1
|
Milinski L, Nodal FR, Emmerson MKJ, King AJ, Vyazovskiy VV, Bajo VM. Cortical evoked activity is modulated by the sleep state in a ferret model of tinnitus. A cross-case study. PLoS One 2024; 19:e0304306. [PMID: 39630799 PMCID: PMC11616861 DOI: 10.1371/journal.pone.0304306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Subjective tinnitus is a phantom auditory perception in the absence of an actual acoustic stimulus that affects 15% of the global population. In humans, tinnitus is often associated with disturbed sleep and, interestingly, there is an overlap between the brain areas involved in tinnitus and regulation of NREM sleep. We used eight adult ferrets exposed to mild noise trauma as an animal model of tinnitus. We assessed the phantom percept using two operant paradigms sensitive to tinnitus, silent gap detection and silence detection, before and, in a subset of animals, up to six months after the mild acoustic trauma. The integrity of the auditory brainstem was assessed over the same period using auditory brainstem response recordings. Following noise overexposure, ferrets developed lasting, frequency-specific impairments in operant behaviour and evoked brainstem activity. To explore the interaction between sleep and tinnitus, in addition to tracking the behavioural markers of noise-induced tinnitus and hearing impairment after noise overexposure, we evaluated sleep-wake architecture and spontaneous and auditory-evoked EEG activity across vigilance states. Behavioural performance and auditory-evoked activity measurements after noise overexposure suggested distinct degrees of tinnitus and hearing impairment between individuals. Animals that developed signs of tinnitus consistently developed sleep impairments, suggesting a link between the emergence of noise-induced hearing loss and/or tinnitus and sleep disruption. However, neural markers of tinnitus were reduced during sleep, suggesting that sleep may transiently mitigate tinnitus. These results reveal the importance of sleep-wake states in tinnitus and suggest that understanding the neurophysiological link between sleep and tinnitus may provide a new angle for research into the causes of phantom percepts and inform future treatments.
Collapse
Affiliation(s)
- Linus Milinski
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Fernando R. Nodal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthew K. J. Emmerson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J. King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Vladyslav V. Vyazovskiy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Coenen A. Sensory gating and gaining in sleep: the balance between the protection of sleep and the safeness of life (a review). J Sleep Res 2024; 33:e14152. [PMID: 38286435 DOI: 10.1111/jsr.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep is a brain state characterised by a low vigilance level and diminished consciousness. Reaction to and processing of external stimuli is attenuated in sleep. During sleep, the reticular thalamic nucleus reduces the flow of sensory activity to the cerebral cortex through inhibition of the thalamus. This sensory gating process facilitates sleep. After reaching the afferent layers of primary cortex, the reduced sensory flow is adjusted, gained, and processed within various cortical layers before being transferred by the corticofugal system back to appropriate subdivisions of the thalamus as feedback. Thalamic subdivisions then dispatch this sensory information to related areas of the cerebral cortex, where it is (sub)consciously perceived. When necessary, a sleeping individual can be awakened by a wake-up call, either by stimuli indicating danger, or by personally meaningful stimuli. It is safe for a sleeping individual that it can be aroused when necessary. Evidently, there are two processes by which the brain adjusts the response to sensory stimuli before entering (sub)consciousness. Firstly 'sensory gating', a process favourable to the maintenance of sleep by reducing the sensory input to the brain through the reticular thalamic nucleus and secondly 'sensory gaining', a process implying that the gained preserved sensory input is continuously analysed by the corticofugal system to detect dangerous and relevant environmental elements, indispensable for safeness and well-being of the sleeper.
Collapse
Affiliation(s)
- Anton Coenen
- Department of Biological Psychology, Donders Centre for Cognition, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Schmidig FJ, Geva-Sagiv M, Falach R, Yakim S, Gat Y, Sharon O, Fried I, Nir Y. A visual paired associate learning (vPAL) paradigm to study memory consolidation during sleep. J Sleep Res 2024; 33:e14151. [PMID: 38286437 DOI: 10.1111/jsr.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/31/2024]
Abstract
Sleep improves the consolidation and long-term stability of newly formed memories and associations. Most research on human declarative memory and its consolidation during sleep uses word-pair associations requiring exhaustive learning. In the present study, we present the visual paired association learning (vPAL) paradigm, in which participants learn new associations between images of celebrities and animals. The vPAL is based on a one-shot exposure that resembles learning in natural conditions. We tested if vPAL can reveal a role for sleep in memory consolidation by assessing the specificity of memory recognition, and the cued recall performance, before and after sleep. We found that a daytime nap improved the stability of recognition memory and discrimination abilities compared to identical intervals of wakefulness. By contrast, cued recall of associations did not exhibit significant sleep-dependent effects. High-density electroencephalography during naps further revealed an association between sleep spindle density and stability of recognition memory. Thus, the vPAL paradigm opens new avenues for future research on sleep and memory consolidation across ages and heterogeneous populations in health and disease.
Collapse
Affiliation(s)
- Flavio Jean Schmidig
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Geva-Sagiv
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
| | - Rotem Falach
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sharon Yakim
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University, Jerusalem, Israel
| | - Yael Gat
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omer Sharon
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California, USA
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
4
|
Cicero NG, Klimova M, Lewis LD, Ling S. Differential cortical and subcortical visual processing with eyes shut. J Neurophysiol 2024; 132:54-60. [PMID: 38810261 PMCID: PMC11381112 DOI: 10.1152/jn.00073.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
Closing our eyes largely shuts down our ability to see. That said, our eyelids still pass some light, allowing our visual system to coarsely process information about visual scenes, such as changes in luminance. However, the specific impact of eye closure on processing within the early visual system remains largely unknown. To understand how visual processing is modulated when eyes are shut, we used functional magnetic resonance imaging (fMRI) to measure responses to a flickering visual stimulus at high (100%) and low (10%) temporal contrasts, while participants viewed the stimuli with their eyes open or closed. Interestingly, we discovered that eye closure produced a qualitatively distinct pattern of effects across the visual thalamus and visual cortex. We found that with eyes open, low temporal contrast stimuli produced smaller responses across the lateral geniculate nucleus (LGN), primary (V1) and extrastriate visual cortex (V2). However, with eyes closed, we discovered that the LGN and V1 maintained similar blood oxygenation level-dependent (BOLD) responses as the eyes open condition, despite the suppressed visual input through the eyelid. In contrast, V2 and V3 had strongly attenuated BOLD response when eyes were closed, regardless of temporal contrast. Our findings reveal a qualitatively distinct pattern of visual processing when the eyes are closed-one that is not simply an overall attenuation but rather reflects distinct responses across visual thalamocortical networks, wherein the earliest stages of processing preserve information about stimuli but are then gated off downstream in visual cortex.NEW & NOTEWORTHY When we close our eyes coarse luminance information is still accessible by the visual system. Using functional magnetic resonance imaging, we examined whether eyelid closure plays a unique role in visual processing. We discovered that while the LGN and V1 show equivalent responses when the eyes are open or closed, extrastriate cortex exhibited attenuated responses with eye closure. This suggests that when the eyes are closed, downstream visual processing is blind to this information.
Collapse
Affiliation(s)
- Nicholas G Cicero
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Michaela Klimova
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Sam Ling
- Graduate Program in Neuroscience, Boston University, Boston, Massachusetts, United States
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Sandoval Ortega RA, Renard M, Cohen MX, Nevian T. Interactive effects of pain and arousal state on heart rate and cortical activity in the mouse anterior cingulate and somatosensory cortices. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100157. [PMID: 38764613 PMCID: PMC11099324 DOI: 10.1016/j.ynpai.2024.100157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Sensory disconnection is a hallmark of sleep, yet the cortex retains some ability to process sensory information. Acute noxious stimulation during sleep increases the heart rate and the likelihood of awakening, indicating that certain mechanisms for pain sensing and processing remain active. However, processing of somatosensory information, including pain, during sleep remains underexplored. To assess somatosensation in natural sleep, we simultaneously recorded heart rate and local field potentials in the anterior cingulate (ACC) and somatosensory (S1) cortices of naïve, adult male mice, while applying noxious and non-noxious stimuli to their hind paws throughout their sleep-wake cycle. Noxious stimuli evoked stronger heart rate increases in both wake and non-rapid eye movement sleep (NREMS), and resulted in larger awakening probability in NREMS, as compared to non-noxious stimulation, suggesting differential processing of noxious and non-noxious information during sleep. Somatosensory information differentially reached S1 and ACC in sleep, eliciting complex transient and sustained responses in the delta, alpha, and gamma frequency bands as well as somatosensory evoked potentials. These dynamics depended on sleep state, the behavioral response to the stimulation and stimulation intensity (non-noxious vs. noxious). Furthermore, we found a correlation of the heart rate with the gamma band in S1 in the absence of a reaction in wake and sleep for noxious stimulation. These findings confirm that somatosensory information, including nociception, is sensed and processed during sleep even in the absence of a behavioral response.
Collapse
Affiliation(s)
| | - Margot Renard
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Michael X. Cohen
- Synchronization in Neural Systems Lab, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Lu J, Yan M, Wang Q, Li P, Jing Y, Gao D. A system based on machine learning for improving sleep. J Neurosci Methods 2023; 397:109936. [PMID: 37524247 DOI: 10.1016/j.jneumeth.2023.109936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Closed-loop auditory stimulation is one of the well-known and emerging sensory stimulation techniques, which achieves the purpose of sleep regulation by driving the EEG slow oscillation (SO, <1 Hz) through auditory stimulation. The main challenge is to accurately identify the stimulation timing and provide feedback in real-time, which has high requirements on the response time and recognition accuracy of the closed-loop auditory stimulation system. To reduce the impact of systematic errors on the regulation results, most traditional closed-loop auditory stimulation systems try to identify a single feature to determine the timing of stimulus delivery and reduce the system feedback delay by simplifying the calculation. Unlike existing closed-loop regulation systems that identify specific brain features, this paper proposes a closed-loop auditory stimulation sleep regulation system deploying machine learning. The process is: through online sleep real-time automatic staging, tracking the sleep stage to provide feedback quickly, and continuously offering external auditory stimulation at a specific SO phase. This paper uses this system to conduct sleep auditory stimulation regulation experiments on ten subjects. The experimental results show that the sleep closed-loop regulation system proposed in this paper can achieve consistency (effective for almost all subjects in the experiment) and immediate (taking effect immediately after stimulation) modulation effects on SOs. More importantly, the proposed method is superior to existing advanced methods. Therefore, the system designed in this paper has great potential to be more reliable and flexible in sleep regulation.
Collapse
Affiliation(s)
- Jiale Lu
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Mingjing Yan
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qinghua Wang
- Hubi Wuhan Public Security Bureau, No. 798, Wuluo Road, Wuhan City, Hubei 430070, China
| | - Pengrui Li
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yuan Jing
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China
| | - Dongrui Gao
- School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China; School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
7
|
Marmelshtein A, Eckerling A, Hadad B, Ben-Eliyahu S, Nir Y. Sleep-like changes in neural processing emerge during sleep deprivation in early auditory cortex. Curr Biol 2023; 33:2925-2940.e6. [PMID: 37385257 PMCID: PMC7617130 DOI: 10.1016/j.cub.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 03/30/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
Insufficient sleep is commonplace in modern lifestyle and can lead to grave outcomes, yet the changes in neuronal activity accumulating over hours of extended wakefulness remain poorly understood. Specifically, which aspects of cortical processing are affected by sleep deprivation (SD), and whether they also affect early sensory regions, remain unclear. Here, we recorded spiking activity in the rat auditory cortex along with polysomnography while presenting sounds during SD followed by recovery sleep. We found that frequency tuning, onset responses, and spontaneous firing rates were largely unaffected by SD. By contrast, SD decreased entrainment to rapid (≥20 Hz) click trains, increased population synchrony, and increased the prevalence of sleep-like stimulus-induced silent periods, even when ongoing activity was similar. Recovery NREM sleep was associated with similar effects as SD with even greater magnitude, while auditory processing during REM sleep was similar to vigilant wakefulness. Our results show that processes akin to those in NREM sleep invade the activity of cortical circuits during SD, even in the early sensory cortex.
Collapse
Affiliation(s)
- Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Anabel Eckerling
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hadad
- School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shamgar Ben-Eliyahu
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.
| |
Collapse
|
8
|
Bergman L, Krom AJ, Sela Y, Marmelshtein A, Hayat H, Regev N, Nir Y. Propofol anesthesia concentration rather than abrupt behavioral unresponsiveness linearly degrades responses in the rat primary auditory cortex. Cereb Cortex 2022; 32:5005-5019. [PMID: 35169834 DOI: 10.1093/cercor/bhab528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/27/2022] Open
Abstract
Despite extensive knowledge of its molecular and cellular effects, how anesthesia affects sensory processing remains poorly understood. In particular, it remains unclear whether anesthesia modestly or robustly degrades activity in primary sensory regions, and whether such changes are linked to anesthesia drug concentration versus behavioral unresponsiveness, which are typically confounded. Here, we used slow gradual intravenous propofol anesthesia induction together with auditory stimulation and intermittent assessment of behavioral responsiveness while recording epidural electroencephalogram, and neuronal spiking activity in primary auditory cortex (PAC) of eight rats. We found that all main components of neuronal activity including spontaneous firing rates, onset response magnitudes, onset response latencies, postonset neuronal silence duration, late-locking to 40 Hz click-trains, and offset responses, gradually changed in a dose-dependent manner with increasing anesthesia levels without showing abrupt shifts around loss of righting reflex or other time-points. Thus, the dominant factor affecting PAC responses is the anesthesia drug concentration rather than any sudden, dichotomous behavioral state changes. Our findings explain a wide array of seemingly conflicting results in the literature that, depending on the precise definition of wakefulness (vigilant vs. drowsy) and anesthesia (light vs. deep/surgical), report a spectrum of effects in primary regions ranging from minimal to dramatic differences.
Collapse
Affiliation(s)
- Lottem Bergman
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Aaron J Krom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.,Department of Anesthesiology and Critical Care Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
| | - Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noa Regev
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.,The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel.,Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Thankachan S, Yang C, Kastanenka KV, Bacskai BJ, Gerashchenko D. Low frequency visual stimulation enhances slow wave activity without disrupting the sleep pattern in mice. Sci Rep 2022; 12:12278. [PMID: 35853986 PMCID: PMC9296645 DOI: 10.1038/s41598-022-16478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Non-invasive stimulation technologies are emerging as potential treatment options for a range of neurodegenerative disorders. Experimental evidence suggests that stimuli-evoked changes in slow brain rhythms may mitigate or even prevent neuropathological and behavioral impairments. Slow wave activity is prevalent during sleep and can be triggered non-invasively by sensory stimulation targeting the visual system or directly via activation of neurons locally using optogenetics. Here, we developed new tools for delivering visual stimulation using light-emitting diodes in freely moving mice while awake and during sleep. We compared these tools to traditional optogenetic approaches used for local stimulation of neurons in the cerebral cortex. We then used these tools to compare the effects of low-frequency visual versus optogenetic stimulations on the slow wave activity and sleep pattern in mice. Visual stimulation effectively enhanced slow wave activity without disrupting the sleep pattern. Optogenetic stimulation of cortical GABAergic neurons increased NREM sleep. These results suggest that visual stimulation can be effective at boosting slow wave activity without having adverse effects on sleep and thus holds great potential as a non-invasive stimulation treatment strategy.
Collapse
Affiliation(s)
- Stephen Thankachan
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Chun Yang
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
10
|
Lee PL, Lee TM, Lee WK, Chu NN, Shelepin YE, Hsu HT, Chang HH. The Full Informational Spectral Analysis for Auditory Steady-State Responses in Human Brain Using the Combination of Canonical Correlation Analysis and Holo-Hilbert Spectral Analysis. J Clin Med 2022; 11:jcm11133868. [PMID: 35807153 PMCID: PMC9267805 DOI: 10.3390/jcm11133868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Auditory steady-state response (ASSR) is a translational biomarker for several neurological and psychiatric disorders, such as hearing loss, schizophrenia, bipolar disorder, autism, etc. The ASSR is sinusoidal electroencephalography (EEG)/magnetoencephalography (MEG) responses induced by periodically presented auditory stimuli. Traditional frequency analysis assumes ASSR is a stationary response, which can be analyzed using linear analysis approaches, such as Fourier analysis or Wavelet. However, recent studies have reported that the human steady-state responses are dynamic and can be modulated by the subject’s attention, wakefulness state, mental load, and mental fatigue. The amplitude modulations on the measured oscillatory responses can result in the spectral broadening or frequency splitting on the Fourier spectrum, owing to the trigonometric product-to-sum formula. Accordingly, in this study, we analyzed the human ASSR by the combination of canonical correlation analysis (CCA) and Holo-Hilbert spectral analysis (HHSA). The CCA was used to extract ASSR-related signal features, and the HHSA was used to decompose the extracted ASSR responses into amplitude modulation (AM) components and frequency modulation (FM) components, in which the FM frequency represents the fast-changing intra-mode frequency and the AM frequency represents the slow-changing inter-mode frequency. In this paper, we aimed to study the AM and FM spectra of ASSR responses in a 37 Hz steady-state auditory stimulation. Twenty-five healthy subjects were recruited for this study, and each subject was requested to participate in two auditory stimulation sessions, including one right-ear and one left-ear monaural steady-state auditory stimulation. With the HHSA, both the 37 Hz (fundamental frequency) and the 74 Hz (first harmonic frequency) auditory responses were successfully extracted. Examining the AM spectra, the 37 Hz and the 74 Hz auditory responses were modulated by distinct AM spectra, each with at least three composite frequencies. In contrast to the results of traditional Fourier spectra, frequency splitting was seen at 37 Hz, and a spectral peak was obscured at 74 Hz in Fourier spectra. The proposed method effectively corrects the frequency splitting problem resulting from time-varying amplitude changes. Our results have validated the HHSA as a useful tool for steady-state response (SSR) studies so that the misleading or wrong interpretation caused by amplitude modulation in the traditional Fourier spectrum can be avoided.
Collapse
Affiliation(s)
- Po-Lei Lee
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
- Correspondence: (P.-L.L.); (H.-H.C.)
| | - Te-Min Lee
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
| | - Wei-Keung Lee
- Department of Rehabilitation, Taoyuan General Hospital, Taoyuan 330, Taiwan;
| | | | - Yuri E. Shelepin
- The Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 St. Petersburg, Russia;
| | - Hao-Teng Hsu
- Department of Electrical Engineering, National Central University, Taoyuan 320, Taiwan; (T.-M.L.); (H.-T.H.)
| | - Hsiao-Huang Chang
- Division of Cardiovascular Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Surgery, School of Medicine, Taipei Medical University, Taipei 106, Taiwan
- Correspondence: (P.-L.L.); (H.-H.C.)
| |
Collapse
|
11
|
Hayat H, Marmelshtein A, Krom AJ, Sela Y, Tankus A, Strauss I, Fahoum F, Fried I, Nir Y. Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep. Nat Neurosci 2022; 25:935-943. [PMID: 35817847 PMCID: PMC9276533 DOI: 10.1038/s41593-022-01107-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
During sleep, sensory stimuli rarely trigger a behavioral response or conscious perception. However, it remains unclear whether sleep inhibits specific aspects of sensory processing, such as feedforward or feedback signaling. Here, we presented auditory stimuli (for example, click-trains, words, music) during wakefulness and sleep in patients with epilepsy, while recording neuronal spiking, microwire local field potentials, intracranial electroencephalogram and polysomnography. Auditory stimuli induced robust and selective spiking and high-gamma (80-200 Hz) power responses across the lateral temporal lobe during both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. Sleep only moderately attenuated response magnitudes, mainly affecting late responses beyond early auditory cortex and entrainment to rapid click-trains in NREM sleep. By contrast, auditory-induced alpha-beta (10-30 Hz) desynchronization (that is, decreased power), prevalent in wakefulness, was strongly reduced in sleep. Thus, extensive auditory responses persist during sleep whereas alpha-beta power decrease, likely reflecting neural feedback processes, is deficient. More broadly, our findings suggest that feedback signaling is key to conscious sensory processing.
Collapse
Affiliation(s)
- Hanna Hayat
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Aaron J Krom
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaniv Sela
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Tankus
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- EEG and Epilepsy Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA.
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.
- The Sieratzki-Sagol Center for Sleep Medicine, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.
| |
Collapse
|
12
|
Cui J, Huang Z, Wu J. Automatic Detection of the Cyclic Alternating Pattern of Sleep and Diagnosis of Sleep-Related Pathologies Based on Cardiopulmonary Resonance Indices. SENSORS (BASEL, SWITZERLAND) 2022; 22:2225. [PMID: 35336396 PMCID: PMC8952285 DOI: 10.3390/s22062225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 05/23/2023]
Abstract
The cyclic alternating pattern is the periodic electroencephalogram activity occurring during non-rapid eye movement sleep. It is a marker of sleep instability and is correlated with several sleep-related pathologies. Considering the connection between the human heart and brain, our study explores the feasibility of using cardiopulmonary features to automatically detect the cyclic alternating pattern of sleep and hence diagnose sleep-related pathologies. By statistically analyzing and comparing the cardiopulmonary characteristics of a healthy group and groups with sleep-related diseases, an automatic recognition scheme of the cyclic alternating pattern is proposed based on the cardiopulmonary resonance indices. Using the Hidden Markov and Random Forest, the scheme combines the variation and stability of measurements of the coupling state of the cardiopulmonary system during sleep. In this research, the F1 score of the sleep-wake classification reaches 92.0%. In terms of the cyclic alternating pattern, the average recognition rate of A-phase reaches 84.7% on the CAP Sleep Database of 108 cases of people. The F1 score of disease diagnosis is 87.8% for insomnia and 90.0% for narcolepsy.
Collapse
Affiliation(s)
- Jiajia Cui
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Zhipei Huang
- University of Chinese Academy of Sciences, Beijing 101408, China;
| | - Jiankang Wu
- CAS Institute of Healthcare Technologies, Nanjing 210046, China;
| |
Collapse
|
13
|
Schreck MR, Zhuang L, Janke E, Moberly AH, Bhattarai JP, Gottfried JA, Wesson DW, Ma M. State-dependent olfactory processing in freely behaving mice. Cell Rep 2022; 38:110450. [PMID: 35235805 PMCID: PMC8958632 DOI: 10.1016/j.celrep.2022.110450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/07/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022] Open
Abstract
Decreased responsiveness to sensory stimuli during sleep is presumably mediated via thalamic gating. Without an obligatory thalamic relay in the olfactory system, the anterior piriform cortex (APC) is suggested to be a gate in anesthetized states. However, olfactory processing in natural sleep states remains undetermined. Here, we simultaneously record local field potentials (LFPs) in hierarchical olfactory regions (olfactory bulb [OB], APC, and orbitofrontal cortex) while optogenetically activating olfactory sensory neurons, ensuring consistent peripheral inputs across states in behaving mice. Surprisingly, evoked LFPs in sleep states (both non-rapid eye movement [NREM] and rapid eye movement [REM]) are larger and contain greater gamma-band power and cross-region coherence (compared to wakefulness) throughout the olfactory pathway, suggesting the lack of a central gate. Single-unit recordings from the OB and APC reveal a higher percentage of responsive neurons during sleep with a higher incidence of suppressed firing. Additionally, nasal breathing is slower and shallower during sleep, suggesting a partial peripheral gating mechanism. Schreck et al. examine how the olfactory system responds to the same peripheral stimulus during natural sleep and wake in mice. Larger responses along the pathway during sleep suggest the lack of a central gate, but slower and shallower breathing may act as a partial peripheral gate to reduce olfactory input.
Collapse
Affiliation(s)
- Mary R Schreck
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Liujing Zhuang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Emma Janke
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew H Moberly
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janardhan P Bhattarai
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jay A Gottfried
- Department of Psychology, University of Pennsylvania, School of Arts and Sciences; Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
The Effect of Dynamic Lighting for Working Shift People on Clinical Heart Rate Variability and Human Slow Wave Sleep. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The quality of sleep during lunch breaks will affect the work efficiency, concentration, and mood of workers, and then increase the performance of workers. In this study, Dynamic CCT lighting is proposed as a method to control sleep quality, and a novel hypnotic lighting system is developed according to the experimental design. Pulse width modulation(PWM) is used for controlling sleep lights and adjusting and controlling the spectrum intensity of polychromatic LED to realize the color mixing, which conforms to CCT, illumination, uniformity, and other parameters in the experimental design. The control group of this study is in a dark room, and the experimental group is given dim light and Dynamic CCT lighting. Through volunteer psychological questionnaire evaluation, objective Sleep Wrist Actigraphy and Heart Rate Variability (HRV) are used analyzing sleep quality and Autonomic Nervous System (ANS). The result is found that the sleep environment with Dynamic CCT lighting is better than that with Dim light in three kinds of sleep lighting environments, while the sleep environment of Dynamic CCT lighting is very similar to that of a dark room. In terms of work efficiency after sleep, Dynamic CCT used in the sleep environment of lighting and Dim light is significantly better than that in a dark room.
Collapse
|
15
|
Sifuentes-Ortega R, Lenc T, Nozaradan S, Peigneux P. Partially Preserved Processing of Musical Rhythms in REM but Not in NREM Sleep. Cereb Cortex 2021; 32:1508-1519. [PMID: 34491309 DOI: 10.1093/cercor/bhab303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The extent of high-level perceptual processing during sleep remains controversial. In wakefulness, perception of periodicities supports the emergence of high-order representations such as the pulse-like meter perceived while listening to music. Electroencephalography (EEG) frequency-tagged responses elicited at envelope frequencies of musical rhythms have been shown to provide a neural representation of rhythm processing. Specifically, responses at frequencies corresponding to the perceived meter are enhanced over responses at meter-unrelated frequencies. This selective enhancement must rely on higher-level perceptual processes, as it occurs even in irregular (i.e., syncopated) rhythms where meter frequencies are not prominent input features, thus ruling out acoustic confounds. We recorded EEG while presenting a regular (unsyncopated) and an irregular (syncopated) rhythm across sleep stages and wakefulness. Our results show that frequency-tagged responses at meter-related frequencies of the rhythms were selectively enhanced during wakefulness but attenuated across sleep states. Most importantly, this selective attenuation occurred even in response to the irregular rhythm, where meter-related frequencies were not prominent in the stimulus, thus suggesting that neural processes selectively enhancing meter-related frequencies during wakefulness are weakened during rapid eye movement (REM) and further suppressed in non-rapid eye movement (NREM) sleep. These results indicate preserved processing of low-level acoustic properties but limited higher-order processing of auditory rhythms during sleep.
Collapse
Affiliation(s)
- Rebeca Sifuentes-Ortega
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition & Neurosciences, and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Tomas Lenc
- Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sylvie Nozaradan
- Institute of Neuroscience (IONS), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Philippe Peigneux
- UR2NF - Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition & Neurosciences, and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
16
|
Turco F, Giorgi FS, Maestri M, Morganti R, Benedetto A, Milano C, Pizzanelli C, Menicucci D, Gemignani A, Fornai F, Siciliano G, Bonanni E. Prolonged and short epileptiform discharges have an opposite relationship with the sleep-wake cycle in patients with JME: Implications for EEG recording protocols. Epilepsy Behav 2021; 122:108226. [PMID: 34352666 DOI: 10.1016/j.yebeh.2021.108226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
In a recent study, we found that during 20.55 ± 1.60 h of artifact-free ambulatory EEG recordings, epileptiform discharges (EDs) longer than 2.68 s occurred exclusively in patients with Juvenile Myoclonic Epilepsy (JME) who experienced seizure recurrence within a year after the EEG. Here we expanded this analysis, exploring whether long EDs (>2.68 s), and short ones, were uniformly distributed during the day. Lastly, we evaluated the temporal distribution of seizure relapses. By Friedman test, we demonstrated that hourly frequencies of both short and long EDs were dependent on the hours of day and sleep-wake cycle factors, with an opposite trend. Short EDs were found mostly during the night (with two peaks at 1 AM and 6 AM), and sleep, dropping at the wake onset (p < 0.001). Conversely, long EDs surged at the wake onset (0.001), remaining frequent during the whole wake period, when compared to sleep (p = 0.002). Of note, this latter pattern mirrored that of seizures, which occurred exclusively during the wake period, and in 9 out of 13 cases at the wake onset. We therefore suggested that short and long EDs could reflect distinct pathophysiological phenomena. Extended wake EEG recordings, possibly including the awakening, could be extremely useful in clinical practice, as well as in further studies, with the ambitious goal of predicting seizure recurrences.
Collapse
Affiliation(s)
- Francesco Turco
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - Filippo Sean Giorgi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Michelangelo Maestri
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | | | - Alessandro Benedetto
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Chiara Milano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Chiara Pizzanelli
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Italy
| | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Enrica Bonanni
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy; Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Zilio F, Gomez-Pilar J, Cao S, Zhang J, Zang D, Qi Z, Tan J, Hiromi T, Wu X, Fogel S, Huang Z, Hohmann MR, Fomina T, Synofzik M, Grosse-Wentrup M, Owen AM, Northoff G. Are intrinsic neural timescales related to sensory processing? Evidence from abnormal behavioral states. Neuroimage 2020; 226:117579. [PMID: 33221441 DOI: 10.1016/j.neuroimage.2020.117579] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The brain exhibits a complex temporal structure which translates into a hierarchy of distinct neural timescales. An open question is how these intrinsic timescales are related to sensory or motor information processing and whether these dynamics have common patterns in different behavioral states. We address these questions by investigating the brain's intrinsic timescales in healthy controls, motor (amyotrophic lateral sclerosis, locked-in syndrome), sensory (anesthesia, unresponsive wakefulness syndrome), and progressive reduction of sensory processing (from awake states over N1, N2, N3). We employed a combination of measures from EEG resting-state data: auto-correlation window (ACW), power spectral density (PSD), and power-law exponent (PLE). Prolonged neural timescales accompanied by a shift towards slower frequencies were observed in the conditions with sensory deficits, but not in conditions with motor deficits. Our results establish that the spontaneous activity's intrinsic neural timescale is related to the neural capacity that specifically supports sensory rather than motor information processing in the healthy brain.
Collapse
Affiliation(s)
- Federico Zilio
- Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy.
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Shumei Cao
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Zang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiaxing Tan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Tanigawa Hiromi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuehai Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Stuart Fogel
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Zirui Huang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Matthias R Hohmann
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Tatiana Fomina
- Department for Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, University of Vienna, Austria
| | - Adrian M Owen
- The Brain and Mind Institute, Department of Physiology and Pharmacology and the Department of Psychology, University of Western Ontario, Canada
| | - Georg Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada
| |
Collapse
|
18
|
Andrillon T, Kouider S. The vigilant sleeper: neural mechanisms of sensory (de)coupling during sleep. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Krom AJ, Marmelshtein A, Gelbard-Sagiv H, Tankus A, Hayat H, Hayat D, Matot I, Strauss I, Fahoum F, Soehle M, Boström J, Mormann F, Fried I, Nir Y. Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex. Proc Natl Acad Sci U S A 2020; 117:11770-11780. [PMID: 32398367 PMCID: PMC7261054 DOI: 10.1073/pnas.1917251117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite its ubiquitous use in medicine, and extensive knowledge of its molecular and cellular effects, how anesthesia induces loss of consciousness (LOC) and affects sensory processing remains poorly understood. Specifically, it is unclear whether anesthesia primarily disrupts thalamocortical relay or intercortical signaling. Here we recorded intracranial electroencephalogram (iEEG), local field potentials (LFPs), and single-unit activity in patients during wakefulness and light anesthesia. Propofol infusion was gradually increased while auditory stimuli were presented and patients responded to a target stimulus until they became unresponsive. We found widespread iEEG responses in association cortices during wakefulness, which were attenuated and restricted to auditory regions upon LOC. Neuronal spiking and LFP responses in primary auditory cortex (PAC) persisted after LOC, while responses in higher-order auditory regions were variable, with neuronal spiking largely attenuated. Gamma power induced by word stimuli increased after LOC while its frequency profile slowed, thus differing from local spiking activity. In summary, anesthesia-induced LOC disrupts auditory processing in association cortices while relatively sparing responses in PAC, opening new avenues for future research into mechanisms of LOC and the design of anesthetic monitoring devices.
Collapse
Affiliation(s)
- Aaron J Krom
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Anesthesiology and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Hadassah School of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Amit Marmelshtein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hagar Gelbard-Sagiv
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Tankus
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hanna Hayat
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daniel Hayat
- Department of Anesthesia, Intensive Care and Pain, Tel Aviv Medical Center, Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Idit Matot
- Department of Anesthesia, Intensive Care and Pain, Tel Aviv Medical Center, Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ido Strauss
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Firas Fahoum
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- EEG and Epilepsy Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Martin Soehle
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Itzhak Fried
- Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel;
- Department of Neurology & Neurosurgery, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Neurosurgery, University of California, Los Angeles, CA 90095
| | - Yuval Nir
- Department of Physiology & Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
20
|
A Systematic Review of Closed-Loop Feedback Techniques in Sleep Studies-Related Issues and Future Directions. SENSORS 2020; 20:s20102770. [PMID: 32414060 PMCID: PMC7285770 DOI: 10.3390/s20102770] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 05/10/2020] [Indexed: 01/09/2023]
Abstract
Advances in computer processing technology have enabled researchers to analyze real-time brain activity and build real-time closed-loop paradigms. In many fields, the effectiveness of these closed-loop protocols has proven to be better than that of the simple open-loop paradigms. Recently, sleep studies have attracted much attention as one possible application of closed-loop paradigms. To date, several studies that used closed-loop paradigms have been reported in the sleep-related literature and recommend a closed-loop feedback system to enhance specific brain activity during sleep, which leads to improvements in sleep's effects, such as memory consolidation. However, to the best of our knowledge, no report has reviewed and discussed the detailed technical issues that arise in designing sleep closed-loop paradigms. In this paper, we reviewed the most recent reports on sleep closed-loop paradigms and offered an in-depth discussion of some of their technical issues. We found 148 journal articles strongly related with 'sleep and stimulation' and reviewed 20 articles on closed-loop feedback sleep studies. We focused on human sleep studies conducting any modality of feedback stimulation. Then we introduced the main component of the closed-loop system and summarized several open-source libraries, which are widely used in closed-loop systems, with step-by-step guidelines for closed-loop system implementation for sleep. Further, we proposed future directions for sleep research with closed-loop feedback systems, which provide some insight into closed-loop feedback systems.
Collapse
|
21
|
Ko LW, Chang Y, Wu PL, Tzou HA, Chen SF, Tang SC, Yeh CL, Chen YJ. Development of a Smart Helmet for Strategical BCI Applications. SENSORS 2019; 19:s19081867. [PMID: 31010105 PMCID: PMC6515117 DOI: 10.3390/s19081867] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/15/2019] [Indexed: 11/16/2022]
Abstract
Conducting electrophysiological measurements from human brain function provides a medium for sending commands and messages to the external world, as known as a brain-computer interface (BCI). In this study, we proposed a smart helmet which integrated the novel hygroscopic sponge electrodes and a combat helmet for BCI applications; with the smart helmet, soldiers can carry out extra tasks according to their intentions, i.e., through BCI techniques. There are several existing BCI methods which are distinct from each other; however, mutual issues exist regarding comfort and user acceptability when utilizing such BCI techniques in practical applications; one of the main challenges is the trade-off between using wet and dry electroencephalographic (EEG) electrodes. Recently, several dry EEG electrodes without the necessity of conductive gel have been developed for EEG data collection. Although the gel was claimed to be unnecessary, high contact impedance and low signal-to-noise ratio of dry EEG electrodes have turned out to be the main limitations. In this study, a smart helmet with novel hygroscopic sponge electrodes is developed and investigated for long-term usage of EEG data collection. The existing electrodes and EEG equipment regarding BCI applications were adopted to examine the proposed electrode. In the impedance test of a variety of electrodes, the sponge electrode showed performance averaging 118 kΩ, which was comparable with the best one among existing dry electrodes, which averaged 123 kΩ. The signals acquired from the sponge electrodes and the classic wet electrodes were analyzed with correlation analysis to study the effectiveness. The results indicated that the signals were similar to each other with an average correlation of 90.03% and 82.56% in two-second and ten-second temporal resolutions, respectively, and 97.18% in frequency responses. Furthermore, by applying the proposed differentiable power algorithm to the system, the average accuracy of 21 subjects can reach 91.11% in the steady-state visually evoked potential (SSVEP)-based BCI application regarding a simulated military mission. To sum up, the smart helmet is capable of assisting the soldiers to execute instructions with SSVEP-based BCI when their hands are not available and is a reliable piece of equipment for strategical applications.
Collapse
Affiliation(s)
- Li-Wei Ko
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan.
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Yang Chang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Pei-Lun Wu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan.
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Heng-An Tzou
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan.
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Sheng-Fu Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan.
| | - Shih-Chien Tang
- Information and Communications Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan.
| | - Chia-Lung Yeh
- Information and Communications Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan.
| | - Yun-Ju Chen
- Information and Communications Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan.
| |
Collapse
|
22
|
Evoked Alpha Power is Reduced in Disconnected Consciousness During Sleep and Anesthesia. Sci Rep 2018; 8:16664. [PMID: 30413741 PMCID: PMC6226534 DOI: 10.1038/s41598-018-34957-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Sleep and anesthesia entail alterations in conscious experience. Conscious experience may be absent (unconsciousness) or take the form of dreaming, a state in which sensory stimuli are not incorporated into conscious experience (disconnected consciousness). Recent work has identified features of cortical activity that distinguish conscious from unconscious states; however, less is known about how cortical activity differs between disconnected states and normal wakefulness. We employed transcranial magnetic stimulation–electroencephalography (TMS–EEG) over parietal regions across states of anesthesia and sleep to assess whether evoked oscillatory activity differed in disconnected states. We hypothesized that alpha activity, which may regulate perception of sensory stimuli, is altered in the disconnected states of rapid eye movement (REM) sleep and ketamine anesthesia. Compared to wakefulness, evoked alpha power (8–12 Hz) was decreased during disconnected consciousness. In contrast, in unconscious states of propofol anesthesia and non-REM (NREM) sleep, evoked low-gamma power (30–40 Hz) was decreased compared to wakefulness or states of disconnected consciousness. These findings were confirmed in subjects in which dream reports were obtained following serial awakenings from NREM sleep. By examining signatures of evoked cortical activity across conscious states, we identified novel evidence that suppression of evoked alpha activity may represent a promising marker of sensory disconnection.
Collapse
|
23
|
Zhang S, Han X, Chen X, Wang Y, Gao S, Gao X. A study on dynamic model of steady-state visual evoked potentials. J Neural Eng 2018; 15:046010. [DOI: 10.1088/1741-2552/aabb82] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Guo D, Guo F, Zhang Y, Li F, Xia Y, Xu P, Yao D. Periodic Visual Stimulation Induces Resting-State Brain Network Reconfiguration. Front Comput Neurosci 2018; 12:21. [PMID: 29643772 PMCID: PMC5883080 DOI: 10.3389/fncom.2018.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Periodic visual stimulation can evoke the steady-state visual potential (SSVEP) in the brain. Owing to its superior characteristics, the SSVEP has been widely used in neural engineering and cognitive neuroscience studies. However, the underlying mechanisms of the SSVEP are not well understood. In this study, we introduced a brain reconfiguration methodology to explore the possible mechanisms of the SSVEP. The EEG data from five periodic stimuli consistently indicated that the periodic visual stimulation could induce resting-state brain network reconfiguration and that the responses evoked by the stimuli were correlated to the network reconfiguration indexes. For each stimulus frequency, larger response amplitudes corresponded to higher reconfiguration indexes from the resting-state network to a stimulus-evoked network. These findings demonstrate that an external periodic visual stimulation can induce the modification of intrinsic oscillatory activities by reconfiguring resting-state activity at a network level, which could facilitate the responses evoked by the stimulus. These findings provide new insights into the response mechanisms of periodic visual stimulation.
Collapse
Affiliation(s)
- Daqing Guo
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengru Guo
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangsong Zhang
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, China
| | - Fali Li
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Xia
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Xu
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Yüzgeç Ö, Prsa M, Zimmermann R, Huber D. Pupil Size Coupling to Cortical States Protects the Stability of Deep Sleep via Parasympathetic Modulation. Curr Biol 2018; 28:392-400.e3. [PMID: 29358069 PMCID: PMC5807087 DOI: 10.1016/j.cub.2017.12.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022]
Abstract
During wakefulness, pupil diameter can reflect changes in attention, vigilance, and cortical states. How pupil size relates to cortical activity during sleep, however, remains unknown. Pupillometry during natural sleep is inherently challenging since the eyelids are usually closed. Here, we present a novel head-fixed sleep paradigm in combination with infrared back-illumination pupillometry (iBip) allowing robust tracking of pupil diameter in sleeping mice. We found that pupil size can be used as a reliable indicator of sleep states and that cortical activity becomes tightly coupled to pupil size fluctuations during non-rapid eye movement (NREM) sleep. Pharmacological blocking experiments indicate that the observed pupil size changes during sleep are mediated via the parasympathetic system. We furthermore found that constrictions of the pupil during NREM episodes might play a protective role for stability of sleep depth. These findings reveal a fundamental relationship between cortical activity and pupil size, which has so far been hidden behind closed eyelids. Infrared back-illumination allows accurate pupillometry in sleeping mice Brain activity and pupil diameter are tightly coupled during sleep The parasympathetic system is the main driver of pupillary changes during NREM sleep Pupillary constrictions might have a protective function to stabilize deep sleep
Collapse
Affiliation(s)
- Özge Yüzgeç
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Robert Zimmermann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|