1
|
Griesbauer EM, Fernandez Velasco P, Coutrot A, Wiener JM, Morley JG, McNamee D, Manley E, Spiers HJ. London taxi drivers exploit neighbourhood boundaries for hierarchical route planning. Cognition 2024; 256:106014. [PMID: 39643957 DOI: 10.1016/j.cognition.2024.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Humans show an impressive ability to plan over complex situations and environments. A classic approach to explaining such planning has been tree-search algorithms which search through alternative state sequences for the most efficient path through states. However, this approach fails when the number of states is large due to the time to compute all possible sequences. Hierarchical route planning has been proposed as an alternative, offering a computationally efficient mechanism in which the representation of the environment is segregated into clusters. Current evidence for hierarchical planning comes from experimentally created environments which have clearly defined boundaries and far fewer states than the real-world. To test for real-world hierarchical planning we exploited the capacity of London licensed taxi drivers to use their memory to construct a street by street plan across London, UK (>26,000 streets). The time to recall each successive street name was treated as the response time, with a rapid average of 1.8 s between each street. In support of hierarchical planning we find that the clustered structure of London's regions impacts the response times, with minimal impact of the distance across the street network (as would be predicted by tree-search). We also find that changing direction during the plan (e.g. turning left or right) is associated with delayed response times. Thus, our results provide real-world evidence for how humans structure planning over a very large number of states, and give a measure of human expertise in planning.
Collapse
Affiliation(s)
- Eva-Maria Griesbauer
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK; Ordnance Survey Ltd, Southampton, UK
| | | | - Antoine Coutrot
- Univ Lyon, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69621 Lyon, France
| | - Jan M Wiener
- Department of Psychology, Bournemouth University, UK
| | | | - Daniel McNamee
- Neuroscience Programme, Champalimaud Research, Centre for the Unknown, Lisbon, Portugal
| | - Ed Manley
- School of Geography, University of Leeds, Leeds, UK; Centre for Advanced Spatial Analysis, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
2
|
Pishdadian S, Coutrot A, Webber L, Hornberger M, Spiers H, Rosenbaum RS. Combining patient-lesion and big data approaches to reveal hippocampal contributions to spatial memory and navigation. iScience 2024; 27:109977. [PMID: 38947515 PMCID: PMC11214368 DOI: 10.1016/j.isci.2024.109977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/14/2024] [Accepted: 05/11/2024] [Indexed: 07/02/2024] Open
Abstract
Classic findings of impaired allocentric spatial learning and memory following hippocampal lesions indicate that the hippocampus supports cognitive maps of one's environment. Many studies assess navigation in vista space virtual reality environments and compare hippocampal-lesioned individuals' performance to that of small control samples, potentially stifling detection of preserved and impaired performance. Using the mobile app Sea Hero Quest, we examined navigation in diverse complex environments in two individuals with hippocampal lesions relative to demographically matched controls (N = 17,734). We found surprisingly accurate navigation in several environments, particularly those containing a constrained set of sub-goals, paths, and/or turns. Areas of impaired performance may reflect a role for the hippocampus in anterograde memory and more flexible and/or precise spatial representations, even when the need for allocentric processing is minimal. The results emphasize the value of combining single cases with big data and illustrate navigation performance profiles in individuals with hippocampal compromise.
Collapse
Affiliation(s)
- Sara Pishdadian
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Complex Care and Recovery Program, Centre for Addiction and Mental Health (CAMH), Toronto M6J 1H4, Canada
| | - Antoine Coutrot
- Centre National de la Recherche Scientifique (CNRS), University of Lyon, 69361 Lyon, France
| | - Lauren Webber
- Department of Psychology, York University, Toronto M3J 1P3, Canada
| | | | - Hugo Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1N 3AZ, UK
| | - R. Shayna Rosenbaum
- Department of Psychology, York University, Toronto M3J 1P3, Canada
- Vision: Science to Application (VISTA) Program, York University, Toronto M3J 1P3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto M6A 2E1, Canada
| |
Collapse
|
3
|
Liang Z, Wu S, Wu J, Wang WX, Qin S, Liu C. Distance and grid-like codes support the navigation of abstract social space in the human brain. eLife 2024; 12:RP89025. [PMID: 38875004 DOI: 10.7554/elife.89025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a 'social cognitive map' organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.
Collapse
Affiliation(s)
- Zilu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Simeng Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Wen-Xu Wang
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Ozubko JD, Campbell M, Verhayden A, Demetri B, Brady M, Thorp J, Brunec I. Stereotypical Hippocampal Clustering Predicts Navigational Success in Virtualized Real-World Environments. J Neurosci 2024; 44:e1057232024. [PMID: 38641405 PMCID: PMC11170676 DOI: 10.1523/jneurosci.1057-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/23/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024] Open
Abstract
Structural differences along the hippocampal long axis are believed to underlie meaningful functional differences. Yet, recent data-driven parcellations of the hippocampus subdivide the hippocampus into a 10-cluster map with anterior-medial, anterior-lateral, and posteroanterior-lateral, middle, and posterior components. We tested whether task and experience could modulate this clustering using a spatial learning experiment where male and female participants were trained to virtually navigate a novel neighborhood in a Google Street View-like environment. Participants were scanned while navigating routes early in training and after a 2 week training period. Using the 10-cluster map as the ideal template, we found that participants who eventually learn the neighborhood well have hippocampal cluster maps consistent with the ideal-even on their second day of learning-and their cluster mappings do not deviate over the 2 week training period. However, participants who eventually learn the neighborhood poorly begin with hippocampal cluster maps inconsistent with the ideal template, though their cluster mappings may become more stereotypical after the 2 week training. Interestingly this improvement seems to be route specific: after some early improvement, when a new route is navigated, participants' hippocampal maps revert back to less stereotypical organization. We conclude that hippocampal clustering is not dependent solely on anatomical structure and instead is driven by a combination of anatomy, task, and, importantly, experience. Nonetheless, while hippocampal clustering can change with experience, efficient navigation depends on functional hippocampal activity clustering in a stereotypical manner, highlighting optimal divisions of processing along the hippocampal anterior-posterior and medial-lateral axes.
Collapse
Affiliation(s)
- Jason D Ozubko
- Psychology Department, SUNY Geneseo, Geneseo, New York 14454
| | | | | | - Brooke Demetri
- Psychology Department, SUNY Geneseo, Geneseo, New York 14454
| | - Molly Brady
- Psychology Department, SUNY Geneseo, Geneseo, New York 14454
| | - John Thorp
- Psychology Department, Columbia University, New York, New York 10027
| | - Iva Brunec
- Psychology Department, University of Pennsylvania & Temple University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
5
|
Sulpizio V, Teghil A, Pitzalis S, Boccia M. Common and specific activations supporting optic flow processing and navigation as revealed by a meta-analysis of neuroimaging studies. Brain Struct Funct 2024; 229:1021-1045. [PMID: 38592557 PMCID: PMC11147901 DOI: 10.1007/s00429-024-02790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Optic flow provides useful information in service of spatial navigation. However, whether brain networks supporting these two functions overlap is still unclear. Here we used Activation Likelihood Estimation (ALE) to assess the correspondence between brain correlates of optic flow processing and spatial navigation and their specific neural activations. Since computational and connectivity evidence suggests that visual input from optic flow provides information mainly during egocentric navigation, we further tested the correspondence between brain correlates of optic flow processing and that of both egocentric and allocentric navigation. Optic flow processing shared activation with egocentric (but not allocentric) navigation in the anterior precuneus, suggesting its role in providing information about self-motion, as derived from the analysis of optic flow, in service of egocentric navigation. We further documented that optic flow perception and navigation are partially segregated into two functional and anatomical networks, i.e., the dorsal and the ventromedial networks. Present results point to a dynamic interplay between the dorsal and ventral visual pathways aimed at coordinating visually guided navigation in the environment.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Humanities, Education and Social Sciences, University of Molise, Campobasso, Italy
| | - Alice Teghil
- Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', Rome, Italy
| | - Maddalena Boccia
- Department of Psychology, Sapienza University, Rome, Italy.
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| |
Collapse
|
6
|
Maier PM, Iggena D, Ploner CJ, Finke C. Memory consolidation affects the interplay of place and response navigation. Cortex 2024; 175:12-27. [PMID: 38701643 DOI: 10.1016/j.cortex.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/11/2024] [Accepted: 04/12/2024] [Indexed: 05/05/2024]
Abstract
Navigation through space is based on memory representations of landmarks ('place') or movement sequences ('response'). Over time, memory representations transform through consolidation. However, it is unclear how the transformation affects place and response navigation in humans. In the present study, healthy adults navigated to target locations in a virtual maze. The preference for using place and response strategies and the ability to recall place and response memories were tested after a delay of one hour (n = 31), one day (n = 30), or two weeks (n = 32). The different delays captured early-phase synaptic changes, changes after one night of sleep, and long-delay changes due to the reorganization of navigation networks. Our results show that the relative contributions of place and response navigation changed as a function of time. After a short delay of up to one day, participants preferentially used a place strategy and exhibited a high degree of visual landmark exploration. After a longer delay of two weeks, place strategy use decreased significantly. Participants now equally relied on place and response strategy use and increasingly repeated previously taken paths. Further analyses indicate that response strategy use predominantly occurred as a compensatory strategy in the absence of sufficient place memory. Over time, place memory faded before response memory. We suggest that the observed shift from place to response navigation is context-dependent since detailed landmark information, which strongly relied on hippocampal function, decayed faster than sequence information, which required less detail and depended on extra-hippocampal areas. We conclude that changes in place and response navigation likely reflect the reorganization of navigation networks during systems consolidation.
Collapse
Affiliation(s)
- Patrizia M Maier
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany; Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany
| | - Deetje Iggena
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany; Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany
| | - Christoph J Ploner
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Carsten Finke
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany; Humboldt-Universität zu Berlin, Faculty of Philosophy, Berlin School of Mind and Brain, Berlin, Germany.
| |
Collapse
|
7
|
Qiu Y, Li H, Liao J, Chen K, Wu X, Liu B, Huang R. Forming cognitive maps for abstract spaces: the roles of the human hippocampus and orbitofrontal cortex. Commun Biol 2024; 7:517. [PMID: 38693344 PMCID: PMC11063219 DOI: 10.1038/s42003-024-06214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
How does the human brain construct cognitive maps for decision-making and inference? Here, we conduct an fMRI study on a navigation task in multidimensional abstract spaces. Using a deep neural network model, we assess learning levels and categorized paths into exploration and exploitation stages. Univariate analyses show higher activation in the bilateral hippocampus and lateral prefrontal cortex during exploration, positively associated with learning level and response accuracy. Conversely, the bilateral orbitofrontal cortex (OFC) and retrosplenial cortex show higher activation during exploitation, negatively associated with learning level and response accuracy. Representational similarity analysis show that the hippocampus, entorhinal cortex, and OFC more accurately represent destinations in exploitation than exploration stages. These findings highlight the collaboration between the medial temporal lobe and prefrontal cortex in learning abstract space structures. The hippocampus may be involved in spatial memory formation and representation, while the OFC integrates sensory information for decision-making in multidimensional abstract spaces.
Collapse
Affiliation(s)
- Yidan Qiu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal University, Guangzhou, 510631, China
| | - Huakang Li
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiajun Liao
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal University, Guangzhou, 510631, China
| | - Kemeng Chen
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal University, Guangzhou, 510631, China
| | - Xiaoyan Wu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal University, Guangzhou, 510631, China
| | - Bingyi Liu
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal University, Guangzhou, 510631, China
| | - Ruiwang Huang
- School of Psychology; Center for the Study of Applied Psychology; Key Laboratory of Mental Health and Cognitive Science of Guangdong Province; Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education; South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
8
|
Rosenbaum RS, Halilova JG, Agnihotri S, D'Angelo MC, Winocur G, Ryan JD, Moscovitch M. Dramatic changes to well-known places go unnoticed. Neuropsychologia 2024; 196:108818. [PMID: 38355037 DOI: 10.1016/j.neuropsychologia.2024.108818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
How well do we know our city? It turns out, much more poorly than we might imagine. We used declarative memory and eye-tracking techniques to examine people's ability to detect modifications to real-world landmarks and scenes in Toronto locales with which they have had extensive experience. Participants were poor at identifying which scenes contained altered landmarks, whether the modification was to the landmarks' relative size, internal features, or relation to surrounding context. To determine whether an indirect measure would prove more sensitive, we tracked eye movements during viewing. Changes in overall visual exploration, but not to specific regions of change, were related to participants' explicit endorsement of scenes as modified. These results support the contention that very familiar landmarks are represented at a global or gist level, but not local or fine-grained, level. These findings offer a unified view of memory for gist across verbal and spatial domains, and across recent and remote memory, with implications for hippocampal-neocortical interactions.
Collapse
Affiliation(s)
- R S Rosenbaum
- York University, Toronto, ON, Canada; Rotman Research Institute, Baycrest, Toronto, ON, Canada.
| | | | - S Agnihotri
- York University, Toronto, ON, Canada; University of Toronto, ON, Canada
| | - M C D'Angelo
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - G Winocur
- Rotman Research Institute, Baycrest, Toronto, ON, Canada
| | - J D Ryan
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; University of Toronto, ON, Canada
| | - M Moscovitch
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; University of Toronto, ON, Canada
| |
Collapse
|
9
|
Chen X, Wei Z, Wolbers T. Repetition Suppression Reveals Cue-Specific Spatial Representations for Landmarks and Self-Motion Cues in the Human Retrosplenial Cortex. eNeuro 2024; 11:ENEURO.0294-23.2024. [PMID: 38519127 PMCID: PMC11007318 DOI: 10.1523/eneuro.0294-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
The efficient use of various spatial cues within a setting is crucial for successful navigation. Two fundamental forms of spatial navigation, landmark-based and self-motion-based, engage distinct cognitive mechanisms. The question of whether these modes invoke shared or separate spatial representations in the brain remains unresolved. While nonhuman animal studies have yielded inconsistent results, human investigation is limited. In our previous work (Chen et al., 2019), we introduced a novel spatial navigation paradigm utilizing ultra-high field fMRI to explore neural coding of positional information. We found that different entorhinal subregions in the right hemisphere encode positional information for landmarks and self-motion cues. The present study tested the generalizability of our previous finding with a modified navigation paradigm. Although we did not replicate our previous finding in the entorhinal cortex, we identified adaptation-based allocentric positional codes for both cue types in the retrosplenial cortex (RSC), which were not confounded by the path to the spatial location. Crucially, the multi-voxel patterns of these spatial codes differed between the cue types, suggesting cue-specific positional coding. The parahippocampal cortex exhibited positional coding for self-motion cues, which was not dissociable from path length. Finally, the brain regions involved in successful navigation differed from our previous study, indicating overall distinct neural mechanisms recruited in our two studies. Taken together, the current findings demonstrate cue-specific allocentric positional coding in the human RSC in the same navigation task for the first time and that spatial representations in the brain are contingent on specific experimental conditions.
Collapse
Affiliation(s)
- Xiaoli Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ziwei Wei
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg 39106, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg 39106, Germany
| |
Collapse
|
10
|
Ozubko JD, Campbell M, Verhayden A, Demetri B, Brady M, Sivashankar Y, Brunec I. Hippocampal Signal Complexity and Rate-of-Change Predict Navigational Performance: Evidence from a Two-Week VR Training Program. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587026. [PMID: 38585763 PMCID: PMC10996673 DOI: 10.1101/2024.03.27.587026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The hippocampus is believed to be an important region for spatial navigation, helping to represent the environment and plan routes. Evidence from rodents has suggested that the hippocampus processes information in a graded manner along its long-axis, with anterior regions encoding coarse information and posterior regions encoding fine-grained information. Brunec et al. (2018) demonstrated similar patterns in humans in a navigation paradigm, showing that the anterior-posterior gradient in representational granularity and the rate of signal change exist in the human hippocampus. However, the stability of these signals and their relationship to navigational performance remain unclear. In this study, we conducted a two-week training program where participants learned to navigate through a novel city environment. We investigated inter-voxel similarity (IVS) and temporal auto-correlation hippocampal signals, measures of representational granularity and signal change, respectively. Specifically, we investigated how these signals were influenced by navigational ability (i.e., stronger vs. weaker spatial learners), training session, and navigational dynamics. Our results revealed that stronger learners exhibited a clear anterior-posterior distinction in IVS in the right hippocampus, while weaker learners showed less pronounced distinctions. Additionally, lower general IVS levels in the hippocampus were linked to better early learning. Successful navigation was characterized by faster signal change, particularly in the anterior hippocampus, whereas failed navigation lacked the anterior-posterior distinction in signal change. These findings suggest that signal complexity and signal change in the hippocampus are important factors for successful navigation, with IVS representing information organization and auto-correlation reflecting moment-to-moment updating. These findings support the idea that efficient organization of scales of representation in an environment may be necessary for efficient navigation itself. Understanding the dynamics of these neural signals provides insights into the mechanisms underlying navigational learning in humans.
Collapse
|
11
|
Liao Y, Yu N. [Spatial navigation method based on the entorhinal-hippocampal-prefrontal information transmission circuit of rat's brain]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:80-89. [PMID: 38403607 PMCID: PMC10894733 DOI: 10.7507/1001-5515.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/10/2023] [Indexed: 02/27/2024]
Abstract
Physiological studies have revealed that rats perform spatial localization relying on grid cells and place cells in the entorhinal-hippocampal CA3 structure. The dynamic connection between the entorhinal-hippocampal structure and the prefrontal cortex is crucial for navigation. Based on these findings, this paper proposes a spatial navigation method based on the entorhinal-hippocampal-prefrontal information transmission circuit of the rat's brain, with the aim of endowing the mobile robot with strong spatial navigation capability. Using the hippocampal CA3-prefrontal spatial navigation model as a foundation, this paper constructed a dynamic self-organizing model with the hippocampal CA1 place cells as the basic unit to optimize the navigation path. The path information was then fed back to the impulse neural network via hippocampal CA3 place cells and prefrontal cortex action neurons, improving the convergence speed of the model and helping to establish long-term memory of navigation habits. To verify the validity of the method, two-dimensional simulation experiments and three-dimensional simulation robot experiments were designed in this paper. The experimental results showed that the method presented in this paper not only surpassed other algorithms in terms of navigation efficiency and convergence speed, but also exhibited good adaptability to dynamic navigation tasks. Furthermore, our method can be effectively applied to mobile robots.
Collapse
Affiliation(s)
- Yishen Liao
- Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, P. R. China
| | - Naigong Yu
- Faculty of Information Technology, Beijing University of Technology, Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, P. R. China
| |
Collapse
|
12
|
Roseman M, Elias U, Kletenik I, Ferguson MA, Fox MD, Horowitz Z, Marshall GA, Spiers HJ, Arzy S. A neural circuit for spatial orientation derived from brain lesions. Cereb Cortex 2024; 34:bhad486. [PMID: 38100330 PMCID: PMC10793567 DOI: 10.1093/cercor/bhad486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
There is disagreement regarding the major components of the brain network supporting spatial cognition. To address this issue, we applied a lesion mapping approach to the clinical phenomenon of topographical disorientation. Topographical disorientation is the inability to maintain accurate knowledge about the physical environment and use it for navigation. A review of published topographical disorientation cases identified 65 different lesion sites. Our lesion mapping analysis yielded a topographical disorientation brain map encompassing the classic regions of the navigation network: medial parietal, medial temporal, and temporo-parietal cortices. We also identified a ventromedial region of the prefrontal cortex, which has been absent from prior descriptions of this network. Moreover, we revealed that the regions mapped are correlated with the Default Mode Network sub-network C. Taken together, this study provides causal evidence for the distribution of the spatial cognitive system, demarking the major components and identifying novel regions.
Collapse
Affiliation(s)
- Moshe Roseman
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Uri Elias
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Isaiah Kletenik
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
| | - Michael A Ferguson
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham & Women’s Hospital, Boston, MA 02115, United States
- Harvard Medical School, Boston, MA 02115, United States
| | - Zalman Horowitz
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Gad A Marshall
- Harvard Medical School, Boston, MA 02115, United States
- Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, United States
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, United Kingdom
| | - Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurosciences, Faculty of Medicine, Hadassah Ein Kerem Campus, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 9112001, Israel
- Department of Brain and Cognitive Sciences, Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| |
Collapse
|
13
|
Fernandez-Velasco P, Spiers HJ. Wayfinding across ocean and tundra: what traditional cultures teach us about navigation. Trends Cogn Sci 2024; 28:56-71. [PMID: 37798182 DOI: 10.1016/j.tics.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Research on human navigation by psychologists and neuroscientists has come mainly from a limited range of environments and participants inhabiting western countries. By contrast, numerous anthropological accounts illustrate the diverse ways in which cultures adapt to their surrounding environment to navigate. Here, we provide an overview of these studies and relate them to cognitive science research. The diversity of cues in traditional navigation is much higher and multimodal compared with navigation experiments in the laboratory. It typically involves an integrated system of methods, drawing on a detailed understanding of the environmental cues, specific tools, and forms part of a broader cultural system. We highlight recent methodological developments for measuring navigation skill and modelling behaviour that will aid future research into how culture and environment shape human navigation.
Collapse
Affiliation(s)
- Pablo Fernandez-Velasco
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK; Department of Philosophy, University of York, York, UK.
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.
| |
Collapse
|
14
|
Ziegler MG, Liu ZX, Arsenault J, Dang C, Grady C, Rosenbaum RS, Moscovitch M. Differential involvement of the anterior and posterior hippocampus, parahippocampus, and retrosplenial cortex in making precise judgments of spatial distance and object size for remotely acquired memories of environments and objects. Cereb Cortex 2023; 33:10139-10154. [PMID: 37522288 PMCID: PMC10502799 DOI: 10.1093/cercor/bhad272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
The hippocampus is known to support processing of precise spatial information in recently learned environments. It is less clear, but crucial for theories of systems consolidation, to know whether it also supports processing of precise spatial information in familiar environments learned long ago and whether such precision extends to objects and numbers. In this fMRI study, we asked participants to make progressively more refined spatial distance judgments among well-known Toronto landmarks (whether landmark A is closer to landmark B or C) to examine hippocampal involvement. We also tested whether the hippocampus was similarly engaged in estimating magnitude regarding sizes of familiar animals and numbers. We found that the hippocampus was only engaged in spatial judgment. Activation was greater and lasted longer in the posterior than anterior hippocampus, which instead showed greater modulation as discrimination between spatial distances became more fine grained. These findings suggest that the anterior and posterior hippocampus have different functions which are influenced differently by estimation of differential distance. Similarly, parahippocampal-place-area and retrosplenial cortex were involved only in the spatial condition. By contrast, activation of the intraparietal sulcus was modulated by precision in all conditions. Therefore, our study supports the idea that the hippocampus and related structures are implicated in retrieving and operating even on remote spatial memories whenever precision is required, as posted by some theories of systems consolidation.
Collapse
Affiliation(s)
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan–Dearborn, 4901 Evergreen RD, Dearborn, United States
| | - Jessica Arsenault
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
| | - Christa Dang
- Psychology Department, University of Toronto, Toronto M5S 1A1, Canada
| | - Cheryl Grady
- Psychology Department, University of Toronto, Toronto M5S 1A1, Canada
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada
| | - R Shayna Rosenbaum
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
- Department of Psychology and Centre for Vision Research, York University, Toronto M3J 1P3, Canada
| | - Morris Moscovitch
- Psychology Department, University of Toronto, Toronto M5S 1A1, Canada
- Rotman Research Institute at Baycrest Health Sciences, Toronto M6A 2E1, Canada
| |
Collapse
|
15
|
Parra-Barrero E, Vijayabaskaran S, Seabrook E, Wiskott L, Cheng S. A map of spatial navigation for neuroscience. Neurosci Biobehav Rev 2023; 152:105200. [PMID: 37178943 DOI: 10.1016/j.neubiorev.2023.105200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Spatial navigation has received much attention from neuroscientists, leading to the identification of key brain areas and the discovery of numerous spatially selective cells. Despite this progress, our understanding of how the pieces fit together to drive behavior is generally lacking. We argue that this is partly caused by insufficient communication between behavioral and neuroscientific researchers. This has led the latter to under-appreciate the relevance and complexity of spatial behavior, and to focus too narrowly on characterizing neural representations of space-disconnected from the computations these representations are meant to enable. We therefore propose a taxonomy of navigation processes in mammals that can serve as a common framework for structuring and facilitating interdisciplinary research in the field. Using the taxonomy as a guide, we review behavioral and neural studies of spatial navigation. In doing so, we validate the taxonomy and showcase its usefulness in identifying potential issues with common experimental approaches, designing experiments that adequately target particular behaviors, correctly interpreting neural activity, and pointing to new avenues of research.
Collapse
Affiliation(s)
- Eloy Parra-Barrero
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sandhiya Vijayabaskaran
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Eddie Seabrook
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
| | - Laurenz Wiskott
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Sen Cheng
- Institute for Neural Computation, Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany; International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
16
|
Crivelli-Decker J, Clarke A, Park SA, Huffman DJ, Boorman ED, Ranganath C. Goal-oriented representations in the human hippocampus during planning and navigation. Nat Commun 2023; 14:2946. [PMID: 37221176 PMCID: PMC10206082 DOI: 10.1038/s41467-023-35967-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/10/2023] [Indexed: 05/25/2023] Open
Abstract
Recent work in cognitive and systems neuroscience has suggested that the hippocampus might support planning, imagination, and navigation by forming cognitive maps that capture the abstract structure of physical spaces, tasks, and situations. Navigation involves disambiguating similar contexts, and the planning and execution of a sequence of decisions to reach a goal. Here, we examine hippocampal activity patterns in humans during a goal-directed navigation task to investigate how contextual and goal information are incorporated in the construction and execution of navigational plans. During planning, hippocampal pattern similarity is enhanced across routes that share a context and a goal. During navigation, we observe prospective activation in the hippocampus that reflects the retrieval of pattern information related to a key-decision point. These results suggest that, rather than simply representing overlapping associations or state transitions, hippocampal activity patterns are shaped by context and goals.
Collapse
Affiliation(s)
- Jordan Crivelli-Decker
- Center for Neuroscience, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| | - Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Seongmin A Park
- Center for Neuroscience, University of California, Davis, CA, USA
- Center for Mind and Brain, University of California, Davis, CA, USA
| | - Derek J Huffman
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychology, Colby College, Waterville, ME, USA
| | - Erie D Boorman
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Charan Ranganath
- Center for Neuroscience, University of California, Davis, CA, USA
- Department of Psychology, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Liu J, Chen D, Xiao X, Zhang H, Zhou W, Liang S, Kunz L, Schulze-Bonhage A, Axmacher N, Wang L. Multi-scale goal distance representations in human hippocampus during virtual spatial navigation. Curr Biol 2023; 33:2024-2033.e3. [PMID: 37148875 DOI: 10.1016/j.cub.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/08/2023]
Abstract
Goal-directed navigation relies on both coarse and fine-grained coding of spatial distance between the current position of a navigating subject and a goal destination. However, the neural signatures underlying goal distance coding remain poorly understood. Using intracranial EEG recordings from the hippocampus of drug-resistant epilepsy patients who performed a virtual spatial navigation task, we found that the right hippocampal theta power was significantly modulated by goal distance and decreased with goal proximity. This modulation varied along the hippocampal longitudinal axis such that theta power in the posterior hippocampus decreased more strongly with goal proximity. Similarly, neural timescale, reflecting the duration across which information can be maintained, increased gradually from the posterior to anterior hippocampus. Taken together, this study provides empirical evidence for multi-scale spatial representations of goal distance in the human hippocampus and links the hippocampal processing of spatial information to its intrinsic temporal dynamics.
Collapse
Affiliation(s)
- Jiali Liu
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China
| | - Dong Chen
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China
| | - Xue Xiao
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Wenjing Zhou
- Department of Epilepsy Center, Tsinghua University Yuquan Hospital, 5 Shijingshan Rd, Beijing 100040, China
| | - Shuli Liang
- Functional Neurosurgery Department, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Rd, Beijing 100045, China
| | - Lukas Kunz
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, New York, NY 10027, USA
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, Freiburg im Breisgau 79106, Germany
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, 16 Lincui Rd, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing 101408, China.
| |
Collapse
|
18
|
Fernandez C, Jiang J, Wang SF, Choi HL, Wagner AD. Representational integration and differentiation in the human hippocampus following goal-directed navigation. eLife 2023; 12:e80281. [PMID: 36786678 PMCID: PMC9928422 DOI: 10.7554/elife.80281] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
As we learn, dynamic memory processes build structured knowledge across our experiences. Such knowledge enables the formation of internal models of the world that we use to plan, make decisions, and act. Recent theorizing posits that mnemonic mechanisms of differentiation and integration - which at one level may seem to be at odds - both contribute to the emergence of structured knowledge. We tested this possibility using fMRI as human participants learned to navigate within local and global virtual environments over the course of 3 days. Pattern similarity analyses on entorhinal cortical and hippocampal patterns revealed evidence that differentiation and integration work concurrently to build local and global environmental representations, and that variability in integration relates to differences in navigation efficiency. These results offer new insights into the neural machinery and the underlying mechanisms that translate experiences into structured knowledge that allows us to navigate to achieve goals.
Collapse
Affiliation(s)
- Corey Fernandez
- Graduate Program in Neurosciences, Stanford UniversityStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
| | - Jiefeng Jiang
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
| | - Shao-Fang Wang
- Department of Psychology, Stanford UniversityStanfordUnited States
| | - Hannah Lee Choi
- Department of Psychology, Stanford UniversityStanfordUnited States
| | - Anthony D Wagner
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordUnited States
- Department of Psychology, Stanford UniversityStanfordUnited States
| |
Collapse
|
19
|
Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about "space" is important for episodic memory? WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2023; 14:e1645. [PMID: 36772875 DOI: 10.1002/wcs.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023]
Abstract
Early cognitive neuroscientific research revealed that the hippocampus is crucial for spatial navigation in rodents, and for autobiographical episodic memory in humans. Researchers quickly linked these streams to propose that the human hippocampus supports memory through its role in representing space, and research on the link between spatial cognition and episodic memory in humans has proliferated over the past several decades. Different researchers apply the term "spatial" in a variety of contexts, however, and it remains unclear what aspect of space may be critical to memory. Similarly, "episodic" has been defined and tested in different ways. Naturalistic assessment of spatial memory and episodic memory (i.e., episodic autobiographical memory) is required to unify the scale and biological relevance in comparisons of spatial and mnemonic processing. Limitations regarding the translation of rodent to human research, human ontogeny, and inter-individual variability require greater consideration in the interpretation of this literature. In this review, we outline the aspects of space that are (and are not) commonly linked to episodic memory, and then we discuss these dimensions through the lens of individual differences in naturalistic autobiographical memory. Future studies should carefully consider which aspect(s) of space are being linked to memory within the context of naturalistic human cognition. This article is categorized under: Psychology > Memory.
Collapse
Affiliation(s)
- Carina L Fan
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada
| | | | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Psychology, York University, Toronto, Ontario, Canada
| | - Brian Levine
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Baycrest, Toronto, Ontario, Canada.,Department of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Abstract
A schema refers to a structured body of prior knowledge that captures common patterns across related experiences. Schemas have been studied separately in the realms of episodic memory and spatial navigation across different species and have been grounded in theories of memory consolidation, but there has been little attempt to integrate our understanding across domains, particularly in humans. We propose that experiences during navigation with many similarly structured environments give rise to the formation of spatial schemas (for example, the expected layout of modern cities) that share properties with but are distinct from cognitive maps (for example, the memory of a modern city) and event schemas (such as expected events in a modern city) at both cognitive and neural levels. We describe earlier theoretical frameworks and empirical findings relevant to spatial schemas, along with more targeted investigations of spatial schemas in human and non-human animals. Consideration of architecture and urban analytics, including the influence of scale and regionalization, on different properties of spatial schemas may provide a powerful approach to advance our understanding of spatial schemas.
Collapse
|
21
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Spiers HJ, Coutrot A, Hornberger M. Explaining World-Wide Variation in Navigation Ability from Millions of People: Citizen Science Project Sea Hero Quest. Top Cogn Sci 2023; 15:120-138. [PMID: 34878689 DOI: 10.1111/tops.12590] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 02/01/2023]
Abstract
Navigation ability varies widely across humans. Prior studies have reported that being younger and a male has an advantage for navigation ability. However, these studies have generally involved small numbers of participants from a handful of western countries. Here, we review findings from our project Sea Hero Quest, which used a video game for mobile and tablet devices to test 3.9 million people on their navigation ability, sampling across every nation-state and from 18 to 99 years of age. Results revealed that the task has good ecological validity and across all countries sufficiently sampled (N = 63), age is linked to a near-linear decline in navigation ability from the early 20s. All countries showed a male advantage, but this varied considerably and could be partly predicted by gender inequality. We found that those who reported growing up in a city were on average worse at navigating than those who grew up outside cities and that navigation performance helped identify those at greater genetic risk of Alzheimer's disease. We discuss the advantages and challenges of using a mobile app to study cognition and the future avenues for understanding individual differences in navigation ability arising from this research.
Collapse
Affiliation(s)
- Hugo J Spiers
- Department of Experimental Psychology, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London
| | - Antoine Coutrot
- Laboratoire des Sciences du Numérique de Nantes, CNRS.,Laboratoire d'InfoRmatique en Image et Systèmes d'information, CNRS
| | | |
Collapse
|
23
|
Reggente N. VR for Cognition and Memory. Curr Top Behav Neurosci 2023; 65:189-232. [PMID: 37440126 DOI: 10.1007/7854_2023_425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This chapter will provide a review of research into human cognition through the lens of VR-based paradigms for studying memory. Emphasis is placed on why VR increases the ecological validity of memory research and the implications of such enhancements.
Collapse
Affiliation(s)
- Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
| |
Collapse
|
24
|
Simonsen ØW, Czajkowski R, Witter MP. Retrosplenial and subicular inputs converge on superficially projecting layer V neurons of medial entorhinal cortex. Brain Struct Funct 2022; 227:2821-2837. [PMID: 36229654 PMCID: PMC9618507 DOI: 10.1007/s00429-022-02578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022]
Abstract
The medial entorhinal cortex (MEC) plays a pivotal role in spatial processing together with hippocampal formation. The retrosplenial cortex (RSC) is also implicated in this process, and it is thus relevant to understand how these structures interact. This requires precise knowledge of their connectivity. Projections from neurons in RSC synapse onto principal neurons in layer V of MEC and some of these neurons send axons into superficial layers of MEC. Layer V of MEC is also the main target for hippocampal efferents from the subiculum and CA1 field. The aim of this study was to assess whether the population of cells targeted by RSC projections also receives input from the hippocampal formation and to compare the distribution of synaptic contacts on target dendrites. We labeled the cells in layer V of MEC by injecting a retrograde tracer into superficial layers. At the same time, we labeled RSC and subicular projections with different anterograde tracers. 3D-reconstruction of the labeled cells and axons revealed likely synaptic contacts between presynaptic boutons of both origins and postsynaptic MEC layer V basal dendrites. Moreover, these contacts overlapped on the same dendritic segments without targeting specific domains. Our results support the notion that MEC layer V neurons that project to the superficial layers receive convergent input from both RSC and subiculum. These data thus suggest that convergent subicular and RSC information contributes to the signal that neurons in superficial layers of EC send to the hippocampal formation.
Collapse
Affiliation(s)
- Øyvind Wilsgård Simonsen
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Menno P Witter
- Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Faculty of Medicine and Health Sciences, Kavli Institute for Systems Neuroscience NTNU Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
25
|
de Cothi W, Nyberg N, Griesbauer EM, Ghanamé C, Zisch F, Lefort JM, Fletcher L, Newton C, Renaudineau S, Bendor D, Grieves R, Duvelle É, Barry C, Spiers HJ. Predictive maps in rats and humans for spatial navigation. Curr Biol 2022; 32:3676-3689.e5. [PMID: 35863351 PMCID: PMC9616735 DOI: 10.1016/j.cub.2022.06.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Much of our understanding of navigation comes from the study of individual species, often with specific tasks tailored to those species. Here, we provide a novel experimental and analytic framework integrating across humans, rats, and simulated reinforcement learning (RL) agents to interrogate the dynamics of behavior during spatial navigation. We developed a novel open-field navigation task ("Tartarus maze") requiring dynamic adaptation (shortcuts and detours) to frequently changing obstructions on the path to a hidden goal. Humans and rats were remarkably similar in their trajectories. Both species showed the greatest similarity to RL agents utilizing a "successor representation," which creates a predictive map. Humans also displayed trajectory features similar to model-based RL agents, which implemented an optimal tree-search planning procedure. Our results help refine models seeking to explain mammalian navigation in dynamic environments and highlight the utility of modeling the behavior of different species to uncover the shared mechanisms that support behavior.
Collapse
Affiliation(s)
- William de Cothi
- Department of Cell and Developmental Biology, University College London, London, UK; Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.
| | - Nils Nyberg
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Eva-Maria Griesbauer
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Carole Ghanamé
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Fiona Zisch
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK; The Bartlett School of Architecture, University College London, London, UK
| | - Julie M Lefort
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Lydia Fletcher
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Coco Newton
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sophie Renaudineau
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Daniel Bendor
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Roddy Grieves
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Éléonore Duvelle
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioral Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK.
| |
Collapse
|
26
|
Yu Y, Setogawa T, Matsumoto J, Nishimaru H, Nishijo H. Neural basis of topographical disorientation in the primate posterior cingulate gyrus based on a labeled graph. AIMS Neurosci 2022; 9:373-394. [PMID: 36329903 PMCID: PMC9581735 DOI: 10.3934/neuroscience.2022021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Patients with lesions in the posterior cingulate gyrus (PCG), including the retrosplenial cortex (RSC) and posterior cingulate cortex (PCC), cannot navigate in familiar environments, nor draw routes on a 2D map of the familiar environments. This suggests that the topographical knowledge of the environments (i.e., cognitive map) to find the right route to a goal is represented in the PCG, and the patients lack such knowledge. However, theoretical backgrounds in neuronal levels for these symptoms in primates are unclear. Recent behavioral studies suggest that human spatial knowledge is constructed based on a labeled graph that consists of topological connections (edges) between places (nodes), where local metric information, such as distances between nodes (edge weights) and angles between edges (node labels), are incorporated. We hypothesize that the population neural activity in the PCG may represent such knowledge based on a labeled graph to encode routes in both 3D environments and 2D maps. Since no previous data are available to test the hypothesis, we recorded PCG neuronal activity from a monkey during performance of virtual navigation and map drawing-like tasks. The results indicated that most PCG neurons responded differentially to spatial parameters of the environments, including the place, head direction, and reward delivery at specific reward areas. The labeled graph-based analyses of the data suggest that the population activity of the PCG neurons represents the distance traveled, locations, movement direction, and navigation routes in the 3D and 2D virtual environments. These results support the hypothesis and provide a neuronal basis for the labeled graph-based representation of a familiar environment, consistent with PCG functions inferred from the human clinicopathological studies.
Collapse
Affiliation(s)
- Yang Yu
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tsuyoshi Setogawa
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science (RCIBS), University of Toyama, Toyama, Japan
| |
Collapse
|
27
|
Goodroe SC, Spiers HJ. Extending neural systems for navigation to hunting behavior. Curr Opin Neurobiol 2022; 73:102545. [PMID: 35483308 DOI: 10.1016/j.conb.2022.102545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
For decades, a central question in neuroscience has been: How does the brain support navigation? Recent research on navigation has explored how brain regions support the capacity to adapt to changes in the environment and track the distance and direction to goal locations. Here, we provide a brief review of this literature and speculate how these neural systems may be involved in another, parallel behavior-hunting. Hunting shares many of the same challenges as navigation. Like navigation, hunting requires the hunter to orient towards a goal while minimizing their distance from it while traveling. Likewise, hunting may require the accommodation of detours to locate prey or the exploitation of shortcuts for a quicker capture. Recent research suggests that neurons in the periaqueductal gray, hypothalamus, and dorsal anterior cingulate play key roles in such hunting behavior. In this review, we speculate on how these regions may operate functionally with other key brain regions involved in navigation, such as the hippocampus, to support hunting. Additionally, we posit that hunting in a group presents an additional set of challenges, where success relies on multicentric tracking and prediction of prey position as well as the position of co-hunters.
Collapse
Affiliation(s)
- Sarah C Goodroe
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, United Kingdom.
| |
Collapse
|
28
|
Sacco K, Ronga I, Perna P, Cicerale A, Del Fante E, Sarasso P, Geminiani GC. A Virtual Navigation Training Promotes the Remapping of Space in Allocentric Coordinates: Evidence From Behavioral and Neuroimaging Data. Front Hum Neurosci 2022; 16:693968. [PMID: 35479185 PMCID: PMC9037151 DOI: 10.3389/fnhum.2022.693968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Allocentric space representations demonstrated to be crucial to improve visuo-spatial skills, pivotal in every-day life activities and for the development and maintenance of other cognitive abilities, such as memory and reasoning. Here, we present a series of three different experiments: Experiment 1, Discovery sample (23 young male participants); Experiment 2, Neuroimaging and replicating sample (23 young male participants); and Experiment 3 (14 young male participants). In the experiments, we investigated whether virtual navigation stimulates the ability to form spatial allocentric representations. With this aim, we used a novel 3D videogame (MindTheCity!), focused on the navigation of a virtual town. We verified whether playing at MindTheCity! enhanced the performance on spatial representational tasks (pointing to a specific location in space) and on a spatial memory test (asking participant to remember the location of specific objects). Furthermore, to uncover the neural mechanisms underlying the observed effects, we performed a preliminary fMRI investigation before and after the training with MindTheCity!. Results show that our virtual training enhances the ability to form allocentric representations and spatial memory (Experiment 1). Experiments 2 and 3 confirmed the behavioral results of Experiment 1. Furthermore, our preliminary neuroimaging and behavioral results suggest that the training activates brain circuits involved in higher-order mechanisms of information encoding, triggering the activation of broader cognitive processes and reducing the working load on memory circuits (Experiments 2 and 3).
Collapse
|
29
|
Zhang L, Chen P, Schafer M, Zheng S, Chen L, Wang S, Liang Q, Qi Q, Zhang Y, Huang R. A specific brain network for a social map in the human brain. Sci Rep 2022; 12:1773. [PMID: 35110581 PMCID: PMC8810806 DOI: 10.1038/s41598-022-05601-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Individuals use social information to guide social interactions and to update relationships along multiple social dimensions. However, it is unclear what neural basis underlies this process of abstract "social navigation". In the current study, we recruited twenty-nine participants who performed a choose-your-own-adventure game in which they interacted with fictional characters during fMRI scanning. Using a whole-brain GLM approach, we found that vectors encoding two-dimensional information about the relationships predicted BOLD responses in the hippocampus and the precuneus, replicating previous work. We also explored whether these geometric representations were related to key brain regions previously identified in physical and abstract spatial navigation studies, but we did not find involvement of the entorhinal cortex, parahippocampal gyrus or the retrosplenial cortex. Finally, we used psychophysiological interaction analysis and identified a network of regions that correlated during participants' decisions, including the left posterior hippocampus, precuneus, dorsolateral prefrontal cortex (dlPFC), and the insula. Our findings suggest a brain network for social navigation in multiple abstract, social dimensions that includes the hippocampus, precuneus, dlPFC, and insula.
Collapse
Affiliation(s)
- Lu Zhang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ping Chen
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Matthew Schafer
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mt. Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Senning Zheng
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Lixiang Chen
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Shuai Wang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Qunjun Liang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Qing Qi
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yichen Zhang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, 510631, People's Republic of China.
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, People's Republic of China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
30
|
Stacho M, Manahan-Vaughan D. Mechanistic flexibility of the retrosplenial cortex enables its contribution to spatial cognition. Trends Neurosci 2022; 45:284-296. [DOI: 10.1016/j.tins.2022.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022]
|
31
|
Nyberg N, Duvelle É, Barry C, Spiers HJ. Spatial goal coding in the hippocampal formation. Neuron 2022; 110:394-422. [PMID: 35032426 DOI: 10.1016/j.neuron.2021.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
The mammalian hippocampal formation contains several distinct populations of neurons involved in representing self-position and orientation. These neurons, which include place, grid, head direction, and boundary-vector cells, are thought to collectively instantiate cognitive maps supporting flexible navigation. However, to flexibly navigate, it is necessary to also maintain internal representations of goal locations, such that goal-directed routes can be planned and executed. Although it has remained unclear how the mammalian brain represents goal locations, multiple neural candidates have recently been uncovered during different phases of navigation. For example, during planning, sequential activation of spatial cells may enable simulation of future routes toward the goal. During travel, modulation of spatial cells by the prospective route, or by distance and direction to the goal, may allow maintenance of route and goal-location information, supporting navigation on an ongoing basis. As the goal is approached, an increased activation of spatial cells may enable the goal location to become distinctly represented within cognitive maps, aiding goal localization. Lastly, after arrival at the goal, sequential activation of spatial cells may represent the just-taken route, enabling route learning and evaluation. Here, we review and synthesize these and other evidence for goal coding in mammalian brains, relate the experimental findings to predictions from computational models, and discuss outstanding questions and future challenges.
Collapse
Affiliation(s)
- Nils Nyberg
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
32
|
Griesbauer EM, Manley E, Wiener JM, Spiers HJ. London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London. Hippocampus 2021; 32:3-20. [PMID: 34914151 DOI: 10.1002/hipo.23395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023]
Abstract
Licensed London taxi drivers have been found to show changes in the gray matter density of their hippocampus over the course of training and decades of navigation in London (UK). This has been linked to their learning and using of the "Knowledge of London," the names and layout of over 26,000 streets and thousands of points of interest in London. Here we review past behavioral and neuroimaging studies of London taxi drivers, covering the structural differences in hippocampal gray matter density and brain dynamics associated with navigating London. We examine the process by which they learn the layout of London, detailing the key learning steps: systematic study of maps, travel on selected overlapping routes, the mental visualization of places and the optimal use of subgoals. Our analysis provides the first map of the street network covered by the routes used to learn the network, allowing insight into where there are gaps in this network. The methods described could be widely applied to aid spatial learning in the general population and may provide insights for artificial intelligence systems to efficiently learn new environments.
Collapse
Affiliation(s)
- Eva-Maria Griesbauer
- Department of Experimental Psychology, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, London, UK
| | - Ed Manley
- Centre for Advanced Spatial Analysis, University College London, London, UK.,The Alan Turing Institute, London, UK.,School of Geography, University of Leeds, Leeds, UK
| | - Jan M Wiener
- Department of Psychology, Ageing and Dementia Research Centre, Bournemouth University, Poole, UK
| | - Hugo J Spiers
- Department of Experimental Psychology, Division of Psychology and Language Sciences, Institute of Behavioural Neuroscience, University College London, London, UK
| |
Collapse
|
33
|
Carstensen LC, Alexander AS, Chapman GW, Lee AJ, Hasselmo ME. Neural responses in retrosplenial cortex associated with environmental alterations. iScience 2021; 24:103377. [PMID: 34825142 PMCID: PMC8605176 DOI: 10.1016/j.isci.2021.103377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/14/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
The retrosplenial cortex (RSC) is an area interconnected with regions of the brain that display spatial correlates. Neurons in connected regions may encode an animal’s position in the environment and location or proximity to objects or boundaries. RSC has also been shown to be important for spatial memory, such as tracking distance from and between landmarks, contextual information, and orientation within an environment. For these reasons, it is important to determine how neurons in RSC represent cues such as objects or boundaries and their relationship to the environment. In the current work, we performed electrophysiological recordings in RSC, whereas rats foraged in arenas that could contain an object or in which the environment was altered. We report RSC neurons display changes in mean firing rate responding to alterations of the environment. These alterations include the arena rotating, changing size or shape, or an object being introduced into the arena. Insertion of an object induces a change in mean firing rate in retrosplenial neurons Cells that change mean firing rate (MFR) are not driven by speed modulation Population representation changes over time, but not in cells with MFR changes Manipulation of environmental features induces a change in mean firing rate
Collapse
Affiliation(s)
- Lucas C Carstensen
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.,Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.,Graduate Program for Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Andrew S Alexander
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.,Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - G William Chapman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.,Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Aubrey J Lee
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.,Department of Psychological and Brain Sciences, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA.,Graduate Program for Neuroscience, Boston University, 610 Commonwealth Avenue, Boston, MA 02215, USA
| |
Collapse
|
34
|
Chinzorig C, Nishimaru H, Matsumoto J, Takamura Y, Berthoz A, Ono T, Nishijo H. Rat Retrosplenial Cortical Involvement in Wayfinding Using Visual and Locomotor Cues. Cereb Cortex 2021; 30:1985-2004. [PMID: 31667498 DOI: 10.1093/cercor/bhz183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retrosplenial cortex (RSC) has been implicated in wayfinding using different sensory cues. However, the neural mechanisms of how the RSC constructs spatial representations to code an appropriate route under different sensory cues are unknown. In this study, rat RSC neurons were recorded while rats ran on a treadmill affixed to a motion stage that was displaced along a figure-8-shaped track. The activity of some RSC neurons increased during specific directional displacements, while the activity of other neurons correlated with the running speed on the treadmill regardless of the displacement directions. Elimination of visual cues by turning off the room lights and/or locomotor cues by turning off the treadmill decreased the activity of both groups of neurons. The ensemble activity of the former group of neurons discriminated displacements along the common central path of different routes in the track, even when visual or locomotor cues were eliminated where different spatial representations must be created based on different sensory cues. The present results provide neurophysiological evidence of an RSC involvement in wayfinding under different spatial representations with different sensory cues.
Collapse
Affiliation(s)
- Choijiljav Chinzorig
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hiroshi Nishimaru
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Alain Berthoz
- Center for Interdisciplinary Research in Biology, Collège de France, Paris Cedex 05, France
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
35
|
The HexMaze: A Previous Knowledge Task on Map Learning for Mice. eNeuro 2021; 8:ENEURO.0554-20.2021. [PMID: 34135006 PMCID: PMC8362685 DOI: 10.1523/eneuro.0554-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
New information is rarely learned in isolation; instead, most of what we experience can be incorporated into or uses previous knowledge networks in some form. Previous knowledge in form of a cognitive map can facilitate knowledge acquisition and will influence how we learn new spatial information. Here, we developed a new spatial navigation task where food locations are learned in a large, gangway maze to test how mice learn a large spatial map over a longer time period—the HexMaze. Analyzing performance across sessions as well as on specific trials, we can show simple memory effects as well as multiple effects of previous knowledge of the map accelerating both online learning and performance increases over offline periods when incorporating new information. We could identify the following three main phases: (1) learning the initial goal location; (2) faster learning after 2 weeks when learning a new goal location; and then (3) the ability to express one-session learning, leading to long-term memory effect after 12 weeks. Importantly, we are the first to show that buildup of a spatial map is dependent on how much time passes, not how often the animal is trained.
Collapse
|
36
|
Li J, Zhang R, Liu S, Liang Q, Zheng S, He X, Huang R. Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis. Neuroimage 2021; 238:118264. [PMID: 34129948 DOI: 10.1016/j.neuroimage.2021.118264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Humans use different spatial reference frames (allocentric or egocentric) to navigate successfully toward their destination in different spatial scale spaces (environmental or vista). However, it remains unclear how the brain represents different spatial scales and different spatial reference frames. Thus, we conducted an activation likelihood estimation (ALE) meta-analysis of 47 fMRI articles involving human spatial navigation. We found that both the environmental and vista spaces activated the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area in the right hemisphere. The environmental space showed stronger activation than the vista space in the occipital and frontal regions. No brain region exhibited stronger activation for the vista than the environmental space. The allocentric and egocentric reference frames activated the bilateral PPA and right RSC. The allocentric frame showed more stronger activations than the egocentric frame in the right culmen, left middle frontal gyrus, and precuneus. No brain region displayed stronger activation for the egocentric than the allocentric navigation. Our findings suggest that navigation in different spatial scale spaces can evoke specific and common brain regions, and that the brain regions representing spatial reference frames are not absolutely separated.
Collapse
Affiliation(s)
- Jinhui Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Ruibin Zhang
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siqi Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Qunjun Liang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Senning Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xianyou He
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
37
|
Diersch N, Valdes-Herrera JP, Tempelmann C, Wolbers T. Increased Hippocampal Excitability and Altered Learning Dynamics Mediate Cognitive Mapping Deficits in Human Aging. J Neurosci 2021; 41:3204-3221. [PMID: 33648956 PMCID: PMC8026345 DOI: 10.1523/jneurosci.0528-20.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
Learning the spatial layout of a novel environment is associated with dynamic activity changes in the hippocampus and in medial parietal areas. With advancing age, the ability to learn spatial environments deteriorates substantially but the underlying neural mechanisms are not well understood. Here, we report findings from a behavioral and a fMRI experiment where healthy human older and younger adults of either sex performed a spatial learning task in a photorealistic virtual environment (VE). We modeled individual learning states using a Bayesian state-space model and found that activity in retrosplenial cortex (RSC)/parieto-occipital sulcus (POS) and anterior hippocampus did not change systematically as a function learning in older compared with younger adults across repeated episodes in the environment. Moreover, effective connectivity analyses revealed that the age-related learning deficits were linked to an increase in hippocampal excitability. Together, these results provide novel insights into how human aging affects computations in the brain's navigation system, highlighting the critical role of the hippocampus.SIGNIFICANCE STATEMENT Key structures of the brain's navigation circuit are particularly vulnerable to the deleterious consequences of aging, and declines in spatial navigation are among the earliest indicators for a progression from healthy aging to neurodegenerative diseases. Our study is among the first to provide a mechanistic account about how physiological changes in the aging brain affect the formation of spatial knowledge. We show that neural activity in the aging hippocampus and medial parietal areas is decoupled from individual learning states across repeated episodes in a novel spatial environment. Importantly, we find that increased excitability of the anterior hippocampus might constitute a potential neural mechanism for cognitive mapping deficits in old age.
Collapse
Affiliation(s)
- Nadine Diersch
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Jose P Valdes-Herrera
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
| | - Claus Tempelmann
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Thomas Wolbers
- Aging and Cognition Research Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
- Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
38
|
Arzy S. Agency, Ownership and the Potential Space. Brain Sci 2021; 11:brainsci11040460. [PMID: 33916392 PMCID: PMC8065653 DOI: 10.3390/brainsci11040460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
The potential space, the space between the experiencer and the experience, is at the heart of Winnicott's theory. The concepts of agency of one's actions and ownership of one's experience have been recently applied to such a space lying in between the experiencing self and the mental (cognitive) map she creates, representing her surroundings. Agency is defined as "the sense that I am the one who is generating the experience represented on a mental map", while ownership is defined as "the sense that I am the one who is undergoing an experience, represented on a mental map". Here these concepts are introduced and applied to five main realizations of Winnicott's potential space: Playing, transitional phenomena, the therapeutic space, culture and creativity. Through theoretical constructs and clinical analyses, it is shown how agency and ownership, and their mutual interrelations, may help to better understand Winnicott's theory with implications to clinical practice.
Collapse
Affiliation(s)
- Shahar Arzy
- Neuropsychiatry Lab, Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Department of Neurology, Hadassah Hebrew University Medical School, Jerusalem 91120, Israel
| |
Collapse
|
39
|
Semantic Knowledge of Famous People and Places Is Represented in Hippocampus and Distinct Cortical Networks. J Neurosci 2021; 41:2762-2779. [PMID: 33547163 DOI: 10.1523/jneurosci.2034-19.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022] Open
Abstract
Studies have found that anterior temporal lobe (ATL) is critical for detailed knowledge of object categories, suggesting that it has an important role in semantic memory. However, in addition to information about entities, such as people and objects, semantic memory also encompasses information about places. We tested predictions stemming from the PMAT model, which proposes there are distinct systems that support different kinds of semantic knowledge: an anterior temporal (AT) network, which represents information about entities; and a posterior medial (PM) network, which represents information about places. We used representational similarity analysis to test for activation of semantic features when human participants viewed pictures of famous people and places, while controlling for visual similarity. We used machine learning techniques to quantify the semantic similarity of items based on encyclopedic knowledge in the Wikipedia page for each item and found that these similarity models accurately predict human similarity judgments. We found that regions within the AT network, including ATL and inferior frontal gyrus, represented detailed semantic knowledge of people. In contrast, semantic knowledge of places was represented within PM network areas, including precuneus, posterior cingulate cortex, angular gyrus, and parahippocampal cortex. Finally, we found that hippocampus, which has been proposed to serve as an interface between the AT and PM networks, represented fine-grained semantic similarity for both individual people and places. Our results provide evidence that semantic knowledge of people and places is represented separately in AT and PM areas, whereas hippocampus represents semantic knowledge of both categories.SIGNIFICANCE STATEMENT Humans acquire detailed semantic knowledge about people (e.g., their occupation and personality) and places (e.g., their cultural or historical significance). While research has demonstrated that brain regions preferentially respond to pictures of people and places, less is known about whether these regions preferentially represent semantic knowledge about specific people and places. We used machine learning techniques to develop a model of semantic similarity based on information available from Wikipedia, validating the model against similarity ratings from human participants. Using our computational model, we found that semantic knowledge about people and places is represented in distinct anterior temporal and posterior medial brain networks, respectively. We further found that hippocampus, an important memory center, represented semantic knowledge for both types of stimuli.
Collapse
|
40
|
Patai EZ, Spiers HJ. The Versatile Wayfinder: Prefrontal Contributions to Spatial Navigation. Trends Cogn Sci 2021; 25:520-533. [PMID: 33752958 DOI: 10.1016/j.tics.2021.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
The prefrontal cortex (PFC) supports decision-making, goal tracking, and planning. Spatial navigation is a behavior that taxes these cognitive processes, yet the role of the PFC in models of navigation has been largely overlooked. In humans, activity in dorsolateral PFC (dlPFC) and ventrolateral PFC (vlPFC) during detours, reveal a role in inhibition and replanning. Dorsal anterior cingulate cortex (dACC) is implicated in planning and spontaneous internally-generated changes of route. Orbitofrontal cortex (OFC) integrates representations of the environment with the value of actions, providing a 'map' of possible decisions. In rodents, medial frontal areas interact with hippocampus during spatial decisions and switching between navigation strategies. In reviewing these advances, we provide a framework for how different prefrontal regions may contribute to different stages of navigation.
Collapse
Affiliation(s)
- Eva Zita Patai
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, UK; Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language sciences, University College London, UK.
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language sciences, University College London, UK.
| |
Collapse
|
41
|
Baumann O, Mattingley JB. Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus 2021; 31:640-657. [DOI: 10.1002/hipo.23313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Oliver Baumann
- School of Psychology Bond University Robina Queensland Australia
| | - Jason B. Mattingley
- Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Psychology The University of Queensland Brisbane Queensland Australia
- Canadian Institute for Advanced Research (CIFAR) Toronto Ontario Canada
| |
Collapse
|
42
|
Are Spatial Memories for Familiar Environments Orientation Dependent? J Cogn 2021; 4:11. [PMID: 33569536 PMCID: PMC7845475 DOI: 10.5334/joc.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In one experiment we examined the organizational structure of spatial memories for familiar environments, comparing it directly with that for unfamiliar environments. Participants in the familiar condition pointed from imagined perspectives towards objects in their own rooms and their performance was compared to that of matched controls in an unfamiliar condition who carried out the same task after studying the same rooms in immersive Virtual Reality. In both conditions, participants were faster and more accurate in pointing from imagined perspectives that were aligned with the geometry of the room (vs. not aligned), suggesting the presence of orientation-dependent representations. Whereas in the unfamiliar condition pointing performance was best along a single axis, performance in the familiar condition was about equal across all 4 orientations that were aligned with the geometric structure of the room. Moreover, performance in the familiar condition was influenced by the orientation from which participants started to preview the room prior to testing; in contrast, in the unfamiliar condition performance was not influenced by the orientation from which encoding started. This finding suggests that post-encoding situational factors (e.g., the starting orientation from which an environment is previewed) can prime the accessibility of information in well-established long-term spatial memories.
Collapse
|
43
|
Peer M, Brunec IK, Newcombe NS, Epstein RA. Structuring Knowledge with Cognitive Maps and Cognitive Graphs. Trends Cogn Sci 2021; 25:37-54. [PMID: 33248898 PMCID: PMC7746605 DOI: 10.1016/j.tics.2020.10.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/21/2022]
Abstract
Humans and animals use mental representations of the spatial structure of the world to navigate. The classical view is that these representations take the form of Euclidean cognitive maps, but alternative theories suggest that they are cognitive graphs consisting of locations connected by paths. We review evidence suggesting that both map-like and graph-like representations exist in the mind/brain that rely on partially overlapping neural systems. Maps and graphs can operate simultaneously or separately, and they may be applied to both spatial and nonspatial knowledge. By providing structural frameworks for complex information, cognitive maps and cognitive graphs may provide fundamental organizing schemata that allow us to navigate in physical, social, and conceptual spaces.
Collapse
Affiliation(s)
- Michael Peer
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Iva K Brunec
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Russell A Epstein
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Clemenson GD, Wang L, Mao Z, Stark SM, Stark CEL. Exploring the Spatial Relationships Between Real and Virtual Experiences: What Transfers and What Doesn't. FRONTIERS IN VIRTUAL REALITY 2020; 1:572122. [PMID: 37885756 PMCID: PMC10602022 DOI: 10.3389/frvir.2020.572122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Virtual environments are commonly used to assess spatial cognition in humans. For the past few decades, researchers have used virtual environments to investigate how people navigate, learn, and remember their surrounding environment. In combination with tools such as electroencephalogram, neuroimaging, and electrophysiology, these virtual environments have proven invaluable in their ability to help elucidate the underlying neural mechanisms of spatial learning and memory in humans. However, a critical assumption that is made whenever using virtual experiences is that the spatial abilities used in the navigation of these virtual environments accurately represents the spatial abilities used in the real-world. The aim of the current study is to investigate the spatial relationships between real and virtual environments to better understand how well the virtual experiences parallel the same experiences in the real-world. Here, we performed three independent experiments to examine whether spatial information about object location, environment layout, and navigation strategy transfers between parallel real-world and virtual-world experiences. We show that while general spatial information does transfer between real and virtual environments, there are several limitations of the virtual experience. Compared to the real-world, the use of information in the virtual-world is less flexible, especially when testing spatial memory from a novel location, and the way in which we navigate these experiences are different as the perceptual and proprioceptive feedback gained from the real-world experience can influence navigation strategy.
Collapse
Affiliation(s)
- Gregory D. Clemenson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Lulian Wang
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Zeqian Mao
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Shauna M. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Craig E. L. Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
45
|
Brunec IK, Ozubko JD, Ander T, Guo R, Moscovitch M, Barense MD. Turns during navigation act as boundaries that enhance spatial memory and expand time estimation. Neuropsychologia 2020; 141:107437. [DOI: 10.1016/j.neuropsychologia.2020.107437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
|
46
|
Abstract
In this review we briefly outline how lesion studies, temporary inactivation and neural activity assays have helped update functional models of the retrosplenial cortex, a region critical for episodic and spatial memory. We advocate for the continued importance of appropriately designed behavioural studies in the context of novel experimental methods, such as optogenetic and chemogenetic manipulations. At the same time, we caution against the overreliance on any given level of analysis or experimental technique. Complementary, multimodal strategies are required for understanding how the retrosplenial cortex contributes to the formation and storage of memories both at a structural and systems-level.
Collapse
|
47
|
Schöberl F, Zwergal A, Brandt T. Testing Navigation in Real Space: Contributions to Understanding the Physiology and Pathology of Human Navigation Control. Front Neural Circuits 2020; 14:6. [PMID: 32210769 PMCID: PMC7069479 DOI: 10.3389/fncir.2020.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Successful navigation relies on the flexible and appropriate use of metric representations of space or topological knowledge of the environment. Spatial dimensions (2D vs. 3D), spatial scales (vista-scale vs. large-scale environments) and the abundance of visual landmarks critically affect navigation performance and behavior in healthy human subjects. Virtual reality (VR)-based navigation paradigms in stationary position have given insight into the major navigational strategies, namely egocentric (body-centered) and allocentric (world-centered), and the cerebral control of navigation. However, VR approaches are biased towards optic flow and visual landmark processing. This major limitation can be overcome to some extent by increasingly immersive and realistic VR set-ups (including large-screen projections, eye tracking and use of head-mounted camera systems). However, the highly immersive VR settings are difficult to apply particularly to older subjects and patients with neurological disorders because of cybersickness and difficulties with learning and conducting the tasks. Therefore, a need for the development of novel spatial tasks in real space exists, which allows a synchronous analysis of navigational behavior, strategy, visual explorations and navigation-induced brain activation patterns. This review summarizes recent findings from real space navigation studies in healthy subjects and patients with different cognitive and sensory neurological disorders. Advantages and limitations of real space navigation testing and different VR-based navigation paradigms are discussed in view of potential future applications in clinical neurology.
Collapse
Affiliation(s)
- Florian Schöberl
- Department of Neurology, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- Department of Neurology, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany
| | - Thomas Brandt
- German Center for Vertigo and Balance Disorders, DSGZ, LMU Munich, Munich, Germany.,Clinical Neurosciences, LMU Munich, Munich, Germany
| |
Collapse
|
48
|
Spiers HJ. The Hippocampal Cognitive Map: One Space or Many? Trends Cogn Sci 2020; 24:168-170. [DOI: 10.1016/j.tics.2019.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
|
49
|
Alexander AS, Carstensen LC, Hinman JR, Raudies F, Chapman GW, Hasselmo ME. Egocentric boundary vector tuning of the retrosplenial cortex. SCIENCE ADVANCES 2020; 6:eaaz2322. [PMID: 32128423 PMCID: PMC7035004 DOI: 10.1126/sciadv.aaz2322] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/27/2019] [Indexed: 05/17/2023]
Abstract
The retrosplenial cortex is reciprocally connected with multiple structures implicated in spatial cognition, and damage to the region itself produces numerous spatial impairments. Here, we sought to characterize spatial correlates of neurons within the region during free exploration in two-dimensional environments. We report that a large percentage of retrosplenial cortex neurons have spatial receptive fields that are active when environmental boundaries are positioned at a specific orientation and distance relative to the animal itself. We demonstrate that this vector-based location signal is encoded in egocentric coordinates, is localized to the dysgranular retrosplenial subregion, is independent of self-motion, and is context invariant. Further, we identify a subpopulation of neurons with this response property that are synchronized with the hippocampal theta oscillation. Accordingly, the current work identifies a robust egocentric spatial code in retrosplenial cortex that can facilitate spatial coordinate system transformations and support the anchoring, generation, and utilization of allocentric representations.
Collapse
Affiliation(s)
- Andrew S. Alexander
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Corresponding author.
| | - Lucas C. Carstensen
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - James R. Hinman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - Florian Raudies
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| | - G. William Chapman
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
| | - Michael E. Hasselmo
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
- Department of Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Ave., Boston, MA 02215, USA
| |
Collapse
|
50
|
Gahnstrom CJ, Spiers HJ. Striatal and hippocampal contributions to flexible navigation in rats and humans. Brain Neurosci Adv 2020; 4:2398212820979772. [PMID: 33426302 PMCID: PMC7755934 DOI: 10.1177/2398212820979772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus has been firmly established as playing a crucial role in flexible navigation. Recent evidence suggests that dorsal striatum may also play an important role in such goal-directed behaviour in both rodents and humans. Across recent studies, activity in the caudate nucleus has been linked to forward planning and adaptation to changes in the environment. In particular, several human neuroimaging studies have found the caudate nucleus tracks information traditionally associated with that by the hippocampus. In this brief review, we examine this evidence and argue the dorsal striatum encodes the transition structure of the environment during flexible, goal-directed behaviour. We highlight that future research should explore the following: (1) Investigate neural responses during spatial navigation via a biophysically plausible framework explained by reinforcement learning models and (2) Observe the interaction between cortical areas and both the dorsal striatum and hippocampus during flexible navigation.
Collapse
Affiliation(s)
- Christoffer J. Gahnstrom
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Hugo J. Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| |
Collapse
|