1
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Different Aspects of Aging in Migraine. Aging Dis 2023; 14:2028-2050. [PMID: 37199585 PMCID: PMC10676778 DOI: 10.14336/ad.2023.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023] Open
Abstract
Migraine is a common neurological disease displaying an unusual dependence on age. For most patients, the peak intensity of migraine headaches occurs in 20s and lasts until 40s, but then headache attacks become less intense, occur less frequently and the disease is more responsive to therapy. This relationship is valid in both females and males, although the prevalence of migraine in the former is 2-4 times greater than the latter. Recent concepts present migraine not only as a pathological event, but rather as a part of evolutionary adaptive response to protect organism against consequences of stress-induced brain energy deficit. However, these concepts do not fully explain that unusual dependence of migraine prevalence on age. Many aspects of aging, both molecular/cellular and social/cognitive, are interwound in migraine pathogenesis, but they neither explain why only some persons are affected by migraine, nor suggest any causal relationship. In this narrative/hypothesis review we present information on associations of migraine with chronological aging, brain aging, cellular senescence, stem cell exhaustion as well as social, cognitive, epigenetic, and metabolic aging. We also underline the role of oxidative stress in these associations. We hypothesize that migraine affects only individuals who have inborn, genetic/epigenetic, or acquired (traumas, shocks or complexes) migraine predispositions. These predispositions weakly depend on age and affected individuals are more prone to migraine triggers than others. Although the triggers can be related to many aspects of aging, social aging may play a particularly important role as the prevalence of its associated stress has a similar age-dependence as the prevalence of migraine. Moreover, social aging was shown to be associated with oxidative stress, important in many aspects of aging. In perspective, molecular mechanisms underlying social aging should be further explored and related to migraine with a closer association with migraine predisposition and difference in prevalence by sex.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
2
|
Liu D, Xing Z, Huang J, Schwieter JW, Liu H. Genetic bases of language control in bilinguals: Evidence from an EEG study. Hum Brain Mapp 2023; 44:3624-3643. [PMID: 37051723 PMCID: PMC10203802 DOI: 10.1002/hbm.26301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Previous studies have debated whether the ability for bilinguals to mentally control their languages is a consequence of their experiences switching between languages or whether it is a specific, yet highly-adaptive, cognitive ability. The current study investigates how variations in the language-related gene FOXP2 and executive function-related genes COMT, BDNF, and Kibra/WWC1 affect bilingual language control during two phases of speech production, namely the language schema phase (i.e., the selection of one language or another) and lexical response phase (i.e., utterance of the target). Chinese-English bilinguals (N = 119) participated in a picture-naming task involving cued language switches. Statistical analyses showed that both genes significantly influenced language control on neural coding and behavioral performance. Specifically, FOXP2 rs1456031 showed a wide-ranging effect on language control, including RTs, F(2, 113) = 4.00, FDR p = .036, and neural coding across three-time phases (N2a: F(2, 113) = 4.96, FDR p = .014; N2b: F(2, 113) = 4.30, FDR p = .028, LPC: F(2, 113) = 2.82, FDR p = .060), while the COMT rs4818 (ts >2.69, FDR ps < .05), BDNF rs6265 (Fs >5.31, FDR ps < .05), and Kibra/WWC1 rs17070145 (ts > -3.29, FDR ps < .05) polymorphisms influenced two-time phases (N2a and N2b). Time-resolved correlation analyses revealed that the relationship between neural coding and cognitive performance is modulated by genetic variations in all four genes. In all, these findings suggest that bilingual language control is shaped by an individual's experience switching between languages and their inherent genome.
Collapse
Affiliation(s)
- Dongxue Liu
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of PsychologyBeijing Normal UniversityBeijingChina
| | - Zehui Xing
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| | - Junjun Huang
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| | - John W. Schwieter
- Language Acquisition, Multilingualism, and Cognition Laboratory / Bilingualism Matters @ LaurierWilfrid Laurier UniversityWaterlooCanada
- Department of Linguistics and LanguagesMcMaster UniversityHamiltonCanada
| | - Huanhuan Liu
- Research Center of Brain and Cognitive NeuroscienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Brain and Cognitive NeuroscienceLiaoning ProvinceDalianChina
| |
Collapse
|
3
|
Yeung MK. An optical window into brain function in children and adolescents: A systematic review of functional near-infrared spectroscopy studies. Neuroimage 2020; 227:117672. [PMID: 33359349 DOI: 10.1016/j.neuroimage.2020.117672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/12/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Despite decades of research, our understanding of functional brain development throughout childhood and adolescence remains limited due to the challenges posed by certain neuroimaging modalities. Recently, there has been a growing interest in using functional near-infrared spectroscopy (fNIRS) to elucidate the neural basis of cognitive and socioemotional development and identify the factors shaping these types of development. This article, focusing on the fNIRS methods, presents an up-to-date systematic review of fNIRS studies addressing the effects of age and other factors on brain functions in children and adolescents. Literature searches were conducted using PubMed and PsycINFO. A total of 79 fNIRS studies involving healthy individuals aged 3-17 years that were published in peer-reviewed journals in English before July 2020 were included. Six methodological aspects of these studies were evaluated, including the research design, experimental paradigm, fNIRS measurement, data preprocessing, statistical analysis, and result presentation. The risk of bias, such as selective outcome reporting, was assessed throughout the review. A qualitative synthesis of study findings in terms of the factor effects on changes in oxyhemoglobin concentration was also performed. This unregistered review highlights the strengths and limitations of the existing literature and suggests directions for future research to facilitate the improved use of fNIRS in developmental cognitive neuroscience research.
Collapse
Affiliation(s)
- Michael K Yeung
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW To better understand the shared basis of language and mental health, this review examines the behavioral and neurobiological features of aberrant language in five major neuropsychiatric conditions. Special attention is paid to genes implicated in both language and neuropsychiatric disorders, as they reveal biological domains likely to underpin the processes controlling both. RECENT FINDINGS Abnormal language and communication are common manifestations of neuropsychiatric conditions, and children with impaired language are more likely to develop psychiatric disorders than their peers. Major themes in the genetics of both language and psychiatry include master transcriptional regulators, like FOXP2; key developmental regulators, like AUTS2; and mediators of neurotransmission, like GRIN2A and CACNA1C.
Collapse
|
5
|
Chang HA, Fang WH, Wan FJ, Tzeng NS, Liu YP, Shyu JF, Huang SY, Chang TC, Chang CC. Age-specific associations among functional COMT Val 158Met polymorphism, resting parasympathetic nervous control and generalized anxiety disorder. Psychoneuroendocrinology 2019; 106:57-64. [PMID: 30954919 DOI: 10.1016/j.psyneuen.2019.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 01/06/2023]
Abstract
The functional Val158Met polymorphism (rs4680) of the Catechol-O-Methyltransferase (COMT) gene has been implicated in generalized anxiety disorder (GAD); however, the underlying neural mechanisms remain unexamined. Recent evidence reveals that low resting parasympathetic (vagal) control is an endophenotypic predictor of anxiety, while the effect of COMT rs4680 differs at different ages. Thus, we examined whether the COMT Val158Met variant could increase the risk of GAD through decreased resting parasympathetic nervous control in an age-specific manner. COMT rs4680 polymorphism was genotyped in 1,655 Han Chinese adults (1,142 healthy subjects and 513 patients with GAD; age: 20-65). High-frequency power (HF) of heart rate variability (HRV) was used to measure resting state parasympathetic nervous regulation. Non-genetic factors, such as gender, smoking status, medication use and comorbidity conditions, were treated as covariates. After adjusting for relevant covariates, there was a significant age x COMT genotype interaction on resting HF of HRV. In younger adults, Met allele carriers had a significantly lower HF index; however, older adults exhibited the opposite pattern, with Val/Val homozygotes exhibiting decreased HF values. Moreover, reduced HF-HRV is associated with increased risk of GAD. Finally, pathway analysis revealed a significant indirect effect of COMT on the risk of GAD via reduced resting HF-HRV, in the aforementioned age-dependent manner. Our findings are the first to demonstrate that COMT Val158Met polymorphism is associated with risk of GAD via reduced resting parasympathetic nervous control, an age-specific risk pathway.
Collapse
Affiliation(s)
- Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Hui Fang
- Department of Family and Community Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fang-Jung Wan
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yia-Ping Liu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan; Laboratory of Cognitive Neuroscience, Department of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Fwu Shyu
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - San-Yuan Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tieh-Ching Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuan-Chia Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Murphy E, Benítez-Burraco A. Toward the Language Oscillogenome. Front Psychol 2018; 9:1999. [PMID: 30405489 PMCID: PMC6206218 DOI: 10.3389/fpsyg.2018.01999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution.
Collapse
Affiliation(s)
- Elliot Murphy
- Division of Psychology and Language Sciences, University College London, London, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Antonio Benítez-Burraco
- Department of Spanish Language, Linguistics and Literary Theory, University of Seville, Seville, Spain
| |
Collapse
|
7
|
Sugiura L, Hata M, Matsuba-Kurita H, Uga M, Tsuzuki D, Dan I, Hagiwara H, Homae F. Explicit Performance in Girls and Implicit Processing in Boys: A Simultaneous fNIRS-ERP Study on Second Language Syntactic Learning in Young Adolescents. Front Hum Neurosci 2018; 12:62. [PMID: 29568265 PMCID: PMC5853835 DOI: 10.3389/fnhum.2018.00062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/05/2018] [Indexed: 11/20/2022] Open
Abstract
Learning a second language (L2) proceeds with individual approaches to proficiency in the language. Individual differences including sex, as well as working memory (WM) function appear to have strong effects on behavioral performance and cortical responses in L2 processing. Thus, by considering sex and WM capacity, we examined neural responses during L2 sentence processing as a function of L2 proficiency in young adolescents. In behavioral tests, girls significantly outperformed boys in L2 tests assessing proficiency and grammatical knowledge, and in a reading span test (RST) assessing WM capacity. Girls, but not boys, showed significant correlations between L2 tests and RST scores. Using functional near-infrared spectroscopy (fNIRS) and event-related potential (ERP) simultaneously, we measured cortical responses while participants listened to syntactically correct and incorrect sentences. ERP data revealed a grammaticality effect only in boys in the early time window (100–300 ms), implicated in phrase structure processing. In fNIRS data, while boys had significantly increased activation in the left prefrontal region implicated in syntactic processing, girls had increased activation in the posterior language-related region involved in phonology, semantics, and sentence processing with proficiency. Presumably, boys implicitly focused on rule-based syntactic processing, whereas girls made full use of linguistic knowledge and WM function. The present results provide important fundamental data for learning and teaching in L2 education.
Collapse
Affiliation(s)
- Lisa Sugiura
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Tokyo, Japan
| | - Masahiro Hata
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Hiroko Matsuba-Kurita
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Minako Uga
- Applied Cognitive Neuroscience Lab, Faculty of Science and Engineering, Chuo University, Tokyo, Japan.,Department of Welfare and Psychology, Health Science University, Yamanashi, Japan
| | - Daisuke Tsuzuki
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Applied Cognitive Neuroscience Lab, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Ippeita Dan
- Applied Cognitive Neuroscience Lab, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Hiroko Hagiwara
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Tokyo, Japan
| | - Fumitaka Homae
- Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan.,Research Center for Language, Brain and Genetics, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
8
|
Moriguchi Y, Shinohara I. Effect of the COMT Val158Met genotype on lateral prefrontal activations in young children. Dev Sci 2018; 21:e12649. [PMID: 29314589 PMCID: PMC6175303 DOI: 10.1111/desc.12649] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/09/2017] [Indexed: 01/28/2023]
Abstract
Low executive function (EF) during early childhood is a major risk factor for developmental delay, academic failure, and social withdrawal. Susceptible genes may affect the molecular and biological mechanisms underpinning EF. More specifically, genes associated with the regulation of prefrontal dopamine may modulate the response of prefrontal neurons during executive control. Several studies with adults and older children have shown that variants of the catechol‐O‐methyltransferase (COMT) gene are associated with behavioral performance and prefrontal activations in EF tasks. However, the effect of the COMT genotype on prefrontal activations during EF tasks on young children is still unknown. The present study examined whether a common functional polymorphism (Val158Met) in the COMT gene was associated with prefrontal activations and cognitive shifting in 3‐ to 6‐year‐old children. The study revealed that, compared with children with at least one Met allele (Met/Met and Met/Val), children who were Val homozygous (i) were more able to flexibly switch rules in cognitive shifting tasks and (ii) exhibited increased activations in lateral prefrontal regions during these tasks. This is the first evidence that demonstrates the relationship between a gene polymorphism and prefrontal activations in young children. It also indicates that COMT Val homozygosity may be advantageous for cognitive shifting and prefrontal functions, at least during early childhood, and children who possess this variant may have a lower risk of developing future cognitive and social development issues.
Collapse
Affiliation(s)
- Yusuke Moriguchi
- Graduate School of Education, Kyoto University, Yoshidahoncho, Kyoto, Japan.,Department of School Education, Joetsu University of Education, Yamayashikicho, Joetsu, Japan.,Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ikuko Shinohara
- National Institute for Educational Policy Research of Japan, Chiyodku, Tokyo, Japan
| |
Collapse
|
9
|
Neurocomputational Emergentism as a Framework for Language Development. PSYCHOLOGY OF LEARNING AND MOTIVATION 2018. [DOI: 10.1016/bs.plm.2018.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|