1
|
Xu Y. The human posterior parietal cortices orthogonalize the representation of different streams of information concurrently coded in visual working memory. PLoS Biol 2024; 22:e3002915. [PMID: 39570984 PMCID: PMC11620661 DOI: 10.1371/journal.pbio.3002915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/05/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
The key to adaptive visual processing lies in the ability to maintain goal-directed visual representation in the face of distraction. In visual working memory (VWM), distraction may come from the coding of distractors or other concurrently retained targets. This fMRI study reveals a common representational geometry that our brain uses to combat both types of distractions in VWM. Specifically, using fMRI pattern decoding, the human posterior parietal cortex is shown to orthogonalize the representations of different streams of information concurrently coded in VWM, whether they are targets and distractors, or different targets concurrently held in VWM. The latter is also seen in the human occipitotemporal cortex. Such a representational geometry provides an elegant and simple solution to enable independent information readout, effectively combating distraction from the different streams of information, while accommodating their concurrent representations. This representational scheme differs from mechanisms that actively suppress or block the encoding of distractors to reduce interference. It is likely a general neural representational principle that supports our ability to represent information beyond VWM in other situations where multiple streams of visual information are tracked and processed simultaneously.
Collapse
Affiliation(s)
- Yaoda Xu
- Department of Psychology, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Degutis JK, Chaimow D, Haenelt D, Assem M, Duncan J, Haynes JD, Weiskopf N, Lorenz R. Dynamic layer-specific processing in the prefrontal cortex during working memory. Commun Biol 2024; 7:1140. [PMID: 39277694 PMCID: PMC11401931 DOI: 10.1038/s42003-024-06780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in working memory (WM) and comprises different cytoarchitectonic layers, yet their functional role in human WM is unclear. Here, participants completed a delayed-match-to-sample task while undergoing functional magnetic resonance imaging (fMRI) at ultra-high resolution. We examine layer-specific activity to manipulations in WM load and motor response. Superficial layers exhibit a preferential response to WM load during the delay and retrieval periods of a WM task, indicating a lamina-specific activation of the frontoparietal network. Multivariate patterns encoding WM load in the superficial layer dynamically change across the three periods of the task. Last, superficial and deep layers are non-differentially involved in the motor response, challenging earlier findings of a preferential deep layer activation. Taken together, our results provide new insights into the functional laminar circuitry of the dlPFC during WM and support a dynamic account of dlPFC coding.
Collapse
Affiliation(s)
- Jonas Karolis Degutis
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
| | - Denis Chaimow
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Haenelt
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - John-Dylan Haynes
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Research Training Group "Extrospection" and Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Research Cluster of Excellence "Science of Intelligence", Technische Universität Berlin, Berlin, Germany
- Collaborative Research Center "Volition and Cognitive Control", Technische Universität Dresden, Dresden, Germany
| | - Nikolaus Weiskopf
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Romy Lorenz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
3
|
Seo S, Bharmauria V, Schütz A, Yan X, Wang H, Crawford JD. Multiunit Frontal Eye Field Activity Codes the Visuomotor Transformation, But Not Gaze Prediction or Retrospective Target Memory, in a Delayed Saccade Task. eNeuro 2024; 11:ENEURO.0413-23.2024. [PMID: 39054056 PMCID: PMC11373882 DOI: 10.1523/eneuro.0413-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Single-unit (SU) activity-action potentials isolated from one neuron-has traditionally been employed to relate neuronal activity to behavior. However, recent investigations have shown that multiunit (MU) activity-ensemble neural activity recorded within the vicinity of one microelectrode-may also contain accurate estimations of task-related neural population dynamics. Here, using an established model-fitting approach, we compared the spatial codes of SU response fields with corresponding MU response fields recorded from the frontal eye fields (FEFs) in head-unrestrained monkeys (Macaca mulatta) during a memory-guided saccade task. Overall, both SU and MU populations showed a simple visuomotor transformation: the visual response coded target-in-eye coordinates, transitioning progressively during the delay toward a future gaze-in-eye code in the saccade motor response. However, the SU population showed additional secondary codes, including a predictive gaze code in the visual response and retention of a target code in the motor response. Further, when SUs were separated into regular/fast spiking neurons, these cell types showed different spatial code progressions during the late delay period, only converging toward gaze coding during the final saccade motor response. Finally, reconstructing MU populations (by summing SU data within the same sites) failed to replicate either the SU or MU pattern. These results confirm the theoretical and practical potential of MU activity recordings as a biomarker for fundamental sensorimotor transformations (e.g., target-to-gaze coding in the oculomotor system), while also highlighting the importance of SU activity for coding more subtle (e.g., predictive/memory) aspects of sensorimotor behavior.
Collapse
Affiliation(s)
- Serah Seo
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vishal Bharmauria
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida 33606
| | - Adrian Schütz
- Department of Neurophysics, Philipps-Universität Marburg, 35032 Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, 35032 Marburg, and Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Xiaogang Yan
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - Hongying Wang
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
| | - J Douglas Crawford
- Centre for Vision Research and Centre for Integrative and Applied Neuroscience, York University, Toronto, Ontario M3J 1P3, Canada
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Bellet ME, Gay M, Bellet J, Jarraya B, Dehaene S, van Kerkoerle T, Panagiotaropoulos TI. Spontaneously emerging internal models of visual sequences combine abstract and event-specific information in the prefrontal cortex. Cell Rep 2024; 43:113952. [PMID: 38483904 DOI: 10.1016/j.celrep.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/06/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
When exposed to sensory sequences, do macaque monkeys spontaneously form abstract internal models that generalize to novel experiences? Here, we show that neuronal populations in macaque ventrolateral prefrontal cortex jointly encode visual sequences by separate codes for the specific pictures presented and for their abstract sequential structure. We recorded prefrontal neurons while macaque monkeys passively viewed visual sequences and sequence mismatches in the local-global paradigm. Even without any overt task or response requirements, prefrontal populations spontaneously form representations of sequence structure, serial order, and image identity within distinct but superimposed neuronal subspaces. Representations of sequence structure rapidly update following single exposure to a mismatch sequence, while distinct populations represent mismatches for sequences of different complexity. Finally, those representations generalize across sequences following the same repetition structure but comprising different images. These results suggest that prefrontal populations spontaneously encode rich internal models of visual sequences reflecting both content-specific and abstract information.
Collapse
Affiliation(s)
- Marie E Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| | - Marion Gay
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Joachim Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Université Paris-Saclay, UVSQ, Versailles, France; Neuromodulation Pole, Foch Hospital, Suresnes, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Timo van Kerkoerle
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Department of Neurophysics, Donders Center for Neuroscience, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Center, Rijswijk, the Netherlands
| | | |
Collapse
|
5
|
Santo-Angles A, Temudo A, Babushkin V, Sreenivasan KK. Effective connectivity of working memory performance: a DCM study of MEG data. Front Hum Neurosci 2024; 18:1339728. [PMID: 38501039 PMCID: PMC10944968 DOI: 10.3389/fnhum.2024.1339728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
Visual working memory (WM) engages several nodes of a large-scale network that includes frontal, parietal, and visual regions; however, little is understood about how these regions interact to support WM behavior. In particular, it is unclear whether network dynamics during WM maintenance primarily represent feedforward or feedback connections. This question has important implications for current debates about the relative roles of frontoparietal and visual regions in WM maintenance. In the current study, we investigated the network activity supporting WM using MEG data acquired while healthy subjects performed a multi-item delayed estimation WM task. We used computational modeling of behavior to discriminate correct responses (high accuracy trials) from two different types of incorrect responses (low accuracy and swap trials), and dynamic causal modeling of MEG data to measure effective connectivity. We observed behaviorally dependent changes in effective connectivity in a brain network comprising frontoparietal and early visual areas. In comparison with high accuracy trials, frontoparietal and frontooccipital networks showed disrupted signals depending on type of behavioral error. Low accuracy trials showed disrupted feedback signals during early portions of WM maintenance and disrupted feedforward signals during later portions of maintenance delay, while swap errors showed disrupted feedback signals during the whole delay period. These results support a distributed model of WM that emphasizes the role of visual regions in WM storage and where changes in large scale network configurations can have important consequences for memory-guided behavior.
Collapse
Affiliation(s)
- Aniol Santo-Angles
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ainsley Temudo
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vahan Babushkin
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Brain and Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Schütz A, Bharmauria V, Yan X, Wang H, Bremmer F, Crawford JD. Integration of landmark and saccade target signals in macaque frontal cortex visual responses. Commun Biol 2023; 6:938. [PMID: 37704829 PMCID: PMC10499799 DOI: 10.1038/s42003-023-05291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/26/2023] [Indexed: 09/15/2023] Open
Abstract
Visual landmarks influence spatial cognition and behavior, but their influence on visual codes for action is poorly understood. Here, we test landmark influence on the visual response to saccade targets recorded from 312 frontal and 256 supplementary eye field neurons in rhesus macaques. Visual response fields are characterized by recording neural responses to various target-landmark combinations, and then we test against several candidate spatial models. Overall, frontal/supplementary eye fields response fields preferentially code either saccade targets (40%/40%) or landmarks (30%/4.5%) in gaze fixation-centered coordinates, but most cells show multiplexed target-landmark coding within intermediate reference frames (between fixation-centered and landmark-centered). Further, these coding schemes interact: neurons with near-equal target and landmark coding show the biggest shift from fixation-centered toward landmark-centered target coding. These data show that landmark information is preserved and influences target coding in prefrontal visual responses, likely to stabilize movement goals in the presence of noisy egocentric signals.
Collapse
Affiliation(s)
- Adrian Schütz
- Department of Neurophysics, Phillips Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany & Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Vishal Bharmauria
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada
| | - Xiaogang Yan
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada
| | - Hongying Wang
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada
| | - Frank Bremmer
- Department of Neurophysics, Phillips Universität Marburg, Marburg, Germany
- Center for Mind, Brain, and Behavior - CMBB, Philipps-Universität Marburg, Marburg, Germany & Justus-Liebig-Universität Giessen, Giessen, Germany
| | - J Douglas Crawford
- York Centre for Vision Research and Vision: Science to Applications Program, York University, Toronto, Canada.
- Departments of Psychology, Biology, Kinesiology & Health Sciences, York University, Toronto, Canada.
| |
Collapse
|
7
|
Van de Steen F, Pinotsis D, Devos W, Colenbier N, Bassez I, Friston K, Marinazzo D. Dynamic causal modelling shows a prominent role of local inhibition in alpha power modulation in higher visual cortex. PLoS Comput Biol 2022; 18:e1009988. [PMID: 36574458 PMCID: PMC9829170 DOI: 10.1371/journal.pcbi.1009988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 01/09/2023] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
During resting-state EEG recordings, alpha activity is more prominent over the posterior cortex in eyes-closed (EC) conditions compared to eyes-open (EO). In this study, we characterized the difference in spectra between EO and EC conditions using dynamic causal modelling. Specifically, we investigated the role of intrinsic and extrinsic connectivity-within the visual cortex-in generating EC-EO alpha power differences over posterior electrodes. The primary visual cortex (V1) and the bilateral middle temporal visual areas (V5) were equipped with bidirectional extrinsic connections using a canonical microcircuit. The states of four intrinsically coupled subpopulations-within each occipital source-were also modelled. Using Bayesian model selection, we tested whether modulations of the intrinsic connections in V1, V5 or extrinsic connections (or a combination thereof) provided the best evidence for the data. In addition, using parametric empirical Bayes (PEB), we estimated group averages under the winning model. Bayesian model selection showed that the winning model contained both extrinsic connectivity modulations, as well as intrinsic connectivity modulations in all sources. The PEB analysis revealed increased extrinsic connectivity during EC. Overall, we found a reduction in the inhibitory intrinsic connections during EC. The results suggest that the intrinsic modulations in V5 played the most important role in producing EC-EO alpha differences, suggesting an intrinsic disinhibition in higher order visual cortex, during EC resting state.
Collapse
Affiliation(s)
- Frederik Van de Steen
- Department of Data Analysis, Ghent University, Ghent, Belgium
- Vrije Universiteit Brussel, AIMS laboratory, Brussel, Belgium
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
- * E-mail:
| | - Dimitris Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City—University of London, London, United Kingdom
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Wouter Devos
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | | | - Iege Bassez
- Department of Data Analysis, Ghent University, Ghent, Belgium
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
| | | |
Collapse
|
8
|
Pinotsis DA, Fitzgerald S, See C, Sementsova A, Widge AS. Toward biophysical markers of depression vulnerability. Front Psychiatry 2022; 13:938694. [PMID: 36329919 PMCID: PMC9622949 DOI: 10.3389/fpsyt.2022.938694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
A major difficulty with treating psychiatric disorders is their heterogeneity: different neural causes can lead to the same phenotype. To address this, we propose describing the underlying pathophysiology in terms of interpretable, biophysical parameters of a neural model derived from the electroencephalogram. We analyzed data from a small patient cohort of patients with depression and controls. Using DCM, we constructed biophysical models that describe neural dynamics in a cortical network activated during a task that is used to assess depression state. We show that biophysical model parameters are biomarkers, that is, variables that allow subtyping of depression at a biological level. They yield a low dimensional, interpretable feature space that allowed description of differences between individual patients with depressive symptoms. They could capture internal heterogeneity/variance of depression state and achieve significantly better classification than commonly used EEG features. Our work is a proof of concept that a combination of biophysical models and machine learning may outperform earlier approaches based on classical statistics and raw brain data.
Collapse
Affiliation(s)
- D. A. Pinotsis
- Centre for Mathematical Neuroscience and Psychology, Department of Psychology, City, University of London, London, United Kingdom
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - S. Fitzgerald
- Centre for Mathematical Neuroscience and Psychology, Department of Psychology, City, University of London, London, United Kingdom
| | - C. See
- Department of Computer Science, City, University of London, London, United Kingdom
| | - A. Sementsova
- Department of Computer Science, City, University of London, London, United Kingdom
| | - A. S. Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Li Q, Gong D, Tang H, Tian J. The neural coding of tonal working memory load: An functional magnetic resonance imaging study. Front Neurosci 2022; 16:979787. [PMID: 36330345 PMCID: PMC9623178 DOI: 10.3389/fnins.2022.979787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Tonal working memory load refers to the number of pitches held in working memory. It has been found that different verbal working memory loads have different neural coding (local neural activity pattern). However, whether there exists a comparable phenomenon for tonal working memory load remains unclear. In this study, we used a delayed match-to-sample paradigm to evoke tonal working memory. Neural coding of different tonal working memory loads was studied with a surface space and convolution neural network (CNN)-based multivariate pattern analysis (SC-MVPA) method. We found that first, neural coding of tonal working memory was significantly different from that of the control condition in the bilateral superior temporal gyrus (STG), supplement motor area (SMA), and precentral gyrus (PCG). Second, neural coding of nonadjacent tonal working memory loads was distinguishable in the bilateral STG and PCG. Third, neural coding is gradually enhanced as the memory load increases. Finally, neural coding of tonal working memory was encoded in the bilateral STG in the encoding phase and shored in the bilateral PCG and SMA in the maintenance phase.
Collapse
Affiliation(s)
- Qiang Li
- College of Education Science, Guizhou Education University, Guiyang, China
- *Correspondence: Qiang Li,
| | | | - Huiyi Tang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Jing Tian
- College of Education Science, Guizhou Education University, Guiyang, China
| |
Collapse
|
10
|
Li Q, Gong D, Zhang Y, Zhang H, Liu G. The bottom-up information transfer process and top-down attention control underlying tonal working memory. Front Neurosci 2022; 16:935120. [PMID: 35979330 PMCID: PMC9376259 DOI: 10.3389/fnins.2022.935120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Tonal working memory has been less investigated by neuropsychological and neuroimaging studies and even less in terms of tonal working memory load. In this study, we analyzed the dynamic cortical processing process of tonal working memory with an original surface-space-based multivariate pattern analysis (sf-MVPA) method and found that this process constituted a bottom-up information transfer process. Then, the local cortical activity pattern, local cortical response strength, and cortical functional connectivity under different tonal working memory loads were investigated. No brain area’s local activity pattern or response strength was significantly different under different memory loads. Meanwhile, the interactions between the auditory cortex (AC) and an attention control network were linearly correlated with the memory load. This finding shows that the neural mechanism underlying the tonal working memory load does not arise from changes in local activity patterns or changes in the local response strength, but from top-down attention control. Our results indicate that the implementation of tonal working memory is based on the cooperation of the bottom-up information transfer process and top-down attention control.
Collapse
Affiliation(s)
- Qiang Li
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Dinghong Gong
- Office of Academic Affairs, Guizhou Education University, Guiyang, China
| | - Yuan Zhang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Hongyi Zhang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Guangyuan Liu
- College of Electronic and Information Engineering, Southwest University, Chongqing, China
- *Correspondence: Guangyuan Liu,
| |
Collapse
|
11
|
Lorenc ES, Sreenivasan KK. Reframing the debate: The distributed systems view of working memory. VISUAL COGNITION 2021. [DOI: 10.1080/13506285.2021.1899091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Kartik K. Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Spatiotemporal Coding in the Macaque Supplementary Eye Fields: Landmark Influence in the Target-to-Gaze Transformation. eNeuro 2021; 8:ENEURO.0446-20.2020. [PMID: 33318073 PMCID: PMC7877461 DOI: 10.1523/eneuro.0446-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Eye-centered (egocentric) and landmark-centered (allocentric) visual signals influence spatial cognition, navigation, and goal-directed action, but the neural mechanisms that integrate these signals for motor control are poorly understood. A likely candidate for egocentric/allocentric integration in the gaze control system is the supplementary eye fields (SEF), a mediofrontal structure with high-level “executive” functions, spatially tuned visual/motor response fields, and reciprocal projections with the frontal eye fields (FEF). To test this hypothesis, we trained two head-unrestrained monkeys (Macaca mulatta) to saccade toward a remembered visual target in the presence of a visual landmark that shifted during the delay, causing gaze end points to shift partially in the same direction. A total of 256 SEF neurons were recorded, including 68 with spatially tuned response fields. Model fits to the latter established that, like the FEF and superior colliculus (SC), spatially tuned SEF responses primarily showed an egocentric (eye-centered) target-to-gaze position transformation. However, the landmark shift influenced this default egocentric transformation: during the delay, motor neurons (with no visual response) showed a transient but unintegrated shift (i.e., not correlated with the target-to-gaze transformation), whereas during the saccade-related burst visuomotor (VM) neurons showed an integrated shift (i.e., correlated with the target-to-gaze transformation). This differed from our simultaneous FEF recordings (Bharmauria et al., 2020), which showed a transient shift in VM neurons, followed by an integrated response in all motor responses. Based on these findings and past literature, we propose that prefrontal cortex incorporates landmark-centered information into a distributed, eye-centered target-to-gaze transformation through a reciprocal prefrontal circuit.
Collapse
|
13
|
Pinotsis DA, Miller EK. Differences in visually induced MEG oscillations reflect differences in deep cortical layer activity. Commun Biol 2020; 3:707. [PMID: 33239652 PMCID: PMC7688644 DOI: 10.1038/s42003-020-01438-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Neural activity is organized at multiple scales, ranging from the cellular to the whole brain level. Connecting neural dynamics at different scales is important for understanding brain pathology. Neurological diseases and disorders arise from interactions between factors that are expressed in multiple scales. Here, we suggest a new way to link microscopic and macroscopic dynamics through combinations of computational models. This exploits results from statistical decision theory and Bayesian inference. To validate our approach, we used two independent MEG datasets. In both, we found that variability in visually induced oscillations recorded from different people in simple visual perception tasks resulted from differences in the level of inhibition specific to deep cortical layers. This suggests differences in feedback to sensory areas and each subject's hypotheses about sensations due to differences in their prior experience. Our approach provides a new link between non-invasive brain imaging data, laminar dynamics and top-down control.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City -University of London, London, EC1V 0HB, UK.
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
14
|
Min BK, Kim HS, Pinotsis DA, Pantazis D. Thalamocortical inhibitory dynamics support conscious perception. Neuroimage 2020; 220:117066. [PMID: 32565278 DOI: 10.1016/j.neuroimage.2020.117066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022] Open
Abstract
Whether thalamocortical interactions play a decisive role in conscious perception remains an open question. We presented rapid red/green color flickering stimuli, which induced the mental perception of either an illusory orange color or non-fused red and green colors. Using magnetoencephalography, we observed 6-Hz thalamic activity associated with thalamocortical inhibitory coupling only during the conscious perception of the illusory orange color. This sustained thalamic disinhibition was temporally coupled with higher visual cortical activation during the conscious perception of the orange color, providing neurophysiological evidence of the role of thalamocortical synchronization in conscious awareness of mental representation. Bayesian model comparison consistently supported the thalamocortical model in conscious perception. Taken together, experimental and theoretical evidence established the thalamocortical inhibitory network as a gateway to conscious mental representations.
Collapse
Affiliation(s)
- Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Hyun Seok Kim
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Dimitris A Pinotsis
- Center for Mathematical Neuroscience and Psychology, Department of Psychology, City-University of London, London, EC1V 0HB, UK; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dimitrios Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
15
|
Bharmauria V, Sajad A, Li J, Yan X, Wang H, Crawford JD. Integration of Eye-Centered and Landmark-Centered Codes in Frontal Eye Field Gaze Responses. Cereb Cortex 2020; 30:4995-5013. [PMID: 32390052 DOI: 10.1093/cercor/bhaa090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
The visual system is thought to separate egocentric and allocentric representations, but behavioral experiments show that these codes are optimally integrated to influence goal-directed movements. To test if frontal cortex participates in this integration, we recorded primate frontal eye field activity during a cue-conflict memory delay saccade task. To dissociate egocentric and allocentric coordinates, we surreptitiously shifted a visual landmark during the delay period, causing saccades to deviate by 37% in the same direction. To assess the cellular mechanisms, we fit neural response fields against an egocentric (eye-centered target-to-gaze) continuum, and an allocentric shift (eye-to-landmark-centered) continuum. Initial visual responses best-fit target position. Motor responses (after the landmark shift) predicted future gaze position but embedded within the motor code was a 29% shift toward allocentric coordinates. This shift appeared transiently in memory-related visuomotor activity, and then reappeared in motor activity before saccades. Notably, fits along the egocentric and allocentric shift continua were initially independent, but became correlated across neurons just before the motor burst. Overall, these results implicate frontal cortex in the integration of egocentric and allocentric visual information for goal-directed action, and demonstrate the cell-specific, temporal progression of signal multiplexing for this process in the gaze system.
Collapse
Affiliation(s)
- Vishal Bharmauria
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada M3J 1P3
| | - Amirsaman Sajad
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada M3J 1P3.,Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240, USA
| | - Jirui Li
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada M3J 1P3
| | - Xiaogang Yan
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada M3J 1P3
| | - Hongying Wang
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada M3J 1P3
| | - John Douglas Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, Ontario, Canada M3J 1P3.,Departments of Psychology, Biology and Kinesiology & Health Sciences, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
16
|
Yurgil KA, Velasquez MA, Winston JL, Reichman NB, Colombo PJ. Music Training, Working Memory, and Neural Oscillations: A Review. Front Psychol 2020; 11:266. [PMID: 32153474 PMCID: PMC7047970 DOI: 10.3389/fpsyg.2020.00266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
This review focuses on reports that link music training to working memory and neural oscillations. Music training is increasingly associated with improvement in working memory, which is strongly related to both localized and distributed patterns of neural oscillations. Importantly, there is a small but growing number of reports of relationships between music training, working memory, and neural oscillations in adults. Taken together, these studies make important contributions to our understanding of the neural mechanisms that support effects of music training on behavioral measures of executive functions. In addition, they reveal gaps in our knowledge that hold promise for further investigation. The current review is divided into the main sections that follow: (1) discussion of behavioral measures of working memory, and effects of music training on working memory in adults; (2) relationships between music training and neural oscillations during temporal stages of working memory; (3) relationships between music training and working memory in children; (4) relationships between music training and working memory in older adults; and (5) effects of entrainment of neural oscillations on cognitive processing. We conclude that the study of neural oscillations is proving useful in elucidating the neural mechanisms of relationships between music training and the temporal stages of working memory. Moreover, a lifespan approach to these studies will likely reveal strategies to improve and maintain executive function during development and aging.
Collapse
Affiliation(s)
- Kate A. Yurgil
- Department of Psychological Sciences, Loyola University, New Orleans, LA, United States
| | | | - Jenna L. Winston
- Department of Psychology, Tulane University, New Orleans, LA, United States
| | - Noah B. Reichman
- Brain Institute, Tulane University, New Orleans, LA, United States
| | - Paul J. Colombo
- Department of Psychology, Tulane University, New Orleans, LA, United States
- Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
17
|
Functional dissociation of anterior cingulate cortex and intraparietal sulcus in visual working memory. Cortex 2019; 121:277-291. [DOI: 10.1016/j.cortex.2019.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/31/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
|