1
|
Gooijers J, Pauwels L, Hehl M, Seer C, Cuypers K, Swinnen SP. Aging, brain plasticity, and motor learning. Ageing Res Rev 2024; 102:102569. [PMID: 39486523 DOI: 10.1016/j.arr.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation). Extensive research has demonstrated that motor skill acquisition in young adults is accompanied by significant neuroplastic changes, including alterations in brain structure (gray and white matter), function (i.e., activity and connectivity), and neurochemistry (i.e., levels of neurotransmitters). In the aging population, motor performance typically declines, characterized by slower and less accurate movements. However, despite these age-related changes, older adults maintain the capacity for skill improvement through training. In this review, we explore the extent to which the aging brain retains the ability to adapt in response to motor learning, specifically whether skill acquisition is accompanied by neural changes. Furthermore, we discuss the associations between inter-individual variability in brain structure and function and the potential for future learning in older adults. Finally, we consider the use of non-invasive brain stimulation techniques aimed at optimizing motor learning in this population. Our review provides insights into the neurobiological underpinnings of motor learning in older adults and emphasizes strategies to enhance their motor skill acquisition.
Collapse
Affiliation(s)
- Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Caroline Seer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, Leuven 3001, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Sanal-Hayes NEM, Hayes LD, Mclaughlin M, Berry ECJ, Sculthorpe NF. People with Long Covid and ME/CFS Exhibit Similarly Impaired Dexterity and Bimanual Coordination: A Case-Case-Control Study. Am J Med 2024:S0002-9343(24)00091-3. [PMID: 38403179 DOI: 10.1016/j.amjmed.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
PURPOSE Dexterity and bimanual coordination had not previously been compared between people with long COVID and people with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Therefore, this study determined dexterity and bimanual coordination in people with long COVID (∼16 month illness duration; n=21) and ME/CFS (∼16 year illness duration; n=20), versus age-matched healthy controls (n=20). METHODS Dexterity, and bimanual coordination was determined using the Purdue pegboard test. RESULTS The main findings of the present investigation were that people with ME/CFS and people with long COVID were generally comparable for Purdue pegboard tests (p>0.556 and d<0.36 for pairwise comparisons). It is worth noting however, that both these patient groups performed poorer in the Perdue pegboard test than healthy controls (p<0.169 and d>0.40 for pairwise comparisons). CONCLUSIONS These data suggest that both people with long COVID and people with ME/CFS have similarly impaired dexterity, and bimanual coordination. Therefore, there is an urgent need for interventions to target dexterity and bimanual coordination in people with ME/CFS, and given the current pandemic, people with long COVID.
Collapse
Affiliation(s)
- Nilihan E M Sanal-Hayes
- School of Health and Society, University of Salford, Salford, UK; Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK.
| | - Lawrence D Hayes
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Marie Mclaughlin
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK; School of Sport, Exercise & Rehabilitation Sciences, University of Hull, Hull, UK
| | - Ethan C J Berry
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| | - Nicholas F Sculthorpe
- Sport and Physical Activity Research Institute, School of Health and Life Sciences, University of the West of Scotland, Glasgow, UK
| |
Collapse
|
3
|
Rasooli A, Adab HZ, Van Ruitenbeek P, Weerasekera A, Chalavi S, Cuypers K, Levin O, Dhollander T, Peeters R, Sunaert S, Mantini D, Swinnen SP. White matter and neurochemical mechanisms underlying age-related differences in motor processing speed. iScience 2023; 26:106794. [PMID: 37255665 PMCID: PMC10225899 DOI: 10.1016/j.isci.2023.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Aging is associated with changes in the central nervous system and leads to reduced life quality. Here, we investigated the age-related differences in the CNS underlying motor performance deficits using magnetic resonance spectroscopy and diffusion MRI. MRS measured N-acetyl aspartate (NAA), choline (Cho), and creatine (Cr) concentrations in the sensorimotor and occipital cortex, whereas dMRI quantified apparent fiber density (FD) in the same voxels to evaluate white matter microstructural organization. We found that aging was associated with increased reaction time and reduced FD and NAA concentration in the sensorimotor voxel. Both FD and NAA mediated the association between age and reaction time. The NAA concentration was found to mediate the association between age and FD in the sensorimotor voxel. We propose that the age-related decrease in NAA concentration may result in reduced axonal fiber density in the sensorimotor cortex which may ultimately account for the response slowness of older participants.
Collapse
Affiliation(s)
- Amirhossein Rasooli
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Peter Van Ruitenbeek
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, 6200 MD Maastricht, the Netherlands
| | - Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sima Chalavi
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Center, Hasselt University, Diepenbeek, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ronald Peeters
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Movement Control & Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Van Ruitenbeek P, Santos Monteiro T, Chalavi S, King BR, Cuypers K, Sunaert S, Peeters R, Swinnen SP. Interactions between the aging brain and motor task complexity across the lifespan: balancing brain activity resource demand and supply. Cereb Cortex 2022; 33:6420-6434. [PMID: 36587289 PMCID: PMC10183738 DOI: 10.1093/cercor/bhac514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 01/02/2023] Open
Abstract
The Compensation Related Utilization of Neural Circuits Hypothesis (CRUNCH) proposes a framework for understanding task-related brain activity changes as a function of healthy aging and task complexity. Specifically, it affords the following predictions: (i) all adult age groups display more brain activation with increases in task complexity, (ii) older adults show more brain activation compared with younger adults at low task complexity levels, and (iii) disproportionately increase brain activation with increased task complexity, but (iv) show smaller (or no) increases in brain activation at the highest complexity levels. To test these hypotheses, performance on a bimanual tracking task at 4 complexity levels and associated brain activation were assessed in 3 age groups (20-40, 40-60, and 60-80 years, n = 99). All age groups showed decreased tracking accuracy and increased brain activation with increased task complexity, with larger performance decrements and activation increases in the older age groups. Older adults exhibited increased brain activation at a lower complexity level, but not the predicted failure to further increase brain activity at the highest complexity level. We conclude that older adults show more brain activation than younger adults and preserve the capacity to deploy increased neural resources as a function of task demand.
Collapse
Affiliation(s)
- P Van Ruitenbeek
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - T Santos Monteiro
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - S Chalavi
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium
| | - B R King
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Department of Health & Kinesiology; University of Utah, 250 South 1850 East, Salt Lake City, Utah 84112
| | - K Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences, Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Agoralaan Gebouw A, 3590,Diepenbeek, Belgium
| | - S Sunaert
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - R Peeters
- KU Leuven, Department of Imaging and Pathology, Biomedical Sciences, UZ Herestraat 49, box 7003, 3000, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| | - S P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Biomedical Sciences,Tervuursevest 101, box 1501, 3001, Leuven, Belgium.,KU Leuven, Leuven Brain Institute (LBI), ON V Herestraat 49, box 1020, 3000, Leuven, Belgium
| |
Collapse
|
5
|
Gatica M, E. Rosas F, A. M. Mediano P, Diez I, P. Swinnen S, Orio P, Cofré R, M. Cortes J. High-order functional redundancy in ageing explained via alterations in the connectome in a whole-brain model. PLoS Comput Biol 2022; 18:e1010431. [PMID: 36054198 PMCID: PMC9477425 DOI: 10.1371/journal.pcbi.1010431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The human brain generates a rich repertoire of spatio-temporal activity patterns, which support a wide variety of motor and cognitive functions. These patterns of activity change with age in a multi-factorial manner. One of these factors is the variations in the brain's connectomics that occurs along the lifespan. However, the precise relationship between high-order functional interactions and connnectomics, as well as their variations with age are largely unknown, in part due to the absence of mechanistic models that can efficiently map brain connnectomics to functional connectivity in aging. To investigate this issue, we have built a neurobiologically-realistic whole-brain computational model using both anatomical and functional MRI data from 161 participants ranging from 10 to 80 years old. We show that the differences in high-order functional interactions between age groups can be largely explained by variations in the connectome. Based on this finding, we propose a simple neurodegeneration model that is representative of normal physiological aging. As such, when applied to connectomes of young participant it reproduces the age-variations that occur in the high-order structure of the functional data. Overall, these results begin to disentangle the mechanisms by which structural changes in the connectome lead to functional differences in the ageing brain. Our model can also serve as a starting point for modeling more complex forms of pathological ageing or cognitive deficits.
Collapse
Affiliation(s)
- Marilyn Gatica
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Biomedical Research Doctorate Program, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando E. Rosas
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, United Kingdom
- Data Science Institute, Imperial College London, London, United Kingdom
- Center for Complexity Science, Imperial College London, London, United Kingdom
- Department of Informatics, University of Sussex, Brighton, United Kingdom
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, Queen Mary University of London, London, United Kingdom
| | - Ibai Diez
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephan P. Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rodrigo Cofré
- CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
- Department of Integrative and Computational Neuroscience, Paris-Saclay Institute of Neuroscience, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Jesus M. Cortes
- Neuroimaging Lab, Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
- Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
6
|
Wang Z, Fontaine M, Cyr M, Rynn MA, Simpson HB, Marsh R, Pagliaccio D. Subcortical shape in pediatric and adult obsessive-compulsive disorder. Depress Anxiety 2022; 39:504-514. [PMID: 35485920 PMCID: PMC9813975 DOI: 10.1002/da.23261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) implicates alterations in cortico-striato-thalamo-cortical and fronto-limbic circuits. Building on prior structural findings, this is the largest study to date examining subcortical surface morphometry in OCD. METHODS Structural magnetic resonance imaging data were collected from 200 participants across development (5-55 years): 28 youth and 75 adults with OCD and 27 psychiatrically healthy youth and 70 adults. General linear models were used to assess group differences and group-by-age interactions on subcortical shape (FSL FIRST). RESULTS Compared to healthy participants, those with OCD exhibited surface expansions on the right nucleus accumbens and inward left amygdala deformations, which were associated with greater OCD symptom severity ([Children's] Yale-Brown Obsessive-Compulsive Scale). Group-by-age interactions indicated that accumbens group differences were driven by younger participants and that right pallidum shape was associated inversely with age in healthy participants, but not in participants with OCD. No differences in the shape of other subcortical regions or in volumes (FreeSurfer) were detected in supplementary analyses. CONCLUSIONS This study is the largest to date examining subcortical shape in OCD and the first to do so across the developmental spectrum. NAcc and amygdala shape deformation builds on extant neuroimaging findings and suggests subtle, subregional alterations beyond volumetric findings. Results shed light on morphometric alterations in OCD, informing current pathophysiological models.
Collapse
Affiliation(s)
- Zhishun Wang
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Martine Fontaine
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Marilyn Cyr
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Moira A. Rynn
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen Blair Simpson
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Marsh
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - David Pagliaccio
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
7
|
Network-specific differences in transient brain activity at rest are associated with age-related reductions in motor performance. Neuroimage 2022; 252:119025. [PMID: 35202812 DOI: 10.1016/j.neuroimage.2022.119025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 11/20/2022] Open
Abstract
Multiple functional changes occur in the brain with increasing age. Among those, older adults typically display more restricted fluctuations of brain activity, both during resting-state and task execution. These altered dynamic patterns have been linked to reduced task performance across multiple behavioral domains. Windowed functional connectivity, which is typically employed in the study of connectivity dynamics, however, might not be able to properly characterize moment-to-moment variations of individual networks. In the present study, we used innovation-driven co-activation patterns (ICAP) to overcome this limitation and investigate the length (duration) and frequency (innovation) in which various brain networks emerged across the adult lifespan (N= 92) during a resting-state period. We identified a link between increasing age and a tendency to engage brain areas with distinct functional associations simultaneously as a single network. The emergence of isolated and spatially well-defined visual, motor, frontoparietal, and posterior networks decreased with increased age. This reduction in dynamics of specialized networks mediated age-related performance decreases (i.e., increases in interlimb interference) in a bimanual motor task. Altogether, our findings demonstrated that older compared to younger adults tend to activate fewer network configurations, which include multiple functionally distinct brain areas. The reduction in independent emergence of functionally well-defined and task-relevant networks may reflect an expression of brain dedifferentiation and is likely associated with functional modulatory deficits, negatively impacting motor behavior.
Collapse
|
8
|
Samogin J, Rueda Delgado L, Taberna GA, Swinnen SP, Mantini D. Age-related differences of frequency-dependent functional connectivity in brain networks and their link to motor performance. Brain Connect 2022; 12:686-698. [DOI: 10.1089/brain.2021.0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jessica Samogin
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Laura Rueda Delgado
- Trinity College Institute of Neuroscience, 71434, Dublin, Ireland
- Cumulus Neuroscience, Ltd. , Dublin, Ireland
| | - Gaia Amaranta Taberna
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Stephan P. Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute , Leuven, Belgium
| | - Dante Mantini
- Leuven, Belgium
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
The role of glucocorticoid receptor gene in the association between attention deficit-hyperactivity disorder and smaller brain structures. J Neural Transm (Vienna) 2021; 128:1907-1916. [PMID: 34609638 DOI: 10.1007/s00702-021-02425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
ADHD is associated with smaller subcortical brain volumes and cortical surface area, with greater effects observed in children than adults. It is also associated with dysregulation of the HPA axis. Considering the effects of the glucocorticoid receptor (NR3C1) in neurophysiology, we hypothesize that the blurred relationships between brain structures and ADHD in adults could be partly explained by NR3C1 gene variation. Structural T1-weighted images were acquired on a 3 T scanner (N = 166). Large-scale genotyping was performed, and it was followed by quality control and pruning procedures, which resulted in 48 independent NR3C1 gene variants analyzed. After a stringent Bonferroni correction, two SNPs (rs2398631 and rs72801070) moderated the association between ADHD and accumbens and amygdala volumes in adults. The significant SNPs that interacted with ADHD appear to have a role in gene expression regulation, and they are in linkage disequilibrium with NR3C1 variants that present well-characterized physiological functions. The literature-reported associations of ADHD with accumbens and amygdala were only observed for specific NR3C1 genotypes. Our findings reinforce the influence of the NR3C1 gene on subcortical volumes and ADHD. They suggest a genetic modulation of the effects of a pivotal HPA axis component in the neuroanatomical features of ADHD.
Collapse
|
10
|
Seer C, Sidlauskaite J, Lange F, Rodríguez-Nieto G, Swinnen SP. Cognition and action: a latent variable approach to study contributions of executive functions to motor control in older adults. Aging (Albany NY) 2021; 13:15942-15963. [PMID: 34166223 PMCID: PMC8266336 DOI: 10.18632/aging.203239] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022]
Abstract
Aging is associated with profound alterations in motor control that may be exacerbated by age-related executive functioning decline. Executive functions span multiple facets including inhibition (suppressing unwanted response tendencies), shifting (switching between cognitive operations), and updating (managing working memory content). However, comprehensive studies regarding the contributions of single facets of executive functioning to movement control in older adults are still lacking. A battery of nine neuropsychological tasks was administered to n = 92 older adults in order to derive latent factors for inhibition, shifting, and updating by structural equation modeling. A bimanual task was used to assess complex motor control. A sample of n = 26 young adults served as a control group to verify age-related performance differences. In older adults, structural equation models revealed that performance on the most challenging condition of the complex motor task was best predicted by the updating factor and by general executive functioning performance. These data suggest a central role for working memory updating in complex motor performance and contribute to our understanding of how individual differences in executive functioning relate to movement control in older adults.
Collapse
Affiliation(s)
- Caroline Seer
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Flanders, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Flanders, Belgium
| | - Justina Sidlauskaite
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Flanders, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Flanders, Belgium
| | - Florian Lange
- Behavioral Engineering Research Group, KU Leuven, Flanders, Belgium
| | - Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Flanders, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Flanders, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Flanders, Belgium.,KU Leuven Brain Institute (LBI), KU Leuven, Flanders, Belgium
| |
Collapse
|
11
|
Prefronto-Striatal Structural Connectivity Mediates Adult Age Differences in Action Selection. J Neurosci 2020; 41:331-341. [PMID: 33214318 DOI: 10.1523/jneurosci.1709-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022] Open
Abstract
In complex everyday environments, action selection is critical for optimal goal-directed behavior. This refers to the process of choosing a proper action from the range of possible alternatives. The neural mechanisms underlying action selection and how these are affected by normal aging remain to be elucidated. In the present cross-sectional study, we studied processes of effector selection during a multilimb reaction time task in a lifespan sample of healthy human adults (N = 89; 20-75 years; 48 males, 41 females). Participants were instructed to react as quickly and accurately as possible to visually cued stimuli representing single-limb or combined upper and/or lower limb motions. Diffusion MRI was used to study structural connectivity between prefrontal and striatal regions as critical nodes for action selection. Behavioral findings revealed that increasing age was associated with slowing of action selection performance. At the neural level, aging had a negative impact on prefronto-striatal connectivity. Importantly, mediation analyses revealed that the negative association between action selection performance and age was mediated by prefronto-striatal connectivity, specifically the connections between left rostral medial frontal gyrus and left nucleus accumbens as well as right frontal pole and left caudate. These results highlight the potential role of prefronto-striatal white matter decline in poorer action selection performance of older adults.SIGNIFICANCE STATEMENT As a result of enhanced life expectancy, researchers have devoted increasing attention to the study of age-related alterations in cognitive and motor functions. Here we study associations between brain structure and behavior to reveal the impact of central neural white matter changes as a function of normal aging on action selection performance. We demonstrate the critical role of a reduction in prefronto-striatal structural connectivity in accounting for action selection performance deficits in healthy older adults. Preserving this cortico-subcortical pathway may be critical for behavioral flexibility and functional independence in older age.
Collapse
|
12
|
Spatiotemporal dissociation of fMRI activity in the caudate nucleus underlies human de novo motor skill learning. Proc Natl Acad Sci U S A 2020; 117:23886-23897. [PMID: 32900934 PMCID: PMC7519330 DOI: 10.1073/pnas.2003963117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Numerous real-world motor skills require learning arbitrary relationships between actions and their consequences from scratch. However, little is understood about the neural signatures of de novo motor learning and associated individual variability. In a longitudinal fMRI experiment, where participants learned to control a cursor by moving fingers, we found a gradual transition of performance-related activity from the head to tail of the caudate nucleus. This finding reflects the flexible and stable reward representations in the head and tail, respectively. Additionally, intrinsic cortico-caudate connectivity predicted better learners with weaker head–prefrontal and stronger tail–sensorimotor interactions. The present study provides unprecedented insight into de novo motor learning, which may contribute to the understanding of motor-related disorders, and infant learning. Motor skill learning involves a complex process of generating novel movement patterns guided by evaluative feedback, such as a reward. Previous literature has suggested anteroposteriorly separated circuits in the striatum to be implicated in early goal-directed and later automatic stages of motor skill learning, respectively. However, the involvement of these circuits has not been well elucidated in human de novomotor skill learning, which requires learning arbitrary action–outcome associations and value-based action selection. To investigate this issue, we conducted a human functional MRI (fMRI) experiment in which participants learned to control a computer cursor by manipulating their right fingers. We discovered a double dissociation of fMRI activity in the anterior and posterior caudate nucleus, which was associated with performance in the early and late learning stages. Moreover, cognitive and sensorimotor cortico-caudate interactions predicted individual learning performance. Our results suggest parallel cortico-caudate networks operating in different stages of human de novomotor skill learning.
Collapse
|
13
|
Monteiro TS, Zivari Adab H, Chalavi S, Gooijers J, King BBR, Cuypers K, Mantini D, Swinnen SP. Reduced Modulation of Task-Related Connectivity Mediates Age-Related Declines in Bimanual Performance. Cereb Cortex 2020; 30:4346-4360. [PMID: 32133505 DOI: 10.1093/cercor/bhaa021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aging is accompanied by marked changes in motor behavior and its neural correlates. At the behavioral level, age-related declines in motor performance manifest, for example, as a reduced capacity to inhibit interference between hands during bimanual movements, particularly when task complexity increases. At the neural level, aging is associated with reduced differentiation between distinct functional systems. Functional connectivity (FC) dedifferentiation is characterized by more homogeneous connectivity patterns across various tasks or task conditions, reflecting a reduced ability of the aging adult to modulate brain activity according to changing task demands. It is currently unknown, however, how whole-brain dedifferentiation interacts with increasing task complexity. In the present study, we investigated age- and task-related FC in a group of 96 human adults across a wide age range (19.9-74.5 years of age) during the performance of a bimanual coordination task of varying complexity. Our findings indicated stronger task complexity-related differentiation between visuomotor- and nonvisuomotor-related networks, though modulation capability decreased with increasing age. Decreased FC modulation mediated larger complexity-related increases in between-hand interference, reflective of worse bimanual coordination. Thus, the ability to maintain high motor performance levels in older adults is related to the capability to properly segregate and modulate functional networks.
Collapse
Affiliation(s)
- Thiago Santos Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Brad Bradley Ross King
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,REVAL Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dante Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan Patrick Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Zivari Adab H, Chalavi S, Monteiro TS, Gooijers J, Dhollander T, Mantini D, Swinnen SP. Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. Neuroimage 2020; 209:116530. [PMID: 31931154 DOI: 10.1016/j.neuroimage.2020.116530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related differences in bimanual motor performance have been extensively documented, but their underlying neural mechanisms remain less clear. Studies applying diffusion MRI in the aging population have revealed evidence for age-related white matter variations in the corpus callosum (CC) which are related to bimanual motor performance. However, the diffusion tensor model used in those studies is confounded by partial volume effects in voxels with complex fiber geometries which are present in up to 90% of white matter voxels, including the bilateral projections of the CC. A recently developed whole-brain analysis framework, known as fixel-based analysis (FBA), enables comprehensive statistical analyses of white matter quantitative measures in the presence of such complex fiber geometries. To investigate the contribution of age-related fiber-specific white matter variations to age-related differences in bimanual performance, a cross-sectional lifespan sample of healthy human adults (N = 95; 20-75 years of age) performed a bimanual tracking task. Furthermore, diffusion MRI data were acquired and the FBA metrics associated with fiber density, cross-section, and combined fiber density and cross-section were estimated. Whole-brain FBA revealed significant negative associations between age and fiber density, cross-section, and combined metrics of multiple white matter tracts, including the bilateral projections of the CC, indicative of white matter micro- and macrostructural degradation with age. More importantly, mediation analyses demonstrated that age-related variations in the combined (fiber density and cross-section) metric of the genu, but not splenium, of the CC contributed to the observed age-related differences in bimanual coordination performance. These findings highlight the contribution of variations in interhemispheric communication between prefrontal (non-motor) cortices to age-related differences in motor performance.
Collapse
Affiliation(s)
- Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thiago S Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Grealy MA, Cummings J, Quinn K. The Effect of False Positive Feedback on Learning an Inhibitory-Action Task in Older Adults. Exp Aging Res 2019; 45:346-356. [PMID: 31167604 DOI: 10.1080/0361073x.2019.1627494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background/Study Context: Older adults show a greater response to feedback whilst learning than younger adults. To date this has only been shown for receiving veridical feedback, but there is evidence that suggests that receiving false positive feedback may further enhance learning. We tested the hypothesis that receiving false positive feedback, being told you are preforming better than expected, would be more advantageous for older than younger adults when learning an inhibitory-action task. Methods: 42 younger and 34 older adults trained to improve their inhibition and response times on the Simon task. They completed 18 training blocks and a retention test two weeks after training. Participants received either false positive feedback or veridical feedback on their performance at the end of each training session and the start of the next session. Those in the false positive feedback group were told they were performing faster than expected. Results: Both older and younger adults improved their inhibition and response times but receiving false positive feedback did not significantly change their rate of learning on these outcomes. However, false positive feedback did impact on accuracy levels with those receiving this type of feedback making fewer errors. Older adults were slower but more accurate than younger adults, but contrary to our hypothesis they did not benefit more from false positive feedback than younger adults. Conclusion: This first direct comparison of the effects of false positive feedback on older and younger adults showed that the positive impact of false positive feedback does not decline with age. We also demonstrated that feedback given about one aspect of a skill (in this case speed) may in fact influence another aspect of the skill (in this case accuracy). This suggests that false positive feedback could be used as a motivational tool to enhance cognitive-motor learning in older adults, but care needs to be taken when using this, as the feedback may not affect the element of the skill at which it is targeted.
Collapse
Affiliation(s)
- Madeleine A Grealy
- a School of Psychological Sciences and Health , University of Strathclyde , Glasgow , UK
| | - Joanne Cummings
- a School of Psychological Sciences and Health , University of Strathclyde , Glasgow , UK
| | - Katie Quinn
- a School of Psychological Sciences and Health , University of Strathclyde , Glasgow , UK
| |
Collapse
|
16
|
Monteiro TS, King BR, Zivari Adab H, Mantini D, Swinnen SP. Age-related differences in network flexibility and segregation at rest and during motor performance. Neuroimage 2019; 194:93-104. [PMID: 30872046 DOI: 10.1016/j.neuroimage.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/27/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023] Open
Abstract
Brain networks undergo widespread changes in older age. A large body of knowledge gathered about those changes evidenced an increase of functional connectivity between brain networks. Previous work focused mainly on cortical networks during the resting state. Subcortical structures, however, are of critical importance during the performance of motor tasks. In this study, we investigated age-related changes in cortical, striatal and cerebellar functional connectivity at rest and its modulation by motor task execution. To that end, functional MRI from twenty-five young (mean age 21.5 years) and eighteen older adults (mean age 68.6 years) were analysed during rest and while performing a bimanual tracking task practiced over a two-week period. We found that inter-network connectivity among cortical structures was more positive in older adults both during rest and task performance. Functional connectivity within striatal structures decreased with age during rest and task execution. Network flexibility, the changes in network composition from rest to task, was also reduced in older adults, but only in networks with an age-related increase in connectivity. Finally, flexibility of areas in the prefrontal cortex were associated with lower error scores during task execution, especially in older adults. In conclusion, our findings indicate an age-related reduction in the ability to suppress irrelevant network communication, leading to less segregated and less flexible cortical networks. At the same time, striatal connectivity is impaired in older adults, while cerebellar connectivity shows heterogeneous age-related effects during rest and task execution. Future research is needed to clarify how cortical and subcortical connectivity changes relate to one another.
Collapse
Affiliation(s)
- T S Monteiro
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - B R King
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - H Zivari Adab
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| | - D Mantini
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Functional Imaging Laboratory, IRCCS San Camillo Hospital Foundation, Venice, Italy.
| | - S P Swinnen
- Research Center for Movement Control and Neuroplasticity, Department of Movement Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Belgium.
| |
Collapse
|
17
|
Babaeeghazvini P, Rueda-Delgado LM, Zivari Adab H, Gooijers J, Swinnen S, Daffertshofer A. A combined diffusion-weighted and electroencephalography study on age-related differences in connectivity in the motor network during bimanual performance. Hum Brain Mapp 2018; 40:1799-1813. [PMID: 30588749 DOI: 10.1002/hbm.24491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 01/02/2023] Open
Abstract
We studied the relationship between age-related differences in inter- and intra-hemispheric structural and functional connectivity in the bilateral motor network. Our focus was on the correlation between connectivity and declined motor performance in older adults. Structural and functional connectivity were estimated using diffusion weighted imaging and resting-state electro-encephalography, respectively. A total of 48 young and older healthy participants were measured. In addition, motor performances were assessed using bimanual coordination tasks. To pre-select regions-of-interest (ROIs), a neural model was adopted that accounts for intra-hemispheric functional connectivity between dorsal premotor area (PMd) and primary motor cortex (M1) and inter-hemispheric connections between left and right M1 (M1L and M1R ). Functional connectivity was determined via the weighted phase-lag index (wPLI) in the source-reconstructed beta activity during rest. We quantified structural connectivity using kurtosis anisotropy (KA) values of tracts derived from diffusion tensor-based fiber tractography between the aforementioned areas. In the group of older adults, wPLI values between M1L -M1R were negatively associated with the quality of bimanual motor performance. The additional association between wPLI values of PMdL --M1L and PMdR -M1L supports that functional connectivity with the left hemisphere mediated (bimanual) motor control in older adults. The correlational analysis between the selected structural and functional connections revealed a strong association between wPLI values in the left intra-hemispheric PMdL -M1L pathway and KA values in M1L -M1R and PMdR -M1L pathways in the group of older adults. This suggests that weaker structural connections in older adults correlate with stronger functional connectivity and, hence, poorer motor performance.
Collapse
Affiliation(s)
- Parinaz Babaeeghazvini
- Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Laura Milena Rueda-Delgado
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Hamed Zivari Adab
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| | - Stephan Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| | - Andreas Daffertshofer
- Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Bonifazi P, Erramuzpe A, Diez I, Gabilondo I, Boisgontier MP, Pauwels L, Stramaglia S, Swinnen SP, Cortes JM. Structure-function multi-scale connectomics reveals a major role of the fronto-striato-thalamic circuit in brain aging. Hum Brain Mapp 2018; 39:4663-4677. [PMID: 30004604 DOI: 10.1002/hbm.24312] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
Physiological aging affects brain structure and function impacting morphology, connectivity, and performance. However, whether some brain connectivity metrics might reflect the age of an individual is still unclear. Here, we collected brain images from healthy participants (N = 155) ranging from 10 to 80 years to build functional (resting state) and structural (tractography) connectivity matrices, both data sets combined to obtain different connectivity features. We then calculated the brain connectome age-an age estimator resulting from a multi-scale methodology applied to the structure-function connectome, and compared it to the chronological age (ChA). Our results were twofold. First, we found that aging widely affects the connectivity of multiple structures, such as anterior cingulate and medial prefrontal cortices, basal ganglia, thalamus, insula, cingulum, hippocampus, parahippocampus, occipital cortex, fusiform, precuneus, and temporal pole. Second, we found that the connectivity between basal ganglia and thalamus to frontal areas, also known as the fronto-striato-thalamic (FST) circuit, makes the major contribution to age estimation. In conclusion, our results highlight the key role played by the FST circuit in the process of healthy aging. Notably, the same methodology can be generally applied to identify the structural-functional connectivity patterns correlating to other biomarkers than ChA.
Collapse
Affiliation(s)
- Paolo Bonifazi
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | | | - Ibai Diez
- Biocruces Health Research Institute, Barakaldo, Spain
| | | | - Matthieu P Boisgontier
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Lisa Pauwels
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sebastiano Stramaglia
- Dipartimento Interateneo di Fisica, Universita di Bari, and INFN, Sezione di Bari, Italy
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jesus M Cortes
- Biocruces Health Research Institute, Barakaldo, Spain.,IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain.,Department of Cell Biology and Histology, University of the Basque Country, Leioa, Spain
| |
Collapse
|
19
|
Maes C, Hermans L, Pauwels L, Chalavi S, Leunissen I, Levin O, Cuypers K, Peeters R, Sunaert S, Mantini D, Puts NAJ, Edden RAE, Swinnen SP. Age-related differences in GABA levels are driven by bulk tissue changes. Hum Brain Mapp 2018; 39:3652-3662. [PMID: 29722142 DOI: 10.1002/hbm.24201] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/23/2018] [Accepted: 04/20/2018] [Indexed: 01/07/2023] Open
Abstract
Levels of GABA, the main inhibitory neurotransmitter in the brain, can be regionally quantified using magnetic resonance spectroscopy (MRS). Although GABA is crucial for efficient neuronal functioning, little is known about age-related differences in GABA levels and their relationship with age-related changes in brain structure. Here, we investigated the effect of age on GABA levels within the left sensorimotor cortex and the occipital cortex in a sample of 85 young and 85 older adults using the MEGA-PRESS sequence. Because the distribution of GABA varies across different brain tissues, various correction methods are available to account for this variation. Considering that these correction methods are highly dependent on the tissue composition of the voxel of interest, we examined differences in voxel composition between age groups and the impact of these various correction methods on the identification of age-related differences in GABA levels. Results indicated that, within both voxels of interest, older (as compared to young adults) exhibited smaller gray matter fraction accompanied by larger fraction of cerebrospinal fluid. Whereas uncorrected GABA levels were significantly lower in older as compared to young adults, this age effect was absent when GABA levels were corrected for voxel composition. These results suggest that age-related differences in GABA levels are at least partly driven by the age-related gray matter loss. However, as alterations in GABA levels might be region-specific, further research should clarify to what extent gray matter changes may account for age-related differences in GABA levels within other brain regions.
Collapse
Affiliation(s)
- Celine Maes
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Lize Hermans
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Lisa Pauwels
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sima Chalavi
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Inge Leunissen
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Oron Levin
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,REVAL Research Institute, Hasselt University, Agoralaan, Building A, Diepenbeek, B-3590, Belgium
| | - Ronald Peeters
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Gasthuisberg, UZ, Leuven, Belgium
| | - Stefan Sunaert
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.,Department of Radiology, University Hospitals Leuven, Gasthuisberg, UZ, Leuven, Belgium
| | - Dante Mantini
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Stephan P Swinnen
- Movement control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
20
|
Boisgontier MP, Cheval B, van Ruitenbeek P, Cuypers K, Leunissen I, Sunaert S, Meesen R, Zivari Adab H, Renaud O, Swinnen SP. Cerebellar gray matter explains bimanual coordination performance in children and older adults. Neurobiol Aging 2018; 65:109-120. [DOI: 10.1016/j.neurobiolaging.2018.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/12/2018] [Accepted: 01/21/2018] [Indexed: 02/02/2023]
|
21
|
Tang X, Chen N, Zhang S, Jones JA, Zhang B, Li J, Liu P, Liu H. Predicting auditory feedback control of speech production from subregional shape of subcortical structures. Hum Brain Mapp 2017; 39:459-471. [PMID: 29058356 DOI: 10.1002/hbm.23855] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 11/06/2022] Open
Abstract
Although a growing body of research has focused on the cortical sensorimotor mechanisms that support auditory feedback control of speech production, much less is known about the subcortical contributions to this control process. This study examined whether subregional anatomy of subcortical structures assessed by statistical shape analysis is associated with vocal compensations and cortical event-related potentials in response to pitch feedback errors. The results revealed significant negative correlations between the magnitudes of vocal compensations and subregional shape of the right thalamus, between the latencies of vocal compensations and subregional shape of the left caudate and pallidum, and between the latencies of cortical N1 responses and subregional shape of the left putamen. These associations indicate that smaller local volumes of the basal ganglia and thalamus are predictive of slower and larger neurobehavioral responses to vocal pitch errors. Furthermore, increased local volumes of the left hippocampus and right amygdala were predictive of larger vocal compensations, suggesting that there is an interplay between the memory-related subcortical structures and auditory-vocal integration. These results, for the first time, provide evidence for differential associations of subregional morphology of the basal ganglia, thalamus, hippocampus, and amygdala with neurobehavioral processing of vocal pitch errors, suggesting that subregional shape measures of subcortical structures can predict behavioral outcome of auditory-vocal integration and associated neural features. Hum Brain Mapp 39:459-471, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xiaoying Tang
- Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Shunde International Joint Research Institute, Shunde, 528300, China.,School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 15213, Pennsylvania
| | - Na Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Baofeng Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingyuan Li
- Sun Yat-sen University-Carnegie Melon University (SYSU-CMU) Joint Institute of Engineering, Sun Yat-sen University, Guangzhou, 510006, China.,Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 15213, Pennsylvania
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
22
|
Jang H, Lee JY, Lee KI, Park KM. Are there differences in brain morphology according to handedness? Brain Behav 2017; 7:e00730. [PMID: 28729936 PMCID: PMC5516604 DOI: 10.1002/brb3.730] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the differences in brain morphology according to handedness. MATERIALS AND METHODS Forty-two healthy subjects were enrolled (21 right-handers and 21 nonright-handers). The two groups were classified according to the Edinburgh Handedness Inventory. Measures of cortical morphology, such as thickness, surface area, volume, and curvature, and the volumes of subcortical structures, such as the amygdala, caudate, hippocampus, globus pallidus, putamen, and thalamus, were compared between the groups according to handedness using whole-brain 3D T1-weighted MRI. In addition, we investigated the white matter differences between the groups using diffusion tensor imaging. Moreover, we quantified correlations between the handedness scales of the Edinburgh Handedness Inventory and each measure of different brain morphologies. RESULTS The volumes of the right putamen and left globus pallidus in nonright-handed participants were significantly larger than those who were right-handed (0.3559 vs. 0.3155%, p = .0028; 0.1101 vs. 0.0975%, p = .0025; respectively). Moreover, the volumes of the right putamen and left globus pallidus were negatively correlated with the handedness scales of the Edinburgh Handedness Inventory (r = -.392, p = .0101; r = -.361, p = .0189; respectively). However, the cortex morphology and the other subcortical volumes were not significantly different between the two groups. In addition, we did not find any white matter differences between the groups. CONCLUSIONS We demonstrated that there were significant differences in brain morphology between right-handers and nonright-handers, especially in the basal ganglia, which could produce differences in motor control according to handedness.
Collapse
Affiliation(s)
- Han Jang
- Inje University College of Medicine Haeundae-gu Busan Korea
| | - Jae Youn Lee
- Inje University College of Medicine Haeundae-gu Busan Korea
| | - Kang Il Lee
- Inje University College of Medicine Haeundae-gu Busan Korea
| | - Kang Min Park
- Inje University College of Medicine Haeundae-gu Busan Korea
| |
Collapse
|