1
|
Ivanov V, Manenti GL, Plewe SS, Kagan I, Schwiedrzik CM. Decision-making processes in perceptual learning depend on effectors. Sci Rep 2024; 14:5644. [PMID: 38453977 PMCID: PMC10920771 DOI: 10.1038/s41598-024-55508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/24/2024] [Indexed: 03/09/2024] Open
Abstract
Visual perceptual learning is traditionally thought to arise in visual cortex. However, typical perceptual learning tasks also involve systematic mapping of visual information onto motor actions. Because the motor system contains both effector-specific and effector-unspecific representations, the question arises whether visual perceptual learning is effector-specific itself, or not. Here, we study this question in an orientation discrimination task. Subjects learn to indicate their choices either with joystick movements or with manual reaches. After training, we challenge them to perform the same task with eye movements. We dissect the decision-making process using the drift diffusion model. We find that learning effects on the rate of evidence accumulation depend on effectors, albeit not fully. This suggests that during perceptual learning, visual information is mapped onto effector-specific integrators. Overlap of the populations of neurons encoding motor plans for these effectors may explain partial generalization. Taken together, visual perceptual learning is not limited to visual cortex, but also affects sensorimotor mapping at the interface of visual processing and decision making.
Collapse
Affiliation(s)
- Vladyslav Ivanov
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Sensorimotor Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Giorgio L Manenti
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Systems Neuroscience Program, Graduate School for Neurosciences, Biophysics and Molecular Biosciences (GGNB), 37077, Göttingen, Germany
| | - Sandrin S Plewe
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
| | - Igor Kagan
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- Decision and Awareness Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Grisebachstraße 5, 37077, Göttingen, Germany.
- Perception and Plasticity Group, German Primate Center - Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Göttingen, Germany.
| |
Collapse
|
2
|
Lateral intraparietal area (LIP) is largely effector-specific in free-choice decisions. Sci Rep 2018; 8:8611. [PMID: 29872059 PMCID: PMC5988653 DOI: 10.1038/s41598-018-26366-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Despite many years of intense research, there is no strong consensus about the role of the lateral intraparietal area (LIP) in decision making. One view of LIP function is that it guides spatial attention, providing a “saliency map” of the external world. If this were the case, it would contribute to target selection regardless of which action would be performed to implement the choice. On the other hand, LIP inactivation has been shown to influence spatial selection and oculomotor metrics in free-choice decisions, which are made using eye movements, arguing that it contributes to saccade decisions. To dissociate between a more general attention role and a more effector specific saccade role, we reversibly inactivated LIP while non-human primates freely selected between two targets, presented in the two hemifields, with either saccades or reaches. Unilateral LIP inactivation induced a strong choice bias to ipsilesional targets when decisions were made with saccades. Interestingly, the inactivation also caused a reduction of contralesional choices when decisions were made with reaches, albeit the effect was less pronounced. These findings suggest that LIP is part of a network for making oculomotor decisions and is largely effector-specific in free-choice decisions.
Collapse
|
3
|
Brunamonti E, Genovesio A, Pani P, Caminiti R, Ferraina S. Reaching-related Neurons in Superior Parietal Area 5: Influence of the Target Visibility. J Cogn Neurosci 2016; 28:1828-1837. [DOI: 10.1162/jocn_a_01004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Reaching movements require the integration of both somatic and visual information. These signals can have different relevance, depending on whether reaches are performed toward visual or memorized targets. We tested the hypothesis that under such conditions, therefore depending on target visibility, posterior parietal neurons integrate differently somatic and visual signals. Monkeys were trained to execute both types of reaches from different hand resting positions and in total darkness. Neural activity was recorded in Area 5 (PE) and analyzed by focusing on the preparatory epoch, that is, before movement initiation. Many neurons were influenced by the initial hand position, and most of them were further modulated by the target visibility. For the same starting position, we found a prevalence of neurons with activity that differed depending on whether hand movement was performed toward memorized or visual targets. This result suggests that posterior parietal cortex integrates available signals in a flexible way based on contextual demands.
Collapse
|