1
|
Tsujimura K, Shiohama T, Takahashi E. microRNA Biology on Brain Development and Neuroimaging Approach. Brain Sci 2022; 12:brainsci12101366. [PMID: 36291300 PMCID: PMC9599180 DOI: 10.3390/brainsci12101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Proper brain development requires the precise coordination and orchestration of various molecular and cellular processes and dysregulation of these processes can lead to neurological diseases. In the past decades, post-transcriptional regulation of gene expression has been shown to contribute to various aspects of brain development and function in the central nervous system. MicroRNAs (miRNAs), short non-coding RNAs, are emerging as crucial players in post-transcriptional gene regulation in a variety of tissues, such as the nervous system. In recent years, miRNAs have been implicated in multiple aspects of brain development, including neurogenesis, migration, axon and dendrite formation, and synaptogenesis. Moreover, altered expression and dysregulation of miRNAs have been linked to neurodevelopmental and psychiatric disorders. Magnetic resonance imaging (MRI) is a powerful imaging technology to obtain high-quality, detailed structural and functional information from the brains of human and animal models in a non-invasive manner. Because the spatial expression patterns of miRNAs in the brain, unlike those of DNA and RNA, remain largely unknown, a whole-brain imaging approach using MRI may be useful in revealing biological and pathological information about the brain affected by miRNAs. In this review, we highlight recent advancements in the research of miRNA-mediated modulation of neuronal processes that are important for brain development and their involvement in disease pathogenesis. Also, we overview each MRI technique, and its technological considerations, and discuss the applications of MRI techniques in miRNA research. This review aims to link miRNA biological study with MRI analytical technology and deepen our understanding of how miRNAs impact brain development and pathology of neurological diseases.
Collapse
Affiliation(s)
- Keita Tsujimura
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya 4648602, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya 4648602, Japan
- Correspondence: (K.T.); (E.T.)
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba 2608677, Japan
| | - Emi Takahashi
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Correspondence: (K.T.); (E.T.)
| |
Collapse
|
2
|
Charvet CJ, Ofori K, Baucum C, Sun J, Modrell MS, Hekmatyar K, Edlow BL, van der Kouwe AJ. Tracing Modification to Cortical Circuits in Human and Nonhuman Primates from High-Resolution Tractography, Transcription, and Temporal Dimensions. J Neurosci 2022; 42:3749-3767. [PMID: 35332086 PMCID: PMC9087811 DOI: 10.1523/jneurosci.1506-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The neural circuits that support human cognition are a topic of enduring interest. Yet, there are limited tools available to map brain circuits in the human and nonhuman primate brain. We harnessed high-resolution diffusion MR tractography, anatomic, and transcriptomic data from individuals of either sex to investigate the evolution and development of frontal cortex circuitry. We applied machine learning to RNA sequencing data to find corresponding ages between humans and macaques and to compare the development of circuits across species. We transcriptionally defined neural circuits by testing for associations between gene expression and white matter maturation. We then considered transcriptional and structural growth to test whether frontal cortex circuit maturation is unusually extended in humans relative to other species. We also considered gene expression and high-resolution diffusion MR tractography of adult brains to test for cross-species variation in frontal cortex circuits. We found that frontal cortex circuitry development is extended in primates, and concomitant with an expansion in corticocortical pathways compared with mice in adulthood. Importantly, we found that these parameters varied relatively little across humans and studied primates. These data identify a surprising collection of conserved features in frontal cortex circuits across humans and Old World monkeys. Our work demonstrates that integrating transcriptional and structural data across temporal dimensions is a robust approach to trace the evolution of brain pathways in primates.SIGNIFICANCE STATEMENT Diffusion MR tractography is an exciting method to explore pathways, but there are uncertainties in the accuracy of reconstructed tracts. We broaden the repertoire of toolkits to enhance our ability to trace human brain pathways from diffusion MR tractography. Our integrative approach finds corresponding ages across species and transcriptionally defines neural circuits. We used this information to test for variation in circuit maturation across species and found a surprising constellation of similar features in frontal cortex neural circuits across humans and primates. Integrating across scales of biological organization expands the repertoire of tools available to study pathways in primates, which opens new avenues to study pathways in health and diseases of the human brain.
Collapse
Affiliation(s)
- Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849-5518
- Delaware Center for Neuroscience, Delaware State University, Dover, Delaware 19901
| | - Kwadwo Ofori
- PhD Program in Neuroscience, Department in Biology, Delaware State University, Dover, Delaware 19901
| | - Christine Baucum
- Department of Biology, Bath Spa University, Bath BA2 9BN, United Kingdom
| | - Jianli Sun
- Delaware Center for Neuroscience, Delaware State University, Dover, Delaware 19901
| | - Melinda S Modrell
- Delaware Center for Neuroscience, Delaware State University, Dover, Delaware 19901
| | - Khan Hekmatyar
- Center for Biomedical and Brain Imaging Center, University of Delaware, Wilmington, Delaware 19716
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| | - Andre J van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129
| |
Collapse
|
3
|
Charvet CJ. Cutting across structural and transcriptomic scales translates time across the lifespan in humans and chimpanzees. Proc Biol Sci 2021; 288:20202987. [PMID: 33563125 DOI: 10.1098/rspb.2020.2987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
How the unique capacities of human cognition arose in evolution is a question of enduring interest. It is still unclear which developmental programmes are responsible for the emergence of the human brain. The inability to determine corresponding ages between humans and apes has hampered progress in detecting developmental programmes leading to the emergence of the human brain. I harness temporal variation in anatomical, behavioural and transcriptional variation to determine corresponding ages from fetal to postnatal development and ageing, between humans and chimpanzees. This multi-dimensional approach results in 137 corresponding time points across the lifespan, from embryonic day 44 to approximately 55 years of age, in humans and their equivalent ages in chimpanzees. I used these data to test whether developmental programmes, such as the timeline of prefrontal cortex (PFC) maturation, previously claimed to differ between humans and chimpanzees, do so once variation in developmental schedules is controlled for. I compared the maturation of frontal cortex projections from structural magnetic resonance (MR) scans and from temporal variation in the expression of genes used to track long-range projecting neurons (i.e. supragranular-enriched genes) in chimpanzees and humans. Contrary to what has been suggested, the timetable of PFC maturation is not unusually extended in humans. This dataset, which is the largest with which to determine corresponding ages across humans and chimpanzees, provides a rigorous approach to control for variation in developmental schedules and to identify developmental programmes responsible for unique features of the human brain.
Collapse
|
4
|
Charvet CJ. Closing the gap from transcription to the structural connectome enhances the study of connections in the human brain. Dev Dyn 2020; 249:1047-1061. [PMID: 32562584 DOI: 10.1002/dvdy.218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The brain is composed of a complex web of networks but we have yet to map the structural connections of the human brain in detail. Diffusion MR imaging is a high-throughput method that relies on the principle of diffusion to reconstruct tracts (ie, pathways) across the brain. Although diffusion MR tractography is an exciting method to explore the structural connectivity of the brain in development and across species, the tractography has at times led to questionable interpretations. There are at present few if any alternative methods to trace structural pathways in the human brain. Given these limitations and the potential of diffusion MR imaging to map the human connectome, it is imperative that we develop new approaches to validate neuroimaging techniques. I discuss our recent studies integrating neuroimaging with transcriptional and anatomical variation across humans and other species over the course of development and in adulthood. Developing a novel framework to harness the potential of diffusion MR tractography provides new and exciting opportunities to study the evolution of developmental mechanisms generating variation in connections and bridge the gap between model systems to humans.
Collapse
|
5
|
Hendy JP, Takahashi E, van der Kouwe AJ, Charvet CJ. Brain Wiring and Supragranular-Enriched Genes Linked to Protracted Human Frontal Cortex Development. Cereb Cortex 2020; 30:5654-5666. [PMID: 32537628 DOI: 10.1093/cercor/bhaa135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 04/01/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
The human frontal cortex is unusually large compared with many other species. The expansion of the human frontal cortex is accompanied by both connectivity and transcriptional changes. Yet, the developmental origins generating variation in frontal cortex circuitry across species remain unresolved. Nineteen genes that encode filaments, synapse, and voltage-gated channels are especially enriched in the supragranular layers of the human cerebral cortex, which suggests enhanced corticocortical projections emerging from layer III. We identify species differences in connections with the use of diffusion MR tractography as well as gene expression in adulthood and in development to identify developmental mechanisms generating variation in frontal cortical circuitry. We demonstrate that increased expression of supragranular-enriched genes in frontal cortex layer III is concomitant with an expansion in corticocortical pathways projecting within the frontal cortex in humans relative to mice. We also demonstrate that the growth of the frontal cortex white matter and transcriptional profiles of supragranular-enriched genes are protracted in humans relative to mice. The expansion of projections emerging from the human frontal cortex arises by extending frontal cortical circuitry development. Integrating gene expression with neuroimaging level phenotypes is an effective strategy to assess deviations in developmental programs leading to species differences in connections.
Collapse
Affiliation(s)
- Jasmine P Hendy
- Department of Biology, Delaware State University, Dover, DE 19901, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02215, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andre J van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Christine J Charvet
- Center for Neuroscience, Department of Psychology, Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
6
|
Charvet CJ, Das A, Song JW, Tindal-Burgess DJ, Kabaria P, Dai G, Kane T, Takahashi E. High Angular Resolution Diffusion MRI Reveals Conserved and Deviant Programs in the Paths that Guide Human Cortical Circuitry. Cereb Cortex 2020; 30:1447-1464. [PMID: 31667494 PMCID: PMC7132938 DOI: 10.1093/cercor/bhz178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Diffusion magnetic resonance (MR) tractography represents a novel opportunity to investigate conserved and deviant developmental programs between humans and other species such as mice. To that end, we acquired high angular resolution diffusion MR scans of mice [embryonic day (E) 10.5 to postnatal week 4] and human brains [gestational week (GW) 17-30] at successive stages of fetal development to investigate potential evolutionary changes in radial organization and emerging pathways between humans and mice. We compare radial glial development as well as commissural development (e.g., corpus callosum), primarily because our findings can be integrated with previous work. We also compare corpus callosal growth trajectories across primates (i.e., humans and rhesus macaques) and rodents (i.e., mice). One major finding is that the developing cortex of humans is predominated by pathways likely associated with a radial glial organization at GW 17-20, which is not as evident in age-matched mice (E 16.5, 17.5). Another finding is that, early in development, the corpus callosum follows a similar developmental timetable in primates (i.e., macaques and humans) as in mice. However, the corpus callosum grows for an extended period of time in primates compared with rodents. Taken together, these findings highlight deviant developmental programs underlying the emergence of cortical pathways in the human brain.
Collapse
Affiliation(s)
| | - Avilash Das
- Medical Sciences in the College of Arts and Sciences, Boston University, Boston, MA 02215, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Jae W Song
- Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Priya Kabaria
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - Guangping Dai
- Science Center, Wellesley College, Wellesley, MA 02481, USA
| | - Tara Kane
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA 02115, USA
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Fetal-Neonatal Brain Imaging and Developmental Science Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
7
|
Vasung L, Charvet CJ, Shiohama T, Gagoski B, Levman J, Takahashi E. Ex vivo fetal brain MRI: Recent advances, challenges, and future directions. Neuroimage 2019; 195:23-37. [PMID: 30905833 PMCID: PMC6617515 DOI: 10.1016/j.neuroimage.2019.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/12/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022] Open
Abstract
During early development, the fetal brain undergoes dynamic morphological changes. These changes result from neurogenic events, such as neuronal proliferation, migration, axonal elongation, retraction, and myelination. The duration and intensity of these events vary across species. Comparative assessments of these neurogenic events give us insight into evolutionary changes and the complexity of human brain development. Recent advances in magnetic resonance imaging (MRI), especially ex vivo MRI, permit characterizing and comparing fetal brain development across species. Comparative ex vivo MRI studies support the detection of species-specific differences that occur during early brain development. In this review, we provide a comprehensive overview of ex vivo MRI studies that characterize early brain development in humans, monkeys, cats, as well as rats/mice. Finally, we discuss the current advantages and limitations of ex vivo fetal brain MRI.
Collapse
Affiliation(s)
- Lana Vasung
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Christine J Charvet
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, NY, 14850, USA; Department of Psychology, Delaware State University, Dover, DE, 19901, USA
| | - Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Pediatrics, Chiba University Hospital, Inohana 1-8-1, Chiba-shi, Chiba, 2608670, Japan
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA; Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 401 Park Dr., Boston, MA, 02215, USA.
| |
Collapse
|