1
|
Abstract
The human brain possesses neural networks and mechanisms enabling the representation of numbers, basic arithmetic operations, and mathematical reasoning. Without the ability to represent numerical quantity and perform calculations, our scientifically and technically advanced culture would not exist. However, the origins of numerical abilities are grounded in an intuitive understanding of quantity deeply rooted in biology. Nevertheless, more advanced symbolic arithmetic skills require a cultural background with formal mathematical education. In the past two decades, cognitive neuroscience has seen significant progress in understanding the workings of the calculating brain through various methods and model systems. This review begins by exploring the mental and neuronal representations of nonsymbolic numerical quantity and then progresses to symbolic representations acquired in childhood. During arithmetic operations (addition, subtraction, multiplication, and division), these representations are processed and transformed according to arithmetic rules and principles, leveraging different mental strategies and types of arithmetic knowledge that can be dissociated in the brain. Although it was once believed that number processing and calculation originated from the language faculty, it is now evident that mathematical and linguistic abilities are primarily processed independently in the brain. Understanding how the healthy brain processes numerical information is crucial for gaining insights into debilitating numerical disorders, including acquired conditions like acalculia and learning-related calculation disorders such as developmental dyscalculia.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Prado J, Knops A. Spatial attention in mental arithmetic: A literature review and meta-analysis. Psychon Bull Rev 2024; 31:2036-2057. [PMID: 38565841 DOI: 10.3758/s13423-024-02499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
We review the evidence for the conceptual association between arithmetic and space and quantify the effect size in meta-analyses. We focus on three effects: (a) the operational momentum effect (OME), which has been defined as participants' tendency to overestimate results of addition problems and underestimate results of subtraction problems; (b) the arithmetic cueing effect, in which arithmetic problems serve as spatial cues in target detection or temporal order judgment tasks; and (c) the associations between arithmetic and space observed with eye- and hand-tracking studies. The OME was consistently found in paradigms that provided the participants with numerical response alternatives. The OME shows a large effect size, driven by an underestimation during subtraction while addition was unbiased. In contrast, paradigms in which participants indicated their estimate by transcoding their final estimate to a spatial reference frame revealed no consistent OME. Arithmetic cueing studies show a reliable small to medium effect size, driven by a rightward bias for addition. Finally, eye- and hand-tracking studies point to replicable associations between arithmetic and eye or hand movements. To account for the complexity of the observed pattern, we introduce the Adaptive Pathways in Mental Arithmetic (APiMA) framework. The model accommodates central notions of numerical and arithmetic processing and helps identifying which pathway a given paradigm operates on. It proposes that the divergence between OME and arithmetic cueing studies comes from the predominant use of non-symbolic versus symbolic stimuli, respectively. Overall, our review and findings clearly support an association between arithmetic and spatial processing.
Collapse
Affiliation(s)
- Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, Lyon, France
| | - André Knops
- Université Paris Cité, LaPsyDÉ, CNRS, F-75005, Paris, France.
| |
Collapse
|
3
|
Díaz-Barriga Yáñez A, Longo L, Chesnokova H, Poletti C, Thevenot C, Prado J. Neural evidence for procedural automatization during cognitive development: Intraparietal response to changes in very-small addition problem-size increases with age. Dev Cogn Neurosci 2023; 64:101310. [PMID: 37806070 PMCID: PMC10570710 DOI: 10.1016/j.dcn.2023.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
Cognitive development is often thought to depend on qualitative changes in problem-solving strategies, with early developing algorithmic procedures (e.g., counting when adding numbers) considered being replaced by retrieval of associations (e.g., between operands and answers of addition problems) in adults. However, algorithmic procedures might also become automatized with practice. In a large cross-sectional fMRI study from age 8 to adulthood (n = 128), we evaluate this hypothesis by measuring neural changes associated with age-related reductions in a behavioral hallmark of mental addition, the problem-size effect (an increase in solving time as problem sum increases). We found that age-related decreases in problem-size effect were paralleled by age-related increases of activity in a region of the intraparietal sulcus that already supported the problem-size effect in 8- to 9-year-olds, at an age the effect is at least partly due to explicit counting. This developmental effect, which was also observed in the basal ganglia and prefrontal cortex, was restricted to problems with operands ≤ 4. These findings are consistent with a model positing that very-small arithmetic problems-and not larger problems-might rely on an automatization of counting procedures rather than a shift towards retrieval, and suggest a neural automatization of procedural knowledge during cognitive development.
Collapse
Affiliation(s)
- Andrea Díaz-Barriga Yáñez
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Léa Longo
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Hanna Chesnokova
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France
| | - Céline Poletti
- Institut de Psychologie, Université de Lausanne, Switzerland
| | | | - Jérôme Prado
- Centre de Recherche en Neurosciences de Lyon (CRNL), INSERM U1028 - CNRS UMR5292, Université de Lyon, France.
| |
Collapse
|
4
|
Pinheiro-Chagas P, Sava-Segal C, Akkol S, Daitch A, Parvizi J. Spatiotemporal dynamics of successive activations across the human brain during simple arithmetic processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568334. [PMID: 38045319 PMCID: PMC10690273 DOI: 10.1101/2023.11.22.568334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Previous neuroimaging studies have offered unique insights about the spatial organization of activations and deactivations across the brain, however these were not powered to explore the exact timing of events at the subsecond scale combined with precise anatomical source information at the level of individual brains. As a result, we know little about the order of engagement across different brain regions during a given cognitive task. Using experimental arithmetic tasks as a prototype for human-unique symbolic processing, we recorded directly across 10,076 brain sites in 85 human subjects (52% female) using intracranial electroencephalography (iEEG). Our data revealed a remarkably distributed change of activity in almost half of the sampled sites. Notably, an orderly successive activation of a set of brain regions - anatomically consistent across subjects-was observed in individual brains. Furthermore, the temporal order of activations across these sites was replicable across subjects and trials. Moreover, the degree of functional connectivity between the sites decreased as a function of temporal distance between regions, suggesting that information is partially leaked or transformed along the processing chain. Furthermore, in each activated region, distinct neuronal populations with opposite activity patterns during target and control conditions were juxtaposed in an anatomically orderly manner. Our study complements the prior imaging studies by providing hitherto unknown information about the timing of events in the brain during arithmetic processing. Such findings can be a basis for developing mechanistic computational models of human-specific cognitive symbolic systems. Significance statement Our study elucidates the spatiotemporal dynamics and anatomical specificity of brain activations across >10,000 sites during arithmetic tasks, as captured by intracranial EEG. We discovered an orderly, successive activation of brain regions, consistent across individuals, and a decrease in functional connectivity as a function of temporal distance between regions. Our findings provide unprecedented insights into the sequence of cognitive processing and regional interactions, offering a novel perspective for enhancing computational models of cognitive symbolic systems.
Collapse
|
5
|
Poletti C, Díaz-Barriga Yáñez A, Prado J, Thevenot C. The development of simple addition problem solving in children: Reliance on automatized counting or memory retrieval depends on both expertise and problem size. J Exp Child Psychol 2023; 234:105710. [PMID: 37285761 DOI: 10.1016/j.jecp.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/05/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023]
Abstract
In an experiment, 98 children aged 8 to 9, 10 to 12, and 13 to 15 years solved addition problems with a sum up to 10. In another experiment, the same children solved the same calculations within a sign priming paradigm where half the additions were displayed with the "+" sign 150 ms before the addends. Therefore, size effects and priming effects could be considered conjointly within the same populations. Our analyses revealed that small problems, constructed with addends from 1 to 4, presented a linear increase of solution times as a function of problem sums (i.e., size effect) in all age groups. However, an operator priming effect (i.e., facilitation of the solving process with the anticipated presentation of the "+" sign) was observed only in the group of oldest children. These results support the idea that children use a counting procedure that becomes automatized (as revealed by the priming effect) around 13 years of age. For larger problems and whatever the age group, no size or priming effects were observed, suggesting that the answers to these problems were already retrieved from memory at 8 to 9 years of age. For this specific category of large problems, negative slopes in solution times demonstrate that retrieval starts from the largest problems during development. These results are discussed in light of a horse race model in which procedures can win over retrieval.
Collapse
Affiliation(s)
- Céline Poletti
- Institut de Psychologie, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andrea Díaz-Barriga Yáñez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69675 Bron Cedex, France
| | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028-CNRS UMR5292, University of Lyon, 69675 Bron Cedex, France.
| | - Catherine Thevenot
- Institut de Psychologie, Université de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
6
|
Michirev A, Kühne K, Lindemann O, Fischer MH, Raab M. How to not induce SNAs: The insufficiency of directional force. PLoS One 2023; 18:e0288038. [PMID: 37384780 DOI: 10.1371/journal.pone.0288038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
People respond faster to smaller numbers in their left space and to larger numbers in their right space. Here we argue that movements in space contribute to the formation of spatial-numerical associations (SNAs). We studied the impact of continuous isometric forces along the horizontal or vertical cardinal axes on SNAs while participants performed random number production and arithmetic verification tasks. Our results suggest that such isometric directional force do not suffice to induce SNAs.
Collapse
Affiliation(s)
- A Michirev
- Department of Performance Psychology, German Sport University Cologne, Cologne, Germany
| | - K Kühne
- Division of Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - O Lindemann
- Department of Psychology, Education and Child Studies Erasmus University, Rotterdam, Netherlands
| | - M H Fischer
- Division of Cognitive Sciences, University of Potsdam, Potsdam, Germany
| | - M Raab
- Department of Performance Psychology, German Sport University Cologne, Cologne, Germany
- School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
7
|
Masson N, Pesenti M. A functional role for oculomotor preparation in mental arithmetic evidenced by the abducted eye paradigm. PSYCHOLOGICAL RESEARCH 2023; 87:919-928. [PMID: 35758995 DOI: 10.1007/s00426-022-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/02/2022] [Indexed: 11/25/2022]
Abstract
Solving subtraction and addition problems is accompanied by spontaneous leftward and rightward gaze shifts, respectively. These shifts have been related to attentional processes involved in mental arithmetic, but whether these processes induce overt attentional shifts mediated by the activation of the motor programs underlying lateral eye movements or covert shifts only is still unknown. Here, we used the abducted eye paradigm to selectively disrupt activation of the oculomotor system and prevent oculomotor preparation, which affects overt but not covert attentional shifts. Participants had to mentally solve addition and subtraction problems while fixating a screen positioned either in front of them or laterally to their left or right such that they were physically unable to programme and execute saccades further into their temporal field while they still could do so in their nasal field. In comparison to the frontal condition, rightward eye abduction impaired additions (with carrying), and leftward eye abduction impaired subtractions (with borrowing) showing that at least some arithmetic problems rely on processes dedicated to overt attentional shifts. We propose that when solving arithmetic problems requires procedures such as carrying and borrowing, oculomotor mechanisms operating on a mental space transiently built in working memory are recruited to represent one numerical magnitude in relation to another (e.g. the first operand and the result).
Collapse
Affiliation(s)
- Nicolas Masson
- Psychological Sciences Research Institute, Université catholique de Louvain, place Mercier 10, B-1348, Louvain-la-Neuve, Belgium.
- Department of Behavioural and Cognitive Sciences (DBCS), Institute of Cognitive Science and Assessment (COSA), Faculty of Humanities, Education and Social Sciences (FHSE), University of Luxembourg, Luxembourg, Luxembourg.
| | - Mauro Pesenti
- Psychological Sciences Research Institute, Université catholique de Louvain, place Mercier 10, B-1348, Louvain-la-Neuve, Belgium.
- Institute of Neuroscience, Université catholique de Louvain, Bruxelles, Belgium.
| |
Collapse
|
8
|
Suárez-Pellicioni M, Prado J, Booth JR. Neurocognitive mechanisms underlying multiplication and subtraction performance in adults and skill development in children: a scoping review. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Summing up: A functional role of eye movements along the mental number line for arithmetic. Acta Psychol (Amst) 2022; 230:103770. [DOI: 10.1016/j.actpsy.2022.103770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/03/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
|
10
|
Guez A, Piazza M, Pinheiro-Chagas P, Peyre H, Heude B, Ramus F. Preschool language and visuospatial skills respectively predict multiplication and addition/subtraction skills in middle school children. Dev Sci 2022; 26:e13316. [PMID: 36028996 DOI: 10.1111/desc.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/13/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
A converging body of evidence from neuroimaging, behavioral and neuropsychology studies suggests that different arithmetic operations rely on distinct neuro-cognitive processes: while addition and subtraction may rely more on visuospatial reasoning, multiplication would depend more on verbal abilities. In this paper, we tested this hypothesis in a longitudinal study measuring language and visuospatial skills in 358 preschoolers, and testing their mental calculation skills at the beginning of middle school. Language skills at 5.5 years significantly predicted multiplication, but not addition nor subtraction scores at 11.5 years. Conversely, early visuospatial skills predicted addition and subtraction, but not multiplication scores. These results provide strong support for the existence of a double dissociation in mental arithmetic operations, and demonstrate the existence of long-lasting links between language/visuospatial skills and specific calculation abilities. Using structural equation modelling, we analyzed longitudinal data from 358 children. Language skills in preschool significantly predicted multiplication, but not addition nor subtraction scores in middle school. The reverse was true for preschool visuo-spatial skills. Importantly, this pattern remained unchanged when we controlled addition and multiplication operations for overall difficulty and for the magnitude of the operands. These results provide strong support for the existence of a double dissociation in mental arithmetic operations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ava Guez
- LSCP, Département d'études cognitives, ENS, EHESS, PSL University, CNRS, Paris, France
| | - Manuela Piazza
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Pedro Pinheiro-Chagas
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford, CA, 94305, USA
| | - Hugo Peyre
- LSCP, Département d'études cognitives, ENS, EHESS, PSL University, CNRS, Paris, France.,Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France.,INSERM U1141, Université Paris Diderot, Sorbonne Paris Cité, DHU Protect, Paris, France
| | - Barbara Heude
- Université de Paris, CRESS, INSERM, INRAE, F-75004, Paris, France
| | - Franck Ramus
- LSCP, Département d'études cognitives, ENS, EHESS, PSL University, CNRS, Paris, France
| |
Collapse
|
11
|
Taylor AH, Bastos APM, Brown RL, Allen C. The signature-testing approach to mapping biological and artificial intelligences. Trends Cogn Sci 2022; 26:738-750. [PMID: 35773138 DOI: 10.1016/j.tics.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
Abstract
Making inferences from behaviour to cognition is problematic due to a many-to-one mapping problem, in which any one behaviour can be generated by multiple possible cognitive processes. Attempts to cross this inferential gap when comparing human intelligence to that of animals or machines can generate great debate. Here, we discuss the challenges of making comparisons using 'success-testing' approaches and call attention to an alternate experimental framework, the 'signature-testing' approach. Signature testing places the search for information-processing errors, biases, and other patterns centre stage, rather than focussing predominantly on problem-solving success. We highlight current research on both biological and artificial intelligence that fits within this framework and is creating proactive research programs that make strong inferences about the similarities and differences between the content of human, animal, and machine minds.
Collapse
Affiliation(s)
- Alex H Taylor
- School of Psychology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Amalia P M Bastos
- School of Psychology, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Rachael L Brown
- School of Philosophy, Australian National University, Canberra, ACT 2600, Australia
| | - Colin Allen
- Department of History and Philosophy of Science, University of Pittsburgh, 1101 Cathedral of Learning, Pittsburgh, PA 15260, USA
| |
Collapse
|
12
|
Dewi JDM, Bagnoud J, Thevenot C. Do production and verification tasks in arithmetic rely on the same cognitive mechanisms? A test using alphabet arithmetic. Q J Exp Psychol (Hove) 2021; 74:2182-2192. [PMID: 34015986 PMCID: PMC8531946 DOI: 10.1177/17470218211022635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022]
Abstract
In this study, 17 adult participants were trained to solve alphabet-arithmetic problems using a production task (e.g., C + 3 = ?). The evolution of their performance across 12 practice sessions was compared with the results obtained in past studies using verification tasks (e.g., is C + 3 = F correct?). We show that, irrespective of the experimental paradigm used, there is no evidence for a shift from counting to retrieval during training. However, and again regardless of the paradigm, problems with the largest addend constitute an exception to the general pattern of results obtained. Contrary to other problems, their answers seem to be deliberately memorised by participants relatively early during training. All in all, we conclude that verification and production tasks lead to similar patterns of results, which can therefore both confidently be used to discuss current theories of learning. Still, deliberate memorization of problems with the largest addend appears earlier and more often in a production than a verification task. This last result is discussed in light of retrieval models.
Collapse
Affiliation(s)
- Jasinta DM Dewi
- Institute of Psychology, University of
Lausanne, Lausanne, Switzerland
| | - Jeanne Bagnoud
- Institute of Psychology, University of
Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
13
|
Liu N, Pinheiro-Chagas P, Sava-Segal C, Kastner S, Chen Q, Parvizi J. Overlapping Neuronal Population Responses in the Human Parietal Cortex during Visuospatial Attention and Arithmetic Processing. J Cogn Neurosci 2021; 33:2548-2558. [PMID: 34407190 DOI: 10.1162/jocn_a_01775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Engagement of posterior parietal cortex (PPC) in visuospatial attention and arithmetic processing has been extensively documented using neuroimaging methods. Numerous studies have suggested a close connection between visuospatial attention and arithmetic processing. However, the extant evidence in humans stems from neuroimaging methods that have relied on group analyses without much knowledge about the profile of neurophysiological engagement within localized neuronal populations at the individual brain level. Hence, it has remained unclear if the overlap of two functions in the PPC is the product of averaging, or they truly stem from a common profile of activity within the same neuronal populations in the human PPC. In the current study, we leveraged the anatomical precision and high signal-to-noise ratio of intracranial electrocorticography and probed the engagement of discrete PPC neuronal populations in seven neurosurgical patients (n = 179 total PPC sites covered; 26 sites on average per individual participant). We aimed to study the extent of parietal activations within each individual brain during visuospatial attention versus arithmetic tasks and the profile of electrophysiological responses within a given recording site during these tasks. Our findings indicated that about 40% of PPC sites did not respond to either visuospatial attention or arithmetic stimuli-or episodic memory conditions that were used as an adjunct control condition. Of those that were activated during either visuospatial attention or arithmetic conditions, a large majority showed overlapping responses during both visuospatial attention and arithmetic conditions. Most interestingly, responses during arithmetic processing were greatest in sites along the intraparietal sulcus region showing preference to contralateral, instead of ipsilateral, visual probes in the visuospatial attention task. Our results provide novel data about the relationship between numerical and spatial orientation at the neuronal population level and shed light on the complex functional organization of the PPC that could not be attained with noninvasive methods.
Collapse
Affiliation(s)
- Nan Liu
- Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University.,Stanford University.,South China Normal University, Guangzhou, China
| | - Pedro Pinheiro-Chagas
- Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University.,Stanford University
| | - Clara Sava-Segal
- Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University.,Stanford University
| | - Sabine Kastner
- Princeton University.,Princeton Neuroscience Institute, Princeton University
| | - Qi Chen
- South China Normal University, Guangzhou, China
| | - Josef Parvizi
- Stanford Human Intracranial Cognitive Electrophysiology Program, Stanford University.,Stanford University
| |
Collapse
|
14
|
Azhar M, Chen Y, Campbell JID. Reading direction and spatial effects in parity and arithmetic tasks. PSYCHOLOGICAL RESEARCH 2021; 85:2186-2196. [PMID: 32776258 DOI: 10.1007/s00426-020-01397-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
This study investigated the relationship between numerical and spatial processing and reading direction, conducting conceptual replications of the Shaki et al. (Psychonomic Bulletin & Review 16(2): 328-331, 2009) parity task and the Mathieu et al. (Cognition 146: 229-239, 2016, Experiment 1) simple addition (e.g., 3 + 2) and subtraction (e.g., 3 - 2) task. Twenty-four left-to-right readers (LTR) and 24 right-to-left readers (RTL) were tested. The response time (RT) analysis of the parity task presented a robust spatial-numerical association of response codes (SNARC) effect (left-side response advantage for smaller numbers and right-side advantage for larger numbers) for LTR but not RTL readers. In the arithmetic task, the three problem elements (e.g., 3 + 4) were presented sequentially with the second operand displaced slightly to the left or right of fixation. RTL but not LTR readers presented a RT advantage for subtraction relative to addition with a right-shifted second operand compared to it being left-shifted. This is consistent with a spatial bias linked to native reading direction. For both reading-direction groups, effects of the left vs. right side manipulation in the arithmetic or parity task did not correspond to parallel effects in the other task. The results imply that the parity-based SNARC effects and side-related effects in cognitive arithmetic are not equivalent measures of space-related processes in cognitive number processing and likely reflect distinct mechanisms.
Collapse
Affiliation(s)
- Maham Azhar
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - Yalin Chen
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada
| | - Jamie I D Campbell
- Department of Psychology, University of Saskatchewan, 9 Campus Drive, Saskatoon, SK, S7N 5A5, Canada.
| |
Collapse
|
15
|
Bagnoud J, Dewi J, Thevenot C. Differences in event-related potential (ERP) responses to small tie, non-tie and 1-problems in addition and multiplication. Neuropsychologia 2021; 153:107771. [PMID: 33548248 DOI: 10.1016/j.neuropsychologia.2021.107771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Using ERP, we investigated the cause of the tie advantage according to which problems with repeated operands are solved faster and more accurately than non-tie problems. We found no differences in early or N400 ERP components between problems, suggesting that tie problems are not encoded faster or suffer from less interference than non-tie problems. However, a lesser negative amplitude of the N2 component was found for tie than non-tie problems. This suggests more working-memory and attentional resource requirements for non-tie problems and therefore more frequent use of retrieval for tie than non-tie problems. The possible peculiarity of problems involving a 1 was also investigated. We showed less negative N2 amplitudes for these problems than for other non-tie problems, suggesting less working-memory resources for 1-problems than other non-tie problems. This could be explained either by higher reliance on memory retrieval for 1-problems than non-1 problems or by the application of non-arithmetical rules for 1-problems.
Collapse
Affiliation(s)
- Jeanne Bagnoud
- University of Lausanne, Institute of Psychology, Switzerland.
| | - Jasinta Dewi
- University of Lausanne, Institute of Psychology, Switzerland
| | | |
Collapse
|
16
|
Poletti C, Perez JF, Houillon JC, Prado J, Thevenot C. Priming effects of arithmetic signs in 10- to 15-year-old children. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2021; 39:380-392. [PMID: 33428288 DOI: 10.1111/bjdp.12363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Indexed: 11/26/2022]
Abstract
In this research, 10- to 12- and 13- to 15-year-old children were presented with very simple addition and multiplication problems involving operands from 1 to 4. Critically, the arithmetic sign was presented before the operands in half of the trials, whereas it was presented at the same time as the operands in the other half. Our results indicate that presenting the 'x' sign before the operands of a multiplication problem does not speed up the solving process, irrespective of the age of children. In contrast, presenting the '+' sign before the operands of an addition problem facilitates the solving process, but only in 13 to 15-year-old children. Such priming effects of the arithmetic sign have been previously interpreted as the result of a pre-activation of an automated counting procedure, which can be applied as soon as the operands are presented. Therefore, our results echo previous conclusions of the literature that simple additions but not multiplications can be solved by fast counting procedures. More importantly, we show here that these procedures are possibly convoked automatically by children after the age of 13 years. At a more theoretical level, our results do not support the theory that simple additions are solved through retrieval of the answers from long-term memory by experts. Rather, the development of expertise for mental addition would consist in an acceleration of procedures until automatization.
Collapse
Affiliation(s)
- Céline Poletti
- SSP, Institute of Psychology, University of Lausanne, Switzerland
| | | | | | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, France
| | | |
Collapse
|
17
|
Bagnoud J, Dewi J, Castel C, Mathieu R, Thevenot C. Developmental changes in size effects for simple tie and non-tie addition problems in 6- to 12-year-old children and adults. J Exp Child Psychol 2021; 201:104987. [DOI: 10.1016/j.jecp.2020.104987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
|
18
|
What explains the relationship between spatial and mathematical skills? A review of evidence from brain and behavior. Psychon Bull Rev 2020; 27:465-482. [PMID: 31965485 DOI: 10.3758/s13423-019-01694-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is an emerging consensus that spatial thinking plays a fundamental role in how people conceive, express, and perform mathematics. However, the underlying nature of this relationship remains elusive. Questions remain as to how, why, and under what conditions spatial skills and mathematics are linked. This review paper addresses this gap. Through a review and synthesis of research in psychology, neuroscience, and education, we examine plausible mechanistic accounts for the oft-reported close, and potentially causal, relations between spatial and mathematical thought. More specifically, this review targets candidate mechanisms that link spatial visualization skills and basic numerical competencies. The four explanatory accounts we describe and critique include the: (1) Spatial representation of numbers account, (2) shared neural processing account, (3) spatial modelling account, and (4) working memory account. We propose that these mechanisms do not operate in isolation from one another, but in concert with one another to give rise to spatial-numerical associations. Moving from the theoretical to the practical, we end our review by considering the extent to which spatial visualization abilities are malleable and transferrable to numerical reasoning. Ultimately, this paper aims to provide a more coherent and mechanistic account of spatial-numerical relations in the hope that this information may (1) afford new insights into the uniquely human ability to learn, perform, and invent abstract mathematics, and (2) on a more practical level, prove useful in the assessment and design of effective mathematics curricula and intervention moving forward.
Collapse
|
19
|
Crollen V, Collignon O. How visual is the « number sense »? Insights from the blind. Neurosci Biobehav Rev 2020; 118:290-297. [PMID: 32711006 DOI: 10.1016/j.neubiorev.2020.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Is vision a necessary building block for the foundations of mathematical cognition? A straightforward model to test the causal role visual experience plays in the development of numerical abilities is to study people born without sight. In this review we will demonstrate that congenitally blind people can develop numerical abilities that equal or even surpass those of sighted individuals, despite representing numbers using a qualitatively different representational format. We will also show that numerical thinking in blind people maps onto regions typically involved in visuo-spatial processing in the sighted, highlighting how intrinsic computational biases may constrain the reorganization of numerical networks in case of early visual deprivation. More generally, we will illustrate how the study of arithmetic abilities in congenitally blind people represents a compelling model to understand how sensory experience scaffolds the development of higher-level cognitive representations.
Collapse
Affiliation(s)
- Virginie Crollen
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium.
| | - Olivier Collignon
- Institute of Psychology (IPSY) and Institute of Neuroscience (IoNS), Université Catholique de Louvain, Place Cardinal Mercier 10, 1348 Louvain-la-Neuve, Belgium; Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
20
|
Díaz‐Barriga Yáñez A, Couderc A, Longo L, Merchie A, Chesnokova H, Langlois E, Thevenot C, Prado J. Learning to run the number line: the development of attentional shifts during single‐digit arithmetic. Ann N Y Acad Sci 2020; 1477:79-90. [DOI: 10.1111/nyas.14464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Díaz‐Barriga Yáñez
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 ‐ CNRS UMR5292 University of Lyon Lyon France
| | - Auriane Couderc
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 ‐ CNRS UMR5292 University of Lyon Lyon France
| | - Léa Longo
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 ‐ CNRS UMR5292 University of Lyon Lyon France
| | - Annabelle Merchie
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 ‐ CNRS UMR5292 University of Lyon Lyon France
| | - Hanna Chesnokova
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 ‐ CNRS UMR5292 University of Lyon Lyon France
| | - Emma Langlois
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 ‐ CNRS UMR5292 University of Lyon Lyon France
| | | | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 ‐ CNRS UMR5292 University of Lyon Lyon France
| |
Collapse
|
21
|
Thevenot C, Dewi JD, Bagnoud J, Uittenhove K, Castel C. Scrutinizing patterns of solution times in alphabet-arithmetic tasks favors counting over retrieval models. Cognition 2020; 200:104272. [DOI: 10.1016/j.cognition.2020.104272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
22
|
Fischer MH, Dodd MD, Castel AD, Pratt J. The Unbearable Lightness of Attentional Cuing by Symbolic Magnitude: Commentary on the Registered Replication Report by Colling et al. ADVANCES IN METHODS AND PRACTICES IN PSYCHOLOGICAL SCIENCE 2020. [DOI: 10.1177/2515245920902743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | - Alan D. Castel
- Department of Psychology, University of California, Los Angeles
| | - Jay Pratt
- Department of Psychology, University of Toronto
| |
Collapse
|
23
|
Suárez-Pellicioni M, Berteletti I, Booth JR. Early Engagement of Parietal Cortex for Subtraction Solving Predicts Longitudinal Gains in Behavioral Fluency in Children. Front Hum Neurosci 2020; 14:163. [PMID: 32528262 PMCID: PMC7264824 DOI: 10.3389/fnhum.2020.00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
There is debate in the literature regarding how single-digit arithmetic fluency is achieved over development. While the Fact-retrieval hypothesis suggests that with practice, children shift from quantity-based procedures to verbally retrieving arithmetic problems from long-term memory, the Schema-based hypothesis claims that problems are solved through quantity-based procedures and that practice leads to these procedures becoming more automatic. To test these hypotheses, a sample of 46 typically developing children underwent functional magnetic resonance imaging (fMRI) when they were 11 years old (time 1), and 2 years later (time 2). We independently defined regions of interest (ROIs) involved in verbal and quantity processing using rhyming and numerosity judgment localizer tasks, respectively. The verbal ROIs consisted of left middle/superior temporal gyri (MTG/STG) and left inferior frontal gyrus (IFG), whereas the quantity ROIs consisted of bilateral inferior/superior parietal lobules (IPL/SPL) and bilateral middle frontal gyri (MFG)/right IFG. Participants also solved a single-digit subtraction task in the scanner. We defined the extent to which children relied on verbal vs. quantity mechanisms by selecting the 100 voxels showing maximal activation at time 1 from each ROI, separately for small and large subtractions. We studied the brain mechanisms at time 1 that predicted gains in subtraction fluency and how these mechanisms changed over time with improvement. When looking at brain activation at time 1, we found that improvers showed a larger neural problem size effect in bilateral parietal cortex, whereas no effects were found in verbal regions. Results also revealed that children who showed improvement in behavioral fluency for large subtraction problems showed decreased activation over time for large subtractions in both parietal and frontal regions implicated in quantity, whereas non-improvers maintained similar levels of activation. All children, regardless of improvement, showed decreased activation over time for large subtraction problems in verbal regions. The greater parietal problem size effect at time 1 and the reduction in activation over time for the improvers in parietal and frontal regions implicated in quantity processing is consistent with the Schema-based hypothesis arguing for more automatic procedures with increasing skill. The lack of a problem size effect at time 1 and the overall decrease in verbal regions, regardless of improvement, is inconsistent with the Fact-retrieval hypothesis.
Collapse
Affiliation(s)
- Macarena Suárez-Pellicioni
- Department of Educational Studies in Psychology, Research Methodology, and Counseling, The University of Alabama, Tuscaloosa, AL, United States
| | - Ilaria Berteletti
- Educational Neuroscience Program, Gallaudet University, Washington, DC, United States
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
24
|
Abstract
Spatial biases associated with subtraction or addition problem solving are generally considered as reflecting leftward or rightward attention shifts along a mental numerical continuum, but an alternative hypothesis not implying spatial attention proposes that the operator (plus or minus sign) may favour a response to one side of space (left or right) because of semantic associations. We tested these two accounts in a series of temporal order judgement experiments that consisted in the auditory presentation of addition or subtraction problems followed 200 ms (Experiments 1-2) or 800 ms (Experiment 3) later by the display of two lateralized targets in close temporal succession. To dissociate the side where the operation first brought their attention from the side they had to respond to, we asked participants to report which of the left or right target appeared first or last on screen. Under the attention-orienting account, addition should elicit more rightward responses than subtraction when participants have to focus on the first target, but more leftward responses when they have to focus on the last target, because the latter is opposite to the side where the operation first brought their attention. Under the semantic account, addition should elicit more rightward responses than subtraction, no matter the focus is on the first or last target, because participants should systematically favour the side conceptually linked to the operator. The results of the three experiments converge to indicate that, in lateralized target detection tasks, the spatial biases induced by arithmetic operations stem from semantic associations.
Collapse
|
25
|
Spatial Attention Shifts in Addition and Subtraction Arithmetic: Evidence of Eye Movement. Perception 2019; 48:835-849. [DOI: 10.1177/0301006619865156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently, it has been proposed that solving addition and subtraction problems can evoke horizontal shifts of spatial attention. However, prior to this study, it remained unclear whether orienting shifts of spatial attention relied on actual arithmetic processes (i.e., the activated magnitude) or the semantic spatial association of the operator. In this study, spatial–arithmetic associations were explored through three experiments using an eye tracker, which attempted to investigate the mechanism of those associations. Experiment 1 replicated spatial–arithmetic associations in addition and subtraction problems. Experiments 2 and 3 selected zero as the operand to investigate whether these arithmetic problems could induce shifts of spatial attention. Experiment 2 indicated that addition and subtraction problems (zero as the second operand, i.e., 2 + 0) do not induce shifts of spatial attention. Experiment 3 showed that addition and subtraction arithmetic (zero as the first operand, i.e., 0 + 2) do facilitate rightward and leftward eye movement, respectively. This indicates that the operator alone does not induce horizontal eye movement. However, our findings support the idea that solving addition and subtraction problems is associated with horizontal shifts of spatial attention.
Collapse
|
26
|
Mock J, Huber S, Cress U, Nuerk HC, Moeller K. Negative Numbers are not yet Automatically Associated with Space in 6 th Graders. JOURNAL OF COGNITION AND DEVELOPMENT 2019. [DOI: 10.1080/15248372.2019.1639714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Julia Mock
- Leibniz-Institut für Wissensmedien, Germany
| | | | - Ulrike Cress
- Leibniz-Institut für Wissensmedien, Germany
- Eberhard Karls University Tuebingen, Germany
| | - Hans-Christoph Nuerk
- Leibniz-Institut für Wissensmedien, Germany
- Eberhard Karls University Tuebingen, Germany
| | - Korbinian Moeller
- Leibniz-Institut für Wissensmedien, Germany
- Eberhard Karls University Tuebingen, Germany
| |
Collapse
|
27
|
Does training mental rotation transfer to gains in mathematical competence? Assessment of an at-home visuospatial intervention. PSYCHOLOGICAL RESEARCH 2019; 84:2000-2017. [DOI: 10.1007/s00426-019-01202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
|
28
|
Chen Y, Loehr JD, Campbell JI. Does the min-counting strategy for simple addition become automatized in educated adults? A behavioural and ERP study of the size congruency effect. Neuropsychologia 2019; 124:311-321. [DOI: 10.1016/j.neuropsychologia.2018.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/17/2018] [Accepted: 11/17/2018] [Indexed: 11/26/2022]
|
29
|
Recruitment of the occipital cortex by arithmetic processing follows computational bias in the congenitally blind. Neuroimage 2019; 186:549-556. [DOI: 10.1016/j.neuroimage.2018.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/23/2022] Open
|
30
|
Fischer MH, Shaki S. Repeating Numbers Reduces Results: Violations of the Identity Axiom in Mental Arithmetic. Front Psychol 2018; 9:2453. [PMID: 30568623 PMCID: PMC6290039 DOI: 10.3389/fpsyg.2018.02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
Even simple mental arithmetic is fraught with cognitive biases. For example, adding repeated numbers (so-called tie problems, e.g., 2 + 2) not only has a speed and accuracy advantage over adding different numbers (e.g., 1 + 3) but may also lead to under-representation of the result relative to a standard value (Charras et al., 2012, 2014). Does the tie advantage merely reflect easier encoding or retrieval compared to non-ties, or also a distorted result representation? To answer this question, 47 healthy adults performed two tasks, both of which indicated under-representation of tie results: In a result-to-position pointing task (Experiment 1) we measured the spatial mapping of numbers and found a left-bias for tie compared to non-tie problems. In a result-to-line-length production task (Experiment 2) we measured the underlying magnitude representation directly and obtained shorter lines for tie- compared to non-tie problems. These observations suggest that the processing benefit of tie problems comes at the cost of representational reduction of result meaning. This conclusion is discussed in the context of a recent model of arithmetic heuristics and biases.
Collapse
Affiliation(s)
- Martin H. Fischer
- Division of Cognitive Science, University of Potsdam, Potsdam, Germany,*Correspondence: Martin H. Fischer,
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
31
|
Fischer MH, Shaki S. Number concepts: abstract and embodied. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170125. [PMID: 29914993 PMCID: PMC6015824 DOI: 10.1098/rstb.2017.0125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 01/29/2023] Open
Abstract
Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.This article is part of the theme issue 'Varieties of abstract concepts: development, use and representation in the brain'.
Collapse
Affiliation(s)
- Martin H Fischer
- Division of Cognitive Sciences, Department of Psychology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 14, 14476 Potsdam OT Golm, Germany
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| | - Samuel Shaki
- Department of Behavioral Sciences, Ariel University, Ariel 40700, Israel
| |
Collapse
|
32
|
Toomarian EY, Hubbard EM. On the genesis of spatial-numerical associations: Evolutionary and cultural factors co-construct the mental number line. Neurosci Biobehav Rev 2018; 90:184-199. [PMID: 29684402 PMCID: PMC5993626 DOI: 10.1016/j.neubiorev.2018.04.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/29/2023]
Abstract
Mapping numbers onto space is a common cognitive representation that has been explored in both behavioral and neuroimaging contexts. Empirical work probing the diverse nature of these spatial-numerical associations (SNAs) has led researchers to question 1) how the human brain links numbers with space, and 2) whether this link is biologically vs. culturally determined. We review the existing literature on the development of SNAs and situate that empirical work within cognitive and neuroscientific theoretical frameworks. We propose that an evolutionarily-ancient frontal-parietal circuit broadly tuned to multiple magnitude dimensions provides the phylogenetic substrate for SNAs, while enculturation and sensorimotor experience shape their specific profiles. We then use this perspective to discuss educational implications and highlight promising avenues for future research.
Collapse
Affiliation(s)
- Elizabeth Y Toomarian
- Department of Educational Psychology, University of Wisconsin- Madison, 1025 W. Johnson St. Madison, WI, 53706, United States of America.
| | - Edward M Hubbard
- Department of Educational Psychology, University of Wisconsin- Madison, 1025 W. Johnson St. Madison, WI, 53706, United States of America
| |
Collapse
|
33
|
Thevenot C, Dewi J, Lavenex PB, Bagnoud J. Spatial-Numerical Associations Enhance the Short-Term Memorization of Digit Locations. Front Psychol 2018; 9:636. [PMID: 29867631 PMCID: PMC5949844 DOI: 10.3389/fpsyg.2018.00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/16/2018] [Indexed: 11/13/2022] Open
Abstract
Little is known about how spatial-numerical associations (SNAs) affect the way individuals process their environment, especially in terms of learning and memory. In this study, we investigated the potential effects of SNAs in a digit memory task in order to determine whether spatially organized mental representations of numbers can influence the short-term encoding of digits positioned on an external display. To this aim, we designed a memory game in which participants had to match pairs of identical digits in a 9 × 2 matrix of cards. The nine cards of the first row had to be turned face up and then face down, one by one, to reveal a digit from 1 to 9. When a card was turned face up in the second row, the position of the matching digit in the first row had to be recalled. Our results showed that performance was better when small numbers were placed on the left side of the row and large numbers on the right side (i.e., congruent) as compared to the inverse (i.e., incongruent) or a random configuration. Our findings suggests that SNAs can enhance the memorization of digit positions and therefore that spatial mental representations of numbers can play an important role on the way humans process and encode the information around them. To our knowledge, this study is the first that reaches this conclusion in a context where digits did not have to be processed as numerical values.
Collapse
Affiliation(s)
| | - Jasinta Dewi
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Pamela B Lavenex
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jeanne Bagnoud
- Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Li M, Liu D, Li M, Dong W, Huang Y, Chen Q. Addition and Subtraction but Not Multiplication and Division Cause Shifts of Spatial Attention. Front Hum Neurosci 2018; 12:183. [PMID: 29773985 PMCID: PMC5943508 DOI: 10.3389/fnhum.2018.00183] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/17/2018] [Indexed: 11/16/2022] Open
Abstract
Many studies have shown that solving addition and subtraction problems can induce overt shifts of spatial attention. In particular, right-side targets are detected faster than left-side targets when preceded by an addition operation, while left-side targets are detected faster than right-side targets when preceded by a subtraction operation. However, the interaction between space and arithmetic in multiplication or division is hardly studied and remains controversial. In order to make a strong case for the interaction between space and mental arithmetic, we attempted to replicate the spatial-arithmetic association in addition and subtraction (Experiment 1), and at the same time investigated whether shift of spatial attention would also be induced by multiplication or division operations (Experiment 2). We found that solving addition problems facilitated the detection of right-side targets, whereas left-side targets were detected faster after solving subtraction problems. However, no interaction between space and arithmetic operation was observed in multiplication or division. The implication of these findings is discussed.
Collapse
Affiliation(s)
- Mengjin Li
- School of Psychology, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Dixiu Liu
- School of Psychology, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Psychology, Gannan Medical University, Ganzhou, China
| | - Min Li
- School of Psychology, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Wenshan Dong
- School of Psychology, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yalun Huang
- School of Psychology, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
35
|
Liu D, Verguts T, Li M, Ling Z, Chen Q. Dissociated Spatial-Arithmetic Associations in Horizontal and Vertical Dimensions. Front Psychol 2017; 8:1741. [PMID: 29046658 PMCID: PMC5632724 DOI: 10.3389/fpsyg.2017.01741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
Spatial–numerical associations (small numbers—left/lower space and large numbers—right/upper space) are regularly found in elementary number processing. Recently, the interest in this phenomenon has been extended from elementary number processing to mental arithmetic. Many studies have demonstrated horizontal spatial-arithmetic associations, i.e., solving addition or subtraction problems cause spatial shifts of attention rightward or leftward, respectively. However, the role of this effect in the vertical dimension has not been addressed. This is problematic because it leaves the analogy between elementary number processing and arithmetic incomplete. In order to make a strong case for a similarity between elementary number processing and mental arithmetic, a spatial-arithmetic association should be observed in the vertical dimension too. Here, we adopted the target detection paradigm from Liu et al. (2017) to replicate the horizontal spatial-arithmetic association, and meanwhile investigate whether this effect also exists in the vertical direction. Our results confirmed that addition could induce covert movement to right side and subtraction to left side. However, such a spatial-arithmetic association was not found in the vertical dimension. The implication of these findings is discussed.
Collapse
Affiliation(s)
- Dixiu Liu
- School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Tom Verguts
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Mengjin Li
- School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Zekai Ling
- School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Qi Chen
- School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
36
|
Mathieu R, Epinat-Duclos J, Léone J, Fayol M, Thevenot C, Prado J. Hippocampal spatial mechanisms relate to the development of arithmetic symbol processing in children. Dev Cogn Neurosci 2017. [PMID: 28648549 PMCID: PMC6969119 DOI: 10.1016/j.dcn.2017.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Understanding the meaning of abstract mathematical symbols is a cornerstone of arithmetic learning in children. Studies have long focused on the role of spatial intuitions in the processing of numerals. However, it has been argued that such intuitions may also underlie symbols that convey fundamental arithmetic concepts, such as arithmetic operators. In the present cross-sectional study, we used fMRI to investigate how and when associations between arithmetic operators and brain regions processing spatial information emerge in children from 3rd to 10th grade. We found that the mere perception of a ‘+’ sign elicited grade-related increases of spatial activity in the right hippocampus. That is, merely perceiving ‘+’ signs – without any operands – elicited enhanced hippocampal activity after around 7th grade (12–13 years old). In these children, hippocampal activity in response to a ‘+’ sign was further correlated with the degree to which calculation performance was facilitated by the preview of that sign before an addition problem, an effect termed operator-priming. Grade-related increases of hippocampal spatial activity were operation-specific because they were not observed with ‘×’ signs, which might evoke rote retrieval rather than numerical manipulation. Our study raises the possibility that hippocampal spatial mechanisms help build associations between some arithmetic operators and space throughout age and/or education.
Collapse
Affiliation(s)
- Romain Mathieu
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, Bron, France; Faculté de Psychologie et des Sciences de l'Education, Université de Genève, 1205 Genève, Switzerland.
| | - Justine Epinat-Duclos
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, Bron, France
| | - Jessica Léone
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, Bron, France
| | - Michel Fayol
- Université de Clermont Auvergne & CNRS, 63037 Clermont-Ferrand, France
| | - Catherine Thevenot
- Institut de Psychologie, Université de Lausanne, 1015 Lausanne, Switzerland
| | - Jérôme Prado
- Institut des Sciences Cognitives Marc Jeannerod, UMR 5304, Centre National de la Recherche Scientifique (CNRS) & Université de Lyon, Bron, France.
| |
Collapse
|