1
|
Barbosa BJAP, Correia VAG, Albuquerque PMD, Barros AVBPDR, Arca VM, Araújo LC. Right versus left temporal lobe semiology in dementia: Lessons from two cases with focal frontotemporal dementia syndromes. J Neuropsychol 2024; 18:459-467. [PMID: 38722060 DOI: 10.1111/jnp.12373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/29/2024] [Accepted: 04/30/2024] [Indexed: 11/19/2024]
Abstract
Focal atrophy of the left anterior temporal lobe has been associated with the semantic type of primary progressive aphasia evolving to semantic dementia. In contrast, focal atrophy of the right temporal lobe has more recently been described as a controverse entity reported as the right temporal variant of FTD. We describe two cases of FTD dementia syndromes: in Case 1, atrophy of the right temporal lobe led to significant behavioural impairment and difficulties in recognizing known people. In Case 2, atrophy of the left temporal lobe was associated with severe aggressive, ritualistic behaviour and aphasia.
Collapse
Affiliation(s)
- Breno José Alencar Pires Barbosa
- Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Universidade Federal de Pernambuco, Recife, Brazil
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife, Brazil
- Grupo de Neurologia Cognitiva e Do Comportamento, Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Victor Adill Gomes Correia
- Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Universidade Federal de Pernambuco, Recife, Brazil
| | - Pedro Mota de Albuquerque
- Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Vitor Maia Arca
- Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Universidade Federal de Pernambuco, Recife, Brazil
| | - Luziany Carvalho Araújo
- Department of Radiology, Hospital das Clínicas de Pernambuco - Empresa Brasileira de Serviços Hospitalares, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Bai Y, Liu S, Zhu M, Wang B, Li S, Meng L, Shi X, Chen F, Jiang H, Jiang C. Perceptual Pattern of Cleft-Related Speech: A Task-fMRI Study on Typical Mandarin-Speaking Adults. Brain Sci 2023; 13:1506. [PMID: 38002467 PMCID: PMC10669275 DOI: 10.3390/brainsci13111506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital cleft lip and palate is one of the common deformities in the craniomaxillofacial region. The current study aimed to explore the perceptual pattern of cleft-related speech produced by Mandarin-speaking patients with repaired cleft palate using the task-based functional magnetic resonance imaging (task-fMRI) technique. Three blocks of speech stimuli, including hypernasal speech, the glottal stop, and typical speech, were played to 30 typical adult listeners with no history of cleft palate speech exploration. Using a randomized block design paradigm, the participants were instructed to assess the intelligibility of the stimuli. Simultaneously, fMRI data were collected. Brain activation was compared among the three types of speech stimuli. Results revealed that greater blood-oxygen-level-dependent (BOLD) responses to the cleft-related glottal stop than to typical speech were localized in the right fusiform gyrus and the left inferior occipital gyrus. The regions responding to the contrast between the glottal stop and cleft-related hypernasal speech were located in the right fusiform gyrus. More significant BOLD responses to hypernasal speech than to the glottal stop were localized in the left orbital part of the inferior frontal gyrus and middle temporal gyrus. More significant BOLD responses to typical speech than to the glottal stop were localized in the left inferior temporal gyrus, left superior temporal gyrus, left medial superior frontal gyrus, and right angular gyrus. Furthermore, there was no significant difference between hypernasal speech and typical speech. In conclusion, the typical listener would initiate different neural processes to perceive cleft-related speech. Our findings lay a foundation for exploring the perceptual pattern of patients with repaired cleft palate.
Collapse
Affiliation(s)
- Yun Bai
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.B.)
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Shaowei Liu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Mengxian Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.B.)
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Binbing Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.B.)
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.B.)
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Liping Meng
- Department of Children’s Healthcare, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Xinghui Shi
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.B.)
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.B.)
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chenghui Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; (Y.B.)
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing 210029, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
3
|
McGugin RW, Sunday MA, Gauthier I. The neural correlates of domain-general visual ability. Cereb Cortex 2023; 33:4280-4292. [PMID: 36045003 PMCID: PMC11486684 DOI: 10.1093/cercor/bhac342] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
People vary in their general ability to compare, identify, and remember objects. Research using latent variable modeling identifies a domain-general visual recognition ability (called o) that reflects correlations among different visual tasks and categories. We measure associations between a psychometrically-sensitive measure of o and a neurometrically-sensitive measure of visual sensitivity to shape. We report evidence for distributed neural correlates of o using functional and anatomical regions-of-interest (ROIs) as well as whole brain analyses. Neural selectivity to shape is associated with o in several regions of the ventral pathway, as well as additional foci in parietal and premotor cortex. Multivariate analyses suggest the distributed effects in ventral cortex reflect a common mechanism. The network of brain areas where neural selectivity predicts o is similar to that evoked by the most informative features for object recognition in prior work, showing convergence of 2 different approaches on identifying areas that support the best object recognition performance. Because o predicts performance across many visual tasks for both novel and familiar objects, we propose that o could predict the magnitude of neural changes in task-relevant areas following experience with specific task and object category.
Collapse
Affiliation(s)
- Rankin W McGugin
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Mackenzie A Sunday
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37240, United States
| | - Isabel Gauthier
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37240, United States
| |
Collapse
|
4
|
Cho FTH, Tan CY, Wong YK. Role of line junctions in expert object recognition: The case of musical notation. Psychophysiology 2023; 60:e14236. [PMID: 36653897 DOI: 10.1111/psyp.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 01/20/2023]
Abstract
Line junctions are well-known to be important for real-world object recognition, and sensitivity to line junctions is enhanced with perceptual experience with an object category. However, it remains unclear whether these very simple visual features are involved in expert object representations at the neural level, and if yes, at what level(s) they are involved. In this EEG study, 31 music reading experts and 31 novices performed a one-back task with intact musical notation, musical notation with line junctions removed and pseudo-letters. We observed more separable neural representations of musical notation from pseudo-letter for experts than for novices when line junctions were present and during 180-280 ms after stimulus onset. Also, the presence of line junctions was better decoded in experts than in novices during 320-580 ms, and the decoding accuracy in this time window predicted the behavioral recognition advantage of musical notation when line junctions were present. These suggest that, with perceptual expertise, line junctions are more involved in category selective representation of objects, and are more explicitly represented in later stages of processing to support expert recognition performance.
Collapse
Affiliation(s)
- Felix Tze-Hei Cho
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Cheng Yong Tan
- Faculty of Education, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yetta Kwailing Wong
- Department of Educational Psychology, Faculty of Education, The Chinese University of Hong Kong, Shatin, Hong Kong.,School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
5
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia 2022; 173:108278. [DOI: 10.1016/j.neuropsychologia.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/28/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
6
|
Curby KM, Teichmann L. The time course of holistic processing is similar for face and non-face Gestalt stimuli. Atten Percept Psychophys 2022; 84:1234-1247. [PMID: 35460025 PMCID: PMC9076732 DOI: 10.3758/s13414-021-02415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/08/2022]
Abstract
There is evidence that holistic processing of faces and other stimuli rich in Gestalt perceptual grouping cues recruit overlapping mechanisms at early processing stages, but not at later stages where faces and objects of expertise likely overlap. This has led to suggestions of dual pathways supporting holistic processing; an early stimulus-based pathway (supporting processing of stimuli rich in perceptual grouping cues) and an experience-based pathway (supporting processing of object of expertise), with both pathways supporting face processing. Holistic processing markers are present when upright faces are presented for as little as 50-ms. If the overlap between holistic processing of faces and stimuli rich in grouping cues occurs early in processing, markers of holistic processing for these Gestalt stimuli should be present as early as those for faces. In Experiment 1, we investigate the time-course of the emergence of holistic processing markers for face and non-face Gestalt stimuli. The emergence of these markers for faces and the Gestalt stimuli was strikingly similar; both emerged with masked presentations as little as 50-ms. In Experiment 2, where the stimulus presentation was not masked, thus the presentation duration, but not the post-presentation perceptual processing, was constrained, patterns of holistic processing for these stimuli still did not diverge. These findings are consistent with an early, and possibly extended, temporal locus for the overlap in the holistic processing of faces and non-face stimuli rich in grouping cues.
Collapse
Affiliation(s)
- Kim M Curby
- School of Psychological Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- Centre for Elite Performance, Expertise, & Training, Macquarie University, Sydney, Australia.
| | - Lina Teichmann
- School of Psychological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
7
|
Gao X, Wen M, Sun M, Rossion B. A Genuine Interindividual Variability in Number and Anatomical Localization of Face-Selective Regions in the Human Brain. Cereb Cortex 2022; 32:4834-4856. [PMID: 35088077 DOI: 10.1093/cercor/bhab519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroimaging studies have reported regions with more neural activation to face than nonface stimuli in the human occipitotemporal cortex for three decades. Here we used a highly sensitive and reliable frequency-tagging functional magnetic resonance imaging paradigm measuring high-level face-selective neural activity to assess interindividual variability in the localization and number of face-selective clusters. Although the majority of these clusters are located in the same cortical gyri and sulci across 25 adult brains, a volume-based analysis of unsmoothed data reveals a large amount of interindividual variability in their spatial distribution and number, particularly in the ventral occipitotemporal cortex. In contrast to the widely held assumption, these face-selective clusters cannot be objectively related on a one-to-one basis across individual brains, do not correspond to a single cytoarchitectonic region, and are not clearly demarcated by estimated posteroanterior cytoarchitectonic borders. Interindividual variability in localization and number of cortical face-selective clusters does not appear to be due to the measurement noise but seems to be genuine, casting doubt on definite labeling and interindividual correspondence of face-selective "areas" and questioning their a priori definition based on cytoarchitectony or probabilistic atlases of independent datasets. These observations challenge conventional models of human face recognition based on a fixed number of discrete neurofunctional information processing stages.
Collapse
Affiliation(s)
- Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Minjie Wen
- Department of Psychology, Zhejiang University, Hangzhou 310028, China
| | - Mengdan Sun
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
8
|
Li CH, Wang MY, Kuo BC. The effects of stimulus inversion on the neural representations of Chinese character and face recognition. Neuropsychologia 2022; 164:108090. [PMID: 34801520 DOI: 10.1016/j.neuropsychologia.2021.108090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
This study investigates whether stimulus inversion influences neural responses of Chinese character recognition similarly to its effect on face recognition in category-selective and object-related brain areas using functional magnetic resonance imaging. Participants performed a one-back matching task for simple (one radical) and compound (two radicals) Chinese characters and faces with upright and inverted orientations. Inverted stimuli produced slower response times with stronger activity within the fusiform gyrus (FG) than upright stimuli for faces and Chinese characters. While common inversion-related activation was identified in the left FG among stimulus types, we observed a significant inter-regional correlation between the left FG and the intraparietal sulcus for face inversion. Importantly, analyses of region-of-interest (ROI) multivariate pattern classification showed that classifiers trained on face inversion can decode the representations of character inversion in the character-selective ROI. However, this was not true for face inversion in face-selective ROIs when the classifiers were trained on characters. Similar activity patterns for character and face inversion were observed in the object-related ROIs. We also showed higher decoding accuracy for upright stimuli in the face-selective ROI than in the character-selective ROI but this was not true for inverted ones or when patterns were examined in the object-related ROIs. Together, our results support shared and distinct configural representations for character and face recognition in category-selective and object-related brain areas.
Collapse
Affiliation(s)
- Chun-Hui Li
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Man-Ying Wang
- Department of Psychology, Soochow University, Taipei, Taiwan
| | - Bo-Cheng Kuo
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
9
|
Haeger A, Pouzat C, Luecken V, N’Diaye K, Elger C, Kennerknecht I, Axmacher N, Dinkelacker V. Face Processing in Developmental Prosopagnosia: Altered Neural Representations in the Fusiform Face Area. Front Behav Neurosci 2021; 15:744466. [PMID: 34867227 PMCID: PMC8636799 DOI: 10.3389/fnbeh.2021.744466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Face expertise is a pivotal social skill. Developmental prosopagnosia (DP), i.e., the inability to recognize faces without a history of brain damage, affects about 2% of the general population, and is a renowned model system of the face-processing network. Within this network, the right Fusiform Face Area (FFA), is particularly involved in face identity processing and may therefore be a key element in DP. Neural representations within the FFA have been examined with Representational Similarity Analysis (RSA), a data-analytical framework in which multi-unit measures of brain activity are assessed with correlation analysis. Objectives: Our study intended to scrutinize modifications of FFA-activation during face encoding and maintenance based on RSA. Methods: Thirteen participants with DP (23-70 years) and 12 healthy control subjects (19-62 years) participated in a functional MRI study, including morphological MRI, a functional FFA-localizer and a modified Sternberg paradigm probing face memory encoding and maintenance. Memory maintenance of one, two, or four faces represented low, medium, and high memory load. We examined conventional activation differences in response to working memory load and applied RSA to compute individual correlation-matrices on the voxel level. Group correlation-matrices were compared via Donsker's random walk analysis. Results: On the functional level, increased memory load entailed both a higher absolute FFA-activation level and a higher degree of correlation between activated voxels. Both aspects were deficient in DP. Interestingly, control participants showed a homogeneous degree of correlation for successful trials during the experiment. In DP-participants, correlation levels between FFA-voxels were significantly lower and were less sustained during the experiment. In behavioral terms, DP-participants performed poorer and had longer reaction times in relation to DP-severity. Furthermore, correlation levels were negatively correlated with reaction times for the most demanding high load condition. Conclusion: We suggest that participants with DP fail to generate robust and maintained neural representations in the FFA during face encoding and maintenance, in line with poorer task performance and prolonged reaction times. In DP, alterations of neural coding in the FFA might therefore explain curtailing in working memory and contribute to impaired long-term memory and mental imagery.
Collapse
Affiliation(s)
- Alexa Haeger
- JARA-BRAIN, Jülich, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine (INM-11), Jülich, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | | | | | - Karim N’Diaye
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | | | - Ingo Kennerknecht
- Institute of Human Genetics, Westfaelische Wilhelms-Universitaet Muenster, Muenster, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Ruhr University Bochum, Bochum, Germany
| | - Vera Dinkelacker
- Neurology Department, Hautepierre Hospital, University of Strasbourg, Strasbourg, France
- Rothschild Foundation, Neurology Department, Paris, France
| |
Collapse
|
10
|
Retter TL, Jiang F, Webster MA, Michel C, Schiltz C, Rossion B. Varying Stimulus Duration Reveals Consistent Neural Activity and Behavior for Human Face Individuation. Neuroscience 2021; 472:138-156. [PMID: 34333061 DOI: 10.1016/j.neuroscience.2021.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/27/2022]
Abstract
Establishing consistent relationships between neural activity and behavior is a challenge in human cognitive neuroscience research. We addressed this issue using variable time constraints in an oddball frequency-sweep design for visual discrimination of complex images (face exemplars). Sixteen participants viewed sequences of ascending presentation durations, from 25 to 333 ms (40-3 Hz stimulation rate) while their electroencephalogram (EEG) was recorded. Throughout each sequence, the same unfamiliar face picture was repeated with variable size and luminance changes while different unfamiliar facial identities appeared every 1 s (1 Hz). A neural face individuation response, tagged at 1 Hz and its unique harmonics, emerged over the occipito-temporal cortex at 50 ms stimulus duration (25-100 ms across individuals), with an optimal response reached at 170 ms stimulus duration. In a subsequent experiment, identity changes appeared non-periodically within fixed-frequency sequences while the same participants performed an explicit face individuation task. The behavioral face individuation response also emerged at 50 ms presentation time, and behavioral accuracy correlated with individual participants' neural response amplitude in a weighted middle stimulus duration range (50-125 ms). Moreover, the latency of the neural response peaking between 180 and 200 ms correlated strongly with individuals' behavioral accuracy in this middle duration range, as measured independently. These observations point to the minimal (50 ms) and optimal (170 ms) stimulus durations for human face individuation and provide novel evidence that inter-individual differences in the magnitude and latency of early, high-level neural responses are predictive of behavioral differences in performance at this function.
Collapse
Affiliation(s)
- Talia L Retter
- Psychological Sciences Research Institute, Institute of Neuroscience, UCLouvain, Belgium; Department of Psychology, Center for Integrative Neuroscience, University of Nevada, Reno, USA; Department of Behavioural and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg, Luxembourg.
| | - Fang Jiang
- Department of Psychology, Center for Integrative Neuroscience, University of Nevada, Reno, USA
| | - Michael A Webster
- Department of Psychology, Center for Integrative Neuroscience, University of Nevada, Reno, USA
| | - Caroline Michel
- Psychological Sciences Research Institute, Institute of Neuroscience, UCLouvain, Belgium
| | - Christine Schiltz
- Department of Behavioural and Cognitive Sciences, Institute of Cognitive Science & Assessment, University of Luxembourg, Luxembourg
| | - Bruno Rossion
- Psychological Sciences Research Institute, Institute of Neuroscience, UCLouvain, Belgium; Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
11
|
Zoltowski AR, Lyu I, Failla M, Mash LE, Dunham K, Feldman JI, Woynaroski TG, Wallace MT, Barquero LA, Nguyen TQ, Cutting LE, Kang H, Landman BA, Cascio CJ. Cortical Morphology in Autism: Findings from a Cortical Shape-Adaptive Approach to Local Gyrification Indexing. Cereb Cortex 2021; 31:5188-5205. [PMID: 34195789 DOI: 10.1093/cercor/bhab151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 11/14/2022] Open
Abstract
It has been challenging to elucidate the differences in brain structure that underlie behavioral features of autism. Prior studies have begun to identify patterns of changes in autism across multiple structural indices, including cortical thickness, local gyrification, and sulcal depth. However, common approaches to local gyrification indexing used in prior studies have been limited by low spatial resolution relative to functional brain topography. In this study, we analyze the aforementioned structural indices, utilizing a new method of local gyrification indexing that quantifies this index adaptively in relation to specific sulci/gyri, improving interpretation with respect to functional organization. Our sample included n = 115 autistic and n = 254 neurotypical participants aged 5-54, and we investigated structural patterns by group, age, and autism-related behaviors. Differing structural patterns by group emerged in many regions, with age moderating group differences particularly in frontal and limbic regions. There were also several regions, particularly in sensory areas, in which one or more of the structural indices of interest either positively or negatively covaried with autism-related behaviors. Given the advantages of this approach, future studies may benefit from its application in hypothesis-driven examinations of specific brain regions and/or longitudinal studies to assess brain development in autism.
Collapse
Affiliation(s)
- Alisa R Zoltowski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ilwoo Lyu
- Department of Computer Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Michelle Failla
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,College of Nursing, Ohio State University, Columbus, OH 43210, USA
| | - Lisa E Mash
- San Diego Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA 92120, USA
| | - Kacie Dunham
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Jacob I Feldman
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA
| | - Tiffany G Woynaroski
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Mark T Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Laura A Barquero
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| | - Tin Q Nguyen
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Special Education, Vanderbilt University, Nashville, TN 37203, USA
| | - Laurie E Cutting
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA.,Department of Special Education, Vanderbilt University, Nashville, TN 37203, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hakmook Kang
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Bennett A Landman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.,Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, USA
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA.,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN 37212, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Department of Psychology and Human Development, Vanderbilt University, Nashville, TN 37203, USA
| |
Collapse
|
12
|
Representational similarity analysis reveals atypical age-related changes in brain regions supporting face and car recognition in autism. Neuroimage 2020; 209:116322. [PMID: 31786166 DOI: 10.1016/j.neuroimage.2019.116322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is associated with atypical activation in the ventral stream during face processing. The current study further characterizes the development of face processing in ASD using a multivoxel pattern analysis, which assesses the similarity in the representation of exemplars from the same category. METHODS Ninety-two children, adolescents and adults - with and without ASD - performed the Cambridge Face Memory Test, the Australian Face Memory Test, and a matched car memory test. Regions of interest during these tasks included Fusiform Face Area (FFA), based on the literature, and additional, structurally-defined regions in the ventral stream. Group differences in the patterns of activity within these ROIs when memorizing exemplars were examined using a representational similarity analysis (RSA). RESULTS The RSA revealed significant interactions between age group and diagnostic group in R FFA, with increasing similarity within a category (faces, cars) into adulthood typically but not in those with ASD. This pattern was also evident in structurally defined ventral stream regions, namely L inferior frontal gyrus (IFG), bilateral temporoparietal junction (TPJ), L inferior temporal lobule, and the R fusiform gyrus. CONCLUSIONS The specialization of face and object processing from adolescence to adulthood evident in typical development may be impaired in ASD, undermining the ability to reach adult-level visual processing in those with ASD.
Collapse
|
13
|
McGugin RW, Newton AT, Tamber-Rosenau B, Tomarken A, Gauthier I. Thickness of Deep Layers in the Fusiform Face Area Predicts Face Recognition. J Cogn Neurosci 2020; 32:1316-1329. [PMID: 32083519 DOI: 10.1162/jocn_a_01551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
People with superior face recognition have relatively thin cortex in face-selective brain areas, whereas those with superior vehicle recognition have relatively thick cortex in the same areas. We suggest that these opposite correlations reflect distinct mechanisms influencing cortical thickness (CT) as abilities are acquired at different points in development. We explore a new prediction regarding the specificity of these effects through the depth of the cortex: that face recognition selectively and negatively correlates with thickness of the deepest laminar subdivision in face-selective areas. With ultrahigh resolution MRI at 7T, we estimated the thickness of three laminar subdivisions, which we term "MR layers," in the right fusiform face area (FFA) in 14 adult male humans. Face recognition was negatively associated with the thickness of deep MR layers, whereas vehicle recognition was positively related to the thickness of all layers. Regression model comparisons provided overwhelming support for a model specifying that the magnitude of the association between face recognition and CT differs across MR layers (deep vs. superficial/middle) whereas the magnitude of the association between vehicle recognition and CT is invariant across layers. The total CT of right FFA accounted for 69% of the variance in face recognition, and thickness of the deep layer alone accounted for 84% of this variance. Our findings demonstrate the functional validity of MR laminar estimates in FFA. Studying the structural basis of individual differences for multiple abilities in the same cortical area can reveal effects of distinct mechanisms that are not apparent when studying average variation or development.
Collapse
Affiliation(s)
| | - Allen T Newton
- Vanderbilt University Medical Center.,Vanderbilt University Institute of Imaging Science.,Monroe Carell Jr. Children's Hospital at Vanderbilt
| | | | | | | |
Collapse
|
14
|
Fan X, Wang F, Shao H, Zhang P, He S. The bottom-up and top-down processing of faces in the human occipitotemporal cortex. eLife 2020; 9:48764. [PMID: 31934855 PMCID: PMC7000216 DOI: 10.7554/elife.48764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Although face processing has been studied extensively, the dynamics of how face-selective cortical areas are engaged remains unclear. Here, we uncovered the timing of activation in core face-selective regions using functional Magnetic Resonance Imaging and Magnetoencephalography in humans. Processing of normal faces started in the posterior occipital areas and then proceeded to anterior regions. This bottom-up processing sequence was also observed even when internal facial features were misarranged. However, processing of two-tone Mooney faces lacking explicit prototypical facial features engaged top-down projection from the right posterior fusiform face area to right occipital face area. Further, face-specific responses elicited by contextual cues alone emerged simultaneously in the right ventral face-selective regions, suggesting parallel contextual facilitation. Together, our findings chronicle the precise timing of bottom-up, top-down, as well as context-facilitated processing sequences in the occipital-temporal face network, highlighting the importance of the top-down operations especially when faced with incomplete or ambiguous input.
Collapse
Affiliation(s)
- Xiaoxu Fan
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hanyu Shao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Minnesota, Minneapolis, United States
| |
Collapse
|
15
|
Abstract
People often recognize and remember faces of individuals within their own race more easily than those of other races. While behavioral research has long suggested that the Other-Race Effect (ORE) is due to extensive experience with one’s own race group, the neural mechanisms underlying the effect have remained elusive. Predominant theories of the ORE have argued that the effect is mainly caused by processing disparities between same and other-race faces during early stages of perceptual encoding. Our findings support an alternative view that the ORE is additionally shaped by mnemonic processing mechanisms beyond perception and attention. Using a “pattern separation” paradigm based on computational models of episodic memory, we report evidence that the ORE may be driven by differences in successful memory discrimination across races as a function of degree of interference or overlap between face stimuli. In contrast, there were no ORE-related differences on a comparable match-to-sample task with no long-term memory load, suggesting that the effect is not simply attributable to visual and attentional processes. These findings suggest that the ORE may emerge in part due to “tuned” memory mechanisms that may enhance same-race, at the expense of other-race face detection.
Collapse
|
16
|
Cross-Language Pattern Similarity in the Bilateral Fusiform Cortex Is Associated with Reading Proficiency in Second Language. Neuroscience 2019; 410:254-263. [DOI: 10.1016/j.neuroscience.2019.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 11/20/2022]
|
17
|
Burns EJ, Tree J, Chan AH, Xu H. Bilingualism shapes the other race effect. Vision Res 2019; 157:192-201. [DOI: 10.1016/j.visres.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
|
18
|
Ross DA, Tamber-Rosenau BJ, Palmeri TJ, Zhang J, Xu Y, Gauthier I. High-resolution Functional Magnetic Resonance Imaging Reveals Configural Processing of Cars in Right Anterior Fusiform Face Area of Car Experts. J Cogn Neurosci 2018; 30:973-984. [DOI: 10.1162/jocn_a_01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Visual object expertise correlates with neural selectivity in the fusiform face area (FFA). Although behavioral studies suggest that visual expertise is associated with increased use of holistic and configural information, little is known about the nature of the supporting neural representations. Using high-resolution 7-T functional magnetic resonance imaging, we recorded the multivoxel activation patterns elicited by whole cars, configurally disrupted cars, and car parts in individuals with a wide range of car expertise. A probabilistic support vector machine classifier was trained to differentiate activation patterns elicited by whole car images from activation patterns elicited by misconfigured car images. The classifier was then used to classify new combined activation patterns that were created by averaging activation patterns elicited by individually presented top and bottom car parts. In line with the idea that the configuration of parts is critical to expert visual perception, car expertise was negatively associated with the probability of a combined activation pattern being classified as a whole car in the right anterior FFA, a region critical to vision for categories of expertise. Thus, just as found for faces in normal observers, the neural representation of cars in right anterior FFA is more holistic for car experts than car novices, consistent with common mechanisms of neural selectivity for faces and other objects of expertise in this area.
Collapse
|
19
|
Okada A, Ohyama K, Ueda T. Early-stage right temporal lobe variant of frontotemporal dementia: 3 years of follow-up observations. BMJ Case Rep 2018; 2018:bcr-2018-224431. [PMID: 29960960 DOI: 10.1136/bcr-2018-224431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The right temporal lobe variant of frontotemporal dementia (FTD) is an uncommon progressive neurodegenerative disorder. We present the case of a 77-year-old right-handed man who presented with altered behaviour and problems with interpersonal relationships. He had no decline in cognitive function but brain perfusion single-photon emission CT demonstrated distinct hypoperfusion in the right temporal pole. At 2-year follow-up, he could not recognise his wife's relatives; and at 3-year follow-up, he had semantic aphasia. Decreased brain perfusion extended from the right temporal lobe into the contralateral temporal and both frontal lobes. These findings suggest that the right temporal lobe variant of FTD should be considered in elderly patients with altered behaviour and problems with interpersonal relationships, even if dementia is not suspected. The right anterior temporal lobe may play a key role in the onset of the early symptoms of this disease.
Collapse
Affiliation(s)
- Akira Okada
- Department of Neuropsychiatry, Faculty of Medicine, Nara Hospital Kindai University, Ikoma, Japan
| | - Kakusho Ohyama
- Department of Neuropsychiatry, Faculty of Medicine, Nara Hospital Kindai University, Ikoma, Japan
| | - Tetsuya Ueda
- Center for Health Affairs, Kindai University, Higashiosaka, Osaka, Japan
| |
Collapse
|
20
|
How holistic processing of faces relates to cognitive control and intelligence. Atten Percept Psychophys 2018; 80:1449-1460. [PMID: 29663286 DOI: 10.3758/s13414-018-1518-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Vanderbilt Holistic Processing Test for faces (VHPT-F) is the first standard test designed to measure individual differences in holistic processing. The test measures failures of selective attention to face parts through congruency effects, an operational definition of holistic processing. However, this conception of holistic processing has been challenged by the suggestion that it may tap into the same selective attention or cognitive control mechanisms that yield congruency effects in Stroop and Flanker paradigms. Here, we report data from 130 subjects on the VHPT-F, several versions of Stroop and Flanker tasks, as well as fluid IQ. Results suggested a small degree of shared variance in Stroop and Flanker congruency effects, which did not relate to congruency effects on the VHPT-F. Variability on the VHPT-F was also not correlated with Fluid IQ. In sum, we find no evidence that holistic face processing as measured by congruency in the VHPT-F is accounted for by domain-general control mechanisms.
Collapse
|
21
|
Liu TT, Behrmann M. Functional outcomes following lesions in visual cortex: Implications for plasticity of high-level vision. Neuropsychologia 2017; 105:197-214. [PMID: 28668576 DOI: 10.1016/j.neuropsychologia.2017.06.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/13/2022]
Abstract
Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience. Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some intermediate possibilities in which some plasticity may be evident but that this might depend on the area that was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally, we offer suggestions for future research that can elucidate plasticity further.
Collapse
Affiliation(s)
- Tina T Liu
- Department of Psychology, and, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Marlene Behrmann
- Department of Psychology, and, Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|