradigms were used, including noun generation, pseudoword reading, reading phrases with pseudowords, and nonliteral sign reproduction. Results In noun, the most significant difference between the groups was the stronger activation of both lingual gyri in the volunteers. Pseudoword reading resulted in stronger activations in patients than in volunteers in the lingual gyri, the right cerebellum, the right Broca’s area, and the right parietal operculum. Reading phrases with pseudowords involved different parts of the Brodmann area 40. During nonliteral sign reproduction, there was a stronger activation of the left Broca’s area in volunteers and a stronger activation of the left premotor cortex in patients. Conclusion This study provides evidence of altered cortical activation in response to language tasks in patients after a laryngectomy compared with healthy volunteers, which may be considered brain plasticity in response to a laryngectomy.
Collapse
Affiliation(s)
- Aleksandra Wypych
- The Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Wierzchowska
- Department of Otolaryngology, Oncology and Oral and Maxillofacial Surgery, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Paweł Burduk
- Department of Otolaryngology, Oncology and Oral and Maxillofacial Surgery, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Elżbieta Zawada
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
- Department of Geriatrics, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Katarzyna Nadolska
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland.
| |
Collapse
|
41
|
Abstract
Syntax, the structure of sentences, enables humans to express an infinite range of meanings through finite means. The neurobiology of syntax has been intensely studied but with little consensus. Two main candidate regions have been identified: the posterior inferior frontal gyrus (pIFG) and the posterior middle temporal gyrus (pMTG). Integrating research in linguistics, psycholinguistics, and neuroscience, we propose a neuroanatomical framework for syntax that attributes distinct syntactic computations to these regions in a unified model. The key theoretical advances are adopting a modern lexicalized view of syntax in which the lexicon and syntactic rules are intertwined, and recognizing a computational asymmetry in the role of syntax during comprehension and production. Our model postulates a hierarchical lexical-syntactic function to the pMTG, which interconnects previously identified speech perception and conceptual-semantic systems in the temporal and inferior parietal lobes, crucial for both sentence production and comprehension. These relational hierarchies are transformed via the pIFG into morpho-syntactic sequences, primarily tied to production. We show how this architecture provides a better account of the full range of data and is consistent with recent proposals regarding the organization of phonological processes in the brain.
Collapse
Affiliation(s)
- William Matchin
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Language Science, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
42
|
Bonilha L, Hillis AE, Wilmskoetter J, Hickok G, Basilakos A, Munsell B, Rorden C, Fridriksson J. Neural structures supporting spontaneous and assisted (entrained) speech fluency. Brain 2019; 142:3951-3962. [PMID: 31580418 PMCID: PMC6885692 DOI: 10.1093/brain/awz309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 11/14/2022] Open
Abstract
Non-fluent speech is one of the most common impairments in post-stroke aphasia. The rehabilitation of non-fluent speech in aphasia is particularly challenging as patients are rarely able to produce and practice fluent speech production. Speech entrainment is a behavioural technique that enables patients with non-fluent aphasia to speak fluently. However, its mechanisms are not well understood and the level of improved fluency with speech entrainment varies among individuals with non-fluent aphasia. In this study, we evaluated the behavioural and neuroanatomical factors associated with better speech fluency with the aid of speech entrainment during the training phase of speech entrainment. We used a lesion-symptom mapping approach to define the relationship between chronic stroke location on MRI and the number of different words per second produced during speech entrainment versus picture description spontaneous speech. The behavioural variable of interest was the speech entrainment/picture description ratio, which, if ≥1, indicated an increase in speech output during speech entrainment compared to picture description. We used machine learning (shallow neural network) to assess the statistical significance and out-of-sample predictive accuracy of the neuroanatomical model, and its regional contributors. We observed that better assisted speech (higher speech entrainment/picture description ratio) was achieved by individuals who had preservation of the posterior middle temporal gyrus, inferior fronto-occipital fasciculus and uncinate fasciculus, while exhibiting lesions in areas typically associated with non-fluent aphasia, such as the superior longitudinal fasciculus, precentral, inferior frontal, supramarginal and insular cortices. Our findings suggest that individuals with dorsal stream damage but preservation of ventral stream structures are more likely to achieve more fluent speech with the aid of speech entrainment compared to spontaneous speech. This observation provides insight into the mechanisms of non-fluent speech in aphasia and has potential implications for future research using speech entrainment for rehabilitation of non-fluent aphasia.
Collapse
Affiliation(s)
- Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, Charleston, SC 29425, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, School of Medicine, Phipps 446, 600 N Broadway, Baltimore, MD 21287, USA
| | - Janina Wilmskoetter
- Department of Neurology, Medical University of South Carolina, 96 Jonathan Lucas St, Charleston, SC 29425, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, 3151 Social Sciences Plaza, Irvine, CA 92697, USA
| | - Alexandra Basilakos
- Department of Communications Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Brent Munsell
- Department of Computer Science, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Julius Fridriksson
- Department of Communications Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| |
Collapse
|
43
|
Mack JE, Mesulam MM, Rogalski EJ, Thompson CK. Verb-argument integration in primary progressive aphasia: Real-time argument access and selection. Neuropsychologia 2019; 134:107192. [PMID: 31521633 DOI: 10.1016/j.neuropsychologia.2019.107192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/30/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Impaired sentence comprehension is observed in the three major subtypes of PPA, with distinct performance patterns relating to impairments in comprehending complex sentences in the agrammatic (PPA-G) and logopenic (PPA-L) variants and word comprehension in the semantic subtype (PPA-S). However, little is known about basic combinatory processes during sentence comprehension in PPA, such the integration of verbs with their subject and object(s) (verb-argument integration). METHODS The present study used visual-world eye-tracking to examine real-time verb-argument integration in individuals with PPA (12 with PPA-G, 10 with PPA-L, and 6 with PPA-S) and neurotypical older adults (15). Two baseline experiments probed eye movement control, using a non-linguistic task, and noun comprehension, respectively. Two verb-argument integration experiments examined the effects of verb meaning on (a) lexical access of the verb's direct object (argument access) and (b) selection of a semantically-appropriate direct object (argument selection), respectively. Eye movement analyses were conducted only for trials with correct behavioral responses, allowing us to distinguish accuracy and online processing. RESULTS The eye movement control experiment revealed no significant impairments in PPA, whereas the noun comprehension experiment revealed reduced accuracy and eye-movement latencies in PPA-S, and to a lesser extent PPA-G. In the argument access experiment, verb meaning facilitated argument access normally in PPA-G and PPA-L; in PPA-S, verb-meaning effects emerged on an atypical time course. In the argument selection experiment, significant impairments in accuracy were observed only in PPA-G, accompanied by markedly atypical eye movement patterns. CONCLUSION This study revealed two distinct patterns of impaired verb-argument integration in PPA. In PPA-S, impaired verb-argument integration was observed in the argument access experiment, indicating impairments in basic semantic combinatory processes which likely relate to damage in ventral language pathways. In contrast, listeners with PPA-G showed marked impairments of argument selection, likely relating to damage to left inferior frontal regions.
Collapse
Affiliation(s)
- Jennifer E Mack
- Roxelyn & Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, USA.
| | - M-Marsel Mesulam
- Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, USA; Ken & Ruth Davee Department of Neurology, Northwestern University, USA
| | - Emily J Rogalski
- Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University, USA
| | - Cynthia K Thompson
- Roxelyn & Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, USA; Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, USA; Ken & Ruth Davee Department of Neurology, Northwestern University, USA
| |
Collapse
|
44
|
Fridriksson J, den Ouden DB, Hillis AE, Hickok G, Rorden C, Basilakos A, Yourganov G, Bonilha L. Anatomy of aphasia revisited. Brain 2019; 141:848-862. [PMID: 29360947 DOI: 10.1093/brain/awx363] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
In most cases, aphasia is caused by strokes involving the left hemisphere, with more extensive damage typically being associated with more severe aphasia. The classical model of aphasia commonly adhered to in the Western world is the Wernicke-Lichtheim model. The model has been in existence for over a century, and classification of aphasic symptomatology continues to rely on it. However, far more detailed models of speech and language localization in the brain have been formulated. In this regard, the dual stream model of cortical brain organization proposed by Hickok and Poeppel is particularly influential. Their model describes two processing routes, a dorsal stream and a ventral stream, that roughly support speech production and speech comprehension, respectively, in normal subjects. Despite the strong influence of the dual stream model in current neuropsychological research, there has been relatively limited focus on explaining aphasic symptoms in the context of this model. Given that the dual stream model represents a more nuanced picture of cortical speech and language organization, cortical damage that causes aphasic impairment should map clearly onto the dual processing streams. Here, we present a follow-up study to our previous work that used lesion data to reveal the anatomical boundaries of the dorsal and ventral streams supporting speech and language processing. Specifically, by emphasizing clinical measures, we examine the effect of cortical damage and disconnection involving the dorsal and ventral streams on aphasic impairment. The results reveal that measures of motor speech impairment mostly involve damage to the dorsal stream, whereas measures of impaired speech comprehension are more strongly associated with ventral stream involvement. Equally important, many clinical tests that target behaviours such as naming, speech repetition, or grammatical processing rely on interactions between the two streams. This latter finding explains why patients with seemingly disparate lesion locations often experience similar impairments on given subtests. Namely, these individuals' cortical damage, although dissimilar, affects a broad cortical network that plays a role in carrying out a given speech or language task. The current data suggest this is a more accurate characterization than ascribing specific lesion locations as responsible for specific language deficits.5705668782001awx363media15705668782001.
Collapse
Affiliation(s)
- Julius Fridriksson
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Dirk-Bart den Ouden
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University School of Medicine; Department of Cognitive Science, Johns Hopkins University, Baltimore, USA.,Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine; Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Gregory Hickok
- Cognitive Sciences, School of Social Sciences, University of California, Irvine, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, USA
| | - Alexandra Basilakos
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, USA
| | - Grigori Yourganov
- Department of Psychology, University of South Carolina, Columbia, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
45
|
Hartwigsen G, Saur D. Neuroimaging of stroke recovery from aphasia - Insights into plasticity of the human language network. Neuroimage 2017; 190:14-31. [PMID: 29175498 DOI: 10.1016/j.neuroimage.2017.11.056] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/02/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
The role of left and right hemisphere brain regions in language recovery after stroke-induced aphasia remains controversial. Here, we summarize how neuroimaging studies increase the current understanding of functional interactions, reorganization and plasticity in the language network. We first discuss the temporal dynamics across the time course of language recovery, with a main focus on longitudinal studies from the acute to the chronic phase after stroke. These studies show that the functional contribution of perilesional and spared left hemisphere as well as contralesional right hemisphere regions to language recovery changes over time. The second section introduces critical variables and recent advances on early prediction of subsequent outcome. In the third section, we outline how multi-method approaches that combine neuroimaging techniques with non-invasive brain stimulation elucidate mechanisms of plasticity and reorganization in the language network. These approaches provide novel insights into general mechanisms of plasticity in the language network and might ultimately support recovery processes during speech and language therapy. Finally, the neurobiological correlates of therapy-induced plasticity are discussed. We argue that future studies should integrate individualized approaches that might vary the combination of language therapy with specific non-invasive brain stimulation protocols across the time course of recovery. The way forward will include the combination of such approaches with large data sets obtained from multicentre studies.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Research Group Modulation of Language Networks, Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Dorothee Saur
- Language & Aphasia Laboratory, Department of Neurology, University of Leipzig, Germany.
| |
Collapse
|
46
|
Rogalsky C, LaCroix AN, Chen KH, Anderson SW, Damasio H, Love T, Hickok G. The Neurobiology of Agrammatic Sentence Comprehension: A Lesion Study. J Cogn Neurosci 2017; 30:234-255. [PMID: 29064339 DOI: 10.1162/jocn_a_01200] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Broca's area has long been implicated in sentence comprehension. Damage to this region is thought to be the central source of "agrammatic comprehension" in which performance is substantially worse (and near chance) on sentences with noncanonical word orders compared with canonical word order sentences (in English). This claim is supported by functional neuroimaging studies demonstrating greater activation in Broca's area for noncanonical versus canonical sentences. However, functional neuroimaging studies also have frequently implicated the anterior temporal lobe (ATL) in sentence processing more broadly, and recent lesion-symptom mapping studies have implicated the ATL and mid temporal regions in agrammatic comprehension. This study investigates these seemingly conflicting findings in 66 left-hemisphere patients with chronic focal cerebral damage. Patients completed two sentence comprehension measures, sentence-picture matching and plausibility judgments. Patients with damage including Broca's area (but excluding the temporal lobe; n = 11) on average did not exhibit the expected agrammatic comprehension pattern-for example, their performance was >80% on noncanonical sentences in the sentence-picture matching task. Patients with ATL damage ( n = 18) also did not exhibit an agrammatic comprehension pattern. Across our entire patient sample, the lesions of patients with agrammatic comprehension patterns in either task had maximal overlap in posterior superior temporal and inferior parietal regions. Using voxel-based lesion-symptom mapping, we find that lower performances on canonical and noncanonical sentences in each task are both associated with damage to a large left superior temporal-inferior parietal network including portions of the ATL, but not Broca's area. Notably, however, response bias in plausibility judgments was significantly associated with damage to inferior frontal cortex, including gray and white matter in Broca's area, suggesting that the contribution of Broca's area to sentence comprehension may be related to task-related cognitive demands.
Collapse
Affiliation(s)
| | | | - Kuan-Hua Chen
- University of Iowa.,University of California, Berkeley
| | | | | | | | | |
Collapse
|
47
|
Behroozmand R, Phillip L, Johari K, Bonilha L, Rorden C, Hickok G, Fridriksson J. Sensorimotor impairment of speech auditory feedback processing in aphasia. Neuroimage 2017; 165:102-111. [PMID: 29024793 DOI: 10.1016/j.neuroimage.2017.10.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022] Open
Abstract
We investigated the brain network involved in speech sensorimotor processing by studying patients with post-stroke aphasia using an altered auditory feedback (AAF) paradigm. We combined lesion-symptom-mapping analysis and behavioral testing to examine the pervasiveness of speech sensorimotor deficits and their relationship with cortical damage. Sixteen participants with aphasia and sixteen neurologically intact individuals completed a speech task under AAF. The task involved producing speech vowel sounds under the real-time pitch-shifted auditory feedback alteration. This task provided an objective measure for each individual's ability to compensate for mismatch (error) in speech auditory feedback. Results indicated that compensatory speech responses to AAF were significantly diminished in participants with aphasia compared with control. We observed that within the aphasic group, subjects with lower scores on the speech repetition task exhibited greater degree of diminished responses. Lesion-symptom-mapping analysis revealed that the onset phase (50-150 ms) of diminished AAF responses were predicted by damage to auditory cortical regions within the superior and middle temporal gyrus, whereas the rising phase (150-250 ms) and the peak (250-350 ms) of diminished AAF responses were predicted with damage to the inferior frontal gyrus and supramarginal gyrus areas, respectively. These findings suggest that damage to the auditory, motor, and auditory-motor integration networks are associated with impaired sensorimotor function for speech error processing. We suggest that a sensorimotor integration network, as revealed by brain regions related to temporal specific components of AAF responses, is related to speech processing and specific aspects of speech impairment, notably repetition deficits, in individuals with aphasia.
Collapse
Affiliation(s)
- Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA.
| | - Lorelei Phillip
- The Aphasia Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene St., Columbia, SC 29208, USA
| | - Karim Johari
- Speech Neuroscience Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene Street, Columbia, SC 29208, USA
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chris Rorden
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Gregory Hickok
- Department of Cognitive Sciences, University of California, Irvine, Irvine CA 92697, USA
| | - Julius Fridriksson
- The Aphasia Lab, Department of Communication Sciences and Disorders, University of South Carolina, 915 Greene St., Columbia, SC 29208, USA
| |
Collapse
|
48
|
Neural Basis of Acquired Amusia and Its Recovery after Stroke. J Neurosci 2017; 36:8872-81. [PMID: 27559169 DOI: 10.1523/jneurosci.0709-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/12/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Although acquired amusia is a relatively common disorder after stroke, its precise neuroanatomical basis is still unknown. To evaluate which brain regions form the neural substrate for acquired amusia and its recovery, we performed a voxel-based lesion-symptom mapping (VLSM) and morphometry (VBM) study with 77 human stroke subjects. Structural MRIs were acquired at acute and 6 month poststroke stages. Amusia and aphasia were behaviorally assessed at acute and 3 month poststroke stages using the Scale and Rhythm subtests of the Montreal Battery of Evaluation of Amusia (MBEA) and language tests. VLSM analyses indicated that amusia was associated with a lesion area comprising the superior temporal gyrus, Heschl's gyrus, insula, and striatum in the right hemisphere, clearly different from the lesion pattern associated with aphasia. Parametric analyses of MBEA Pitch and Rhythm scores showed extensive lesion overlap in the right striatum, as well as in the right Heschl's gyrus and superior temporal gyrus. Lesions associated with Rhythm scores extended more superiorly and posterolaterally. VBM analysis of volume changes from the acute to the 6 month stage showed a clear decrease in gray matter volume in the right superior and middle temporal gyri in nonrecovered amusic patients compared with nonamusic patients. This increased atrophy was more evident in anterior temporal areas in rhythm amusia and in posterior temporal and temporoparietal areas in pitch amusia. Overall, the results implicate right temporal and subcortical regions as the crucial neural substrate for acquired amusia and highlight the importance of different temporal lobe regions for the recovery of amusia after stroke. SIGNIFICANCE STATEMENT Lesion studies are essential in uncovering the brain regions causally linked to a given behavior or skill. For music perception ability, previous lesion studies of amusia have been methodologically limited in both spatial accuracy and time domain as well as by small sample sizes, providing coarse and equivocal information about which brain areas underlie amusia. By using longitudinal MRI and behavioral data from a large sample of stroke patients coupled with modern voxel-based analyses methods, we were able provide the first systematic evidence for the causal role of right temporal and striatal areas in music perception. Clinically, these results have important implications for the diagnosis and prognosis of amusia after stroke and for rehabilitation planning.
Collapse
|
49
|
Matchin W, Hammerly C, Lau E. The role of the IFG and pSTS in syntactic prediction: Evidence from a parametric study of hierarchical structure in fMRI. Cortex 2017; 88:106-123. [DOI: 10.1016/j.cortex.2016.12.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
|
50
|
Skipper JI, Devlin JT, Lametti DR. The hearing ear is always found close to the speaking tongue: Review of the role of the motor system in speech perception. BRAIN AND LANGUAGE 2017; 164:77-105. [PMID: 27821280 DOI: 10.1016/j.bandl.2016.10.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Does "the motor system" play "a role" in speech perception? If so, where, how, and when? We conducted a systematic review that addresses these questions using both qualitative and quantitative methods. The qualitative review of behavioural, computational modelling, non-human animal, brain damage/disorder, electrical stimulation/recording, and neuroimaging research suggests that distributed brain regions involved in producing speech play specific, dynamic, and contextually determined roles in speech perception. The quantitative review employed region and network based neuroimaging meta-analyses and a novel text mining method to describe relative contributions of nodes in distributed brain networks. Supporting the qualitative review, results show a specific functional correspondence between regions involved in non-linguistic movement of the articulators, covertly and overtly producing speech, and the perception of both nonword and word sounds. This distributed set of cortical and subcortical speech production regions are ubiquitously active and form multiple networks whose topologies dynamically change with listening context. Results are inconsistent with motor and acoustic only models of speech perception and classical and contemporary dual-stream models of the organization of language and the brain. Instead, results are more consistent with complex network models in which multiple speech production related networks and subnetworks dynamically self-organize to constrain interpretation of indeterminant acoustic patterns as listening context requires.
Collapse
Affiliation(s)
- Jeremy I Skipper
- Experimental Psychology, University College London, United Kingdom.
| | - Joseph T Devlin
- Experimental Psychology, University College London, United Kingdom
| | - Daniel R Lametti
- Experimental Psychology, University College London, United Kingdom; Department of Experimental Psychology, University of Oxford, United Kingdom
| |
Collapse
|