1
|
Jiao S, Wang K, Luo Y, Zeng J, Han Z. Plastic reorganization of the topological asymmetry of hemispheric white matter networks induced by congenital visual experience deprivation. Neuroimage 2024; 299:120844. [PMID: 39260781 DOI: 10.1016/j.neuroimage.2024.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024] Open
Abstract
Congenital blindness offers a unique opportunity to investigate human brain plasticity. The influence of congenital visual loss on the asymmetry of the structural network remains poorly understood. To address this question, we recruited 21 participants with congenital blindness (CB) and 21 age-matched sighted controls (SCs). Employing diffusion and structural magnetic resonance imaging, we constructed hemispheric white matter (WM) networks using deterministic fiber tractography and applied graph theory methodologies to assess topological efficiency (i.e., network global efficiency, network local efficiency, and nodal local efficiency) within these networks. Statistical analyses revealed a consistent leftward asymmetry in global efficiency across both groups. However, a different pattern emerged in network local efficiency, with the CB group exhibiting a symmetric state, while the SC group showed a leftward asymmetry. Specifically, compared to the SC group, the CB group exhibited a decrease in local efficiency in the left hemisphere, which was caused by a reduction in the nodal properties of some key regions mainly distributed in the left occipital lobe. Furthermore, interhemispheric tracts connecting these key regions exhibited significant structural changes primarily in the splenium of the corpus callosum. This result confirms the initial observation that the reorganization in asymmetry of the WM network following congenital visual loss is associated with structural changes in the corpus callosum. These findings provide novel insights into the neuroplasticity and adaptability of the brain, particularly at the network level.
Collapse
Affiliation(s)
- Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; School of System Science, Beijing Normal University, Beijing 100875, China
| | - Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Department of Psychology and Art Education, Chengdu Education Research Institute, Chengdu 610036, China
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Zhang J, Luo Y, Zhong L, Liu H, Yang Z, Weng A, Zhang Y, Zhang W, Yan Z, Xu J, Liu G, Peng K, Ou Z. Topological alterations in white matter anatomical networks in cervical dystonia. BMC Neurol 2024; 24:179. [PMID: 38802755 PMCID: PMC11129473 DOI: 10.1186/s12883-024-03682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Accumulating neuroimaging evidence indicates that patients with cervical dystonia (CD) have changes in the cortico-subcortical white matter (WM) bundle. However, whether these patients' WM structural networks undergo reorganization remains largely unclear. We aimed to investigate topological changes in large-scale WM structural networks in patients with CD compared to healthy controls (HCs), and explore the network changes associated with clinical manifestations. METHODS Diffusion tensor imaging (DTI) was conducted in 30 patients with CD and 30 HCs, and WM network construction was based on the BNA-246 atlas and deterministic tractography. Based on the graph theoretical analysis, global and local topological properties were calculated and compared between patients with CD and HCs. Then, the AAL-90 atlas was used for the reproducibility analyses. In addition, the relationship between abnormal topological properties and clinical characteristics was analyzed. RESULTS Compared with HCs, patients with CD showed changes in network segregation and resilience, characterized by increased local efficiency and assortativity, respectively. In addition, a significant decrease of network strength was also found in patients with CD relative to HCs. Validation analyses using the AAL-90 atlas similarly showed increased assortativity and network strength in patients with CD. No significant correlations were found between altered network properties and clinical characteristics in patients with CD. CONCLUSION Our findings show that reorganization of the large-scale WM structural network exists in patients with CD. However, this reorganization is attributed to dystonia-specific abnormalities or hyperkinetic movements that need further identification.
Collapse
Affiliation(s)
- Jiana Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Luo
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Linchang Zhong
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Huiming Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhengkun Yang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ai Weng
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weixi Zhang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhicong Yan
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Gang Liu
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kangqiang Peng
- Department of Medical Imaging, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Zilin Ou
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Jiao S, Wang K, Zhang L, Luo Y, Lin J, Han Z. Developmental plasticity of the structural network of the occipital cortex in congenital blindness. Cereb Cortex 2023; 33:11526-11540. [PMID: 37851850 DOI: 10.1093/cercor/bhad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
The occipital cortex is the visual processing center in the mammalian brain. An unanswered scientific question pertains to the impact of congenital visual deprivation on the development of various profiles within the occipital network. To address this issue, we recruited 30 congenitally blind participants (8 children and 22 adults) as well as 31 sighted participants (10 children and 21 adults). Our investigation focused on identifying the gray matter regions and white matter connections within the occipital cortex, alongside behavioral measures, that demonstrated different developmental patterns between blind and sighted individuals. We discovered significant developmental changes in the gray matter regions and white matter connections of the occipital cortex among blind individuals from childhood to adulthood, in comparison with sighted individuals. Moreover, some of these structures exhibited cognitive functional reorganization. Specifically, in blind adults, the posterior occipital regions (left calcarine fissure and right middle occipital gyrus) showed reorganization of tactile perception, and the forceps major tracts were reorganized for braille reading. These plastic changes in blind individuals may be attributed to experience-dependent neuronal apoptosis, pruning, and myelination. These findings provide valuable insights into the longitudinal neuroanatomical and cognitive functional plasticity of the occipital network following long-term visual deprivation.
Collapse
Affiliation(s)
- Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Linjun Zhang
- School of Chinese as a Second Language, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Junfeng Lin
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| |
Collapse
|
4
|
Yang H, Wu G, Li Y, Ma Y, Chen R, Pines A, Xu T, Sydnor VJ, Satterthwaite TD, Cui Z. Connectional Hierarchy in Human Brain Revealed by Individual Variability of Functional Network Edges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531800. [PMID: 36945479 PMCID: PMC10028904 DOI: 10.1101/2023.03.08.531800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The human cerebral cortex is connected by intricate inter-areal wiring at the macroscale. The cortical hierarchy from primary sensorimotor to higher-order association areas is a unifying organizational principle across various neurobiological properties; however, previous studies have not clarified whether the connections between cortical regions exhibit a similar hierarchical pattern. Here, we identify a connectional hierarchy indexed by inter-individual variability of functional connectivity edges, which continuously progresses along a hierarchical gradient from within-network connections to between-network edges connecting sensorimotor and association networks. We found that this connectional hierarchy of variability aligns with both hemodynamic and electromagnetic connectivity strength and is constrained by structural connectivity strength. Moreover, the patterning of connectional hierarchy is related to inter-regional similarity in transcriptional and neurotransmitter receptor profiles. Using the Neurosynth cognitive atlas and cortical vulnerability maps in 13 brain disorders, we found that the connectional hierarchy of variability is associated with similarity networks of cognitive relevance and that of disorder vulnerability. Finally, we found that the prominence of this hierarchical gradient of connectivity variability declines during youth. Together, our results reveal a novel hierarchal organizational principle at the connectional level that links multimodal and multiscale human connectomes to individual variability in functional connectivity.
Collapse
Affiliation(s)
- Hang Yang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, 102206, China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yaoxin Li
- Chinese Institute for Brain Research, Beijing, 102206, China
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yiyao Ma
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Runsen Chen
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Adam Pines
- Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY 10022, USA
| | - Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
5
|
Yang L, Zhao C, Xiong Y, Zhong S, Wu D, Peng S, Thiebaut de Schotten M, Gong G. Callosal Fiber Length Scales with Brain Size According to Functional Lateralization, Evolution, and Development. J Neurosci 2022; 42:3599-3610. [PMID: 35332080 PMCID: PMC9053854 DOI: 10.1523/jneurosci.1510-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
Brain size significantly impacts the organization of white matter fibers. Fiber length scaling, the degree to which fiber length varies according to brain size, was overlooked. We investigated how fiber lengths within the corpus callosum, the most prominent white matter tract, vary according to brain size. The results showed substantial variation in length scaling among callosal fibers, replicated in two large healthy cohorts (∼2000 human subjects, including both sexes). The underscaled callosal fibers mainly connected the precentral gyrus and parietal cortices, whereas the overscaled callosal fibers mainly connected the prefrontal cortices. The variation in such length scaling was biologically meaningful: larger scaling corresponded to larger neurite density index but smaller fractional anisotropy values; cortical regions connected by the callosal fibers with larger scaling were more lateralized functionally as well as phylogenetically and ontogenetically more recent than their counterparts. These findings highlight an interaction between interhemispheric communication and organizational and adaptive principles underlying brain development and evolution.SIGNIFICANCE STATEMENT Brain size varies across evolution, development, and individuals. Relative to small brains, the neural fiber length in large brains is inevitably increased, but the degree of such increase may differ between fiber tracts. Such a difference, if it exists, is valuable for understanding adaptive neural principles in large versus small brains during evolution and development. The present study showed a substantial difference in the length increase between the callosal fibers that connect the two hemispheres, replicated in two large healthy cohorts. Together, our study demonstrates that reorganization of interhemispheric fibers length according to brain size is intrinsically related to fiber composition, functional lateralization, cortical myelin content, and evolutionary and developmental expansion.
Collapse
Affiliation(s)
- Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yirong Xiong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Suyu Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Di Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Shaoling Peng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris 75006, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, University of Bordeaux, Bordeaux 33405, France
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
6
|
Butler MG, Miller BS, Romano A, Ross J, Abuzzahab MJ, Backeljauw P, Bamba V, Bhangoo A, Mauras N, Geffner M. Genetic conditions of short stature: A review of three classic examples. Front Endocrinol (Lausanne) 2022; 13:1011960. [PMID: 36339399 PMCID: PMC9634554 DOI: 10.3389/fendo.2022.1011960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Noonan, Turner, and Prader-Willi syndromes are classical genetic disorders that are marked by short stature. Each disorder has been recognized for several decades and is backed by extensive published literature describing its features, genetic origins, and optimal treatment strategies. These disorders are accompanied by a multitude of comorbidities, including cardiovascular issues, endocrinopathies, and infertility. Diagnostic delays, syndrome-associated comorbidities, and inefficient communication among the members of a patient's health care team can affect a patient's well-being from birth through adulthood. Insufficient information is available to help patients and their multidisciplinary team of providers transition from pediatric to adult health care systems. The aim of this review is to summarize the clinical features and genetics associated with each syndrome, describe best practices for diagnosis and treatment, and emphasize the importance of multidisciplinary teams and appropriate care plans for the pediatric to adult health care transition.
Collapse
Affiliation(s)
- Merlin G. Butler
- Department of Psychiatry & Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Merlin G. Butler,
| | - Bradley S. Miller
- Pediatric Endocrinology, University of Minnesota Masonic Children’s Hospital, Minneapolis, MN, United States
| | - Alicia Romano
- Department of Pediatrics, New York Medical College, Valhalla, NY, United States
| | - Judith Ross
- Department of Pediatrics, Nemours Children’s Health, Wilmington, DE, United States
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Philippe Backeljauw
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Vaneeta Bamba
- Division of Endocrinology, Children’s Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Amrit Bhangoo
- Pediatric Endocrinology, Children's Health of Orange County (CHOC) Children’s Hospital, Orange, CA, United States
| | - Nelly Mauras
- Division of Endocrinology, Nemours Children’s Health, Jacksonville, FL, United States
| | - Mitchell Geffner
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Guo Y, Peng K, Liu Y, Zhong L, Dang C, Yan Z, Wang Y, Zeng J, Zhang W, Ou Z, Liu G. Topological Alterations in White Matter Structural Networks in Blepharospasm. Mov Disord 2021; 36:2802-2810. [PMID: 34320254 DOI: 10.1002/mds.28736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence indicates regional structural changes in the white matter (WM) of brains in patients with blepharospasm (BSP); however, whether large-scale WM structural networks undergo widespread reorganization in these patients remains unclear. OBJECTIVE We investigated topology changes and global and local features of large-scale WM structural networks in BSP patients compared with hemifacial spasm (HFS) patients or healthy controls (HCs). METHODS This cross-sectional study applied graph theoretical analysis to assess deterministic diffusion tensor tractography findings in 41 BSP patients, 41 HFS patients, and 41 HCs. WM structural connectivity in 246 cortical and subcortical regions was assessed, and topological parameters of the resulting graphs were calculated. Networks were compared among BSP, HFS, and HCs groups. RESULTS Compared to HCs, both BSP and HFS patients showed alterations in network integration and segregation characterized by increased global efficiency and modularity and reduced shortest path length. Moreover, increased nodal efficiency in multiple cortical and subcortical regions was found in BSP and HFS patients compared with HCs. However, these differences were not found between BSP and HFS patients. Whereas all participants showed highly similar hub distribution patterns, BSP patients had additional hub regions not present in either HFS patients or HCs, which were located in the primary head and face motor cortex and basal ganglia. CONCLUSIONS Our findings suggest that the large-scale WM structural network undergoes an extensive reorganization in BSP, probably due to both dystonia-specific abnormalities and facial hyperkinetic movements. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yaomin Guo
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kangqiang Peng
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ying Liu
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Linchang Zhong
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Chao Dang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhicong Yan
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Wang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixi Zhang
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilin Ou
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gang Liu
- Department of Neurology, Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
| |
Collapse
|
8
|
Liang X, Zhao C, Jin X, Jiang Y, Yang L, Chen Y, Gong G. Sex-related human brain asymmetry in hemispheric functional gradients. Neuroimage 2021; 229:117761. [PMID: 33454413 DOI: 10.1016/j.neuroimage.2021.117761] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
The left and right hemispheres of the human brain are two connected but relatively independent functional modules; they show multidimensional asymmetries ranging from particular local brain unit properties to entire hemispheric connectome topology. To date, however, it remains largely unknown whether and how hemispheric functional hierarchical structures differ between hemispheres. In the present study, we adopted a newly developed resting-state (rs) functional connectivity (FC)-based gradient approach to evaluate hemispheric functional hierarchical structures and their asymmetries in right-handed healthy young adults. Our results showed an overall mirrored principal functional gradient between hemispheres, with the sensory cortex and the default-mode network (DMN) anchored at the two opposite ends of the gradient. Interestingly, the left hemisphere showed a significantly larger full range of the principal gradient in both males and females, with males exhibiting greater leftward asymmetry. Similarly, the principal gradient component scores of two regions around the middle temporal gyrus and posterior orbitofrontal cortex exhibited similar hemisphere × sex interaction effects: a greater degree of leftward asymmetry in males than in females. Moreover, we observed significant main hemisphere and sex effects in distributed regions across the entire hemisphere. All these results are reproducible and robust between test-retest rs-fMRI sessions. Our findings provide evidence of functional gradients that enhance the present understanding of human brain asymmetries in functional organization and highlight the impact of sex on hemispheric functional gradients and their asymmetries.
Collapse
Affiliation(s)
- Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; School of Systems Science, Beijing Normal University, Beijing, China
| | - Xinhu Jin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yijun Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
9
|
Zhong S, Wei L, Zhao C, Yang L, Di Z, Francks C, Gong G. Interhemispheric Relationship of Genetic Influence on Human Brain Connectivity. Cereb Cortex 2020; 31:77-88. [DOI: 10.1093/cercor/bhaa207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022] Open
Abstract
Abstract
To understand the origins of interhemispheric differences and commonalities/coupling in human brain wiring, it is crucial to determine how homologous interregional connectivities of the left and right hemispheres are genetically determined and related. To address this, in the present study, we analyzed human twin and pedigree samples with high-quality diffusion magnetic resonance imaging tractography and estimated the heritability and genetic correlation of homologous left and right white matter (WM) connections. The results showed that the heritability of WM connectivity was similar and coupled between the 2 hemispheres and that the degree of overlap in genetic factors underlying homologous WM connectivity (i.e., interhemispheric genetic correlation) varied substantially across the human brain: from complete overlap to complete nonoverlap. Particularly, the heritability was significantly stronger and the chance of interhemispheric complete overlap in genetic factors was higher in subcortical WM connections than in cortical WM connections. In addition, the heritability and interhemispheric genetic correlations were stronger for long-range connections than for short-range connections. These findings highlight the determinants of the genetics underlying WM connectivity and its interhemispheric relationships, and provide insight into genetic basis of WM connectivity asymmetries in both healthy and disease states.
Collapse
Affiliation(s)
- Suyu Zhong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Long Wei
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zengru Di
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Clyde Francks
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Long X, Little G, Treit S, Beaulieu C, Gong G, Lebel C. Altered brain white matter connectome in children and adolescents with prenatal alcohol exposure. Brain Struct Funct 2020; 225:1123-1133. [PMID: 32239277 DOI: 10.1007/s00429-020-02064-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022]
Abstract
Diffuson tensor imaging (DTI) has demonstrated widespread alterations of brain white matter structure in children with prenatal alcohol exposure (PAE), yet it remains unclear how these alterations affect the structural brain network as a whole. The present study aimed to examine changes in the DTI-based structural connectome in children and adolescents with PAE compared to unexposed controls. Participants were 121 children and adolescents with PAE (51 females) and 119 typically-developing controls (49 females) aged 5-18 years with DTI data collected at one of four research centers across Canada. Graph-theory based analysis was performed on the connectivity matrix constructed from whole-brain white matter fibers via deterministic tractography. The PAE group had significantly decreased whole-brain global efficiency, degree centrality, and participation coefficients, as well as increased shortest path length and betweenness centrality compared to unexposed controls. Individuals with PAE had decreased connectivity between the attention, somatomotor, and default mode networks compared to controls. This study demonstrates decreased structural white matter connectivity in children and adolescents with PAE at a whole-brain level, suggesting widespread alterations in how networks are connected with each other. This decreased connectivity may underlie cognitive and behavioural difficulties in children with PAE.
Collapse
Affiliation(s)
- Xiangyu Long
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, B4-513, University of Calgary, 2888 Shaganappi Trail, Calgary, NWAB, T3B 6A8, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Graham Little
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG, McGovern Institute for Brain Research, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, B4-513, University of Calgary, 2888 Shaganappi Trail, Calgary, NWAB, T3B 6A8, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Li M, Zhao C, Xie S, Liu X, Zhao Q, Zhang Z, Gong G. Effects of hypogonadism on brain development during adolescence in girls with Turner syndrome. Hum Brain Mapp 2019; 40:4901-4911. [PMID: 31389646 DOI: 10.1002/hbm.24745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/18/2019] [Accepted: 07/21/2019] [Indexed: 01/19/2023] Open
Abstract
Gonadal steroids play an important role in brain development, particularly during puberty. Girls with Turner syndrome (TS), a genetic disorder characterized by the absence of all or part of the second X chromosome, mostly present a loss of ovarian function and estrogen deficiency, as well as neuroanatomical abnormalities. However, few studies have attempted to isolate the indirect effects of hormones from the direct genetic effects of X chromosome insufficiency. Brain structural (i.e., gray matter [GM] morphology and white matter [WM] connectivity) and functional phenotypes (i.e., resting-state functional measures) were investigated in 23 adolescent girls with TS using multimodal MRI to assess the role of hypogonadism in brain development in TS. Specifically, all girls with TS were divided into a hormonally subnormal group and an abnormal subgroup according to their serum follicle-stimulating hormone (FSH) levels, with the karyotypes approximately matched between the two groups. Statistical analyses revealed significant effects of the "group-by-age" interaction on GM volume around the left medial orbitofrontal cortex and WM diffusion parameters around the bilateral corticospinal tract, anterior thalamic radiation, left superior longitudinal fasciculus, and cingulum bundle, but no significant "group-by-age" or group differences were observed in resting-state functional measures. Based on these findings, estrogen deficiency has a nontrivial impact on the development of the brain structure during adolescence in girls with TS. Our present study provides novel insights into the mechanism by which hypogonadism influences brain development during adolescence in girls with TS, and highlights the important role of estrogen replacement therapy in treating TS.
Collapse
Affiliation(s)
- Min Li
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sheng Xie
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiwei Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Qiuling Zhao
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Zhixin Zhang
- Department of Pediatrics, China-Japan Friendship Hospital, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning &IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|