1
|
Wilson S, Pietsch M, Cordero-Grande L, Christiaens D, Uus A, Karolis VR, Kyriakopoulou V, Colford K, Price AN, Hutter J, Rutherford MA, Hughes EJ, Counsell SJ, Tournier JD, Hajnal JV, Edwards AD, O’Muircheartaigh J, Arichi T. Spatiotemporal tissue maturation of thalamocortical pathways in the human fetal brain. eLife 2023; 12:e83727. [PMID: 37010273 PMCID: PMC10125021 DOI: 10.7554/elife.83727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
The development of connectivity between the thalamus and maturing cortex is a fundamental process in the second half of human gestation, establishing the neural circuits that are the basis for several important brain functions. In this study, we acquired high-resolution in utero diffusion magnetic resonance imaging (MRI) from 140 fetuses as part of the Developing Human Connectome Project, to examine the emergence of thalamocortical white matter over the second to third trimester. We delineate developing thalamocortical pathways and parcellate the fetal thalamus according to its cortical connectivity using diffusion tractography. We then quantify microstructural tissue components along the tracts in fetal compartments that are critical substrates for white matter maturation, such as the subplate and intermediate zone. We identify patterns of change in the diffusion metrics that reflect critical neurobiological transitions occurring in the second to third trimester, such as the disassembly of radial glial scaffolding and the lamination of the cortical plate. These maturational trajectories of MR signal in transient fetal compartments provide a normative reference to complement histological knowledge, facilitating future studies to establish how developmental disruptions in these regions contribute to pathophysiology.
Collapse
Affiliation(s)
- Siân Wilson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de MadridMadridSpain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN)MadridSpain
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Department of Electrical Engineering (ESAT/PSI), Katholieke Universiteit LeuvenLeuvenBelgium
| | - Alena Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas' HospitalLondonUnited Kingdom
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Emer J Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Department of Forensic and Neurodevelopmental Sciences, King’s College LondonLondonUnited Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondonUnited Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College LondonLondonUnited Kingdom
- Centre for Neurodevelopmental Disorders, King’s College LondonLondonUnited Kingdom
- Children’s Neurosciences, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation TrustLondonUnited Kingdom
- Department of Bioengineering, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
2
|
Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, Dewing JM, Horton CA, Gomez-Nicola D, Menassa DA. Autism Spectrum Disorders: Multiple Routes to, and Multiple Consequences of, Abnormal Synaptic Function and Connectivity. Neuroscientist 2020; 27:10-29. [PMID: 32441222 PMCID: PMC7804368 DOI: 10.1177/1073858420921378] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a heterogeneous group of
neurodevelopmental disorders of genetic and environmental etiologies.
Some ASD cases are syndromic: associated with clinically defined
patterns of somatic abnormalities and a neurobehavioral phenotype
(e.g., Fragile X syndrome). Many cases, however, are idiopathic or
non-syndromic. Such disorders present themselves during the early
postnatal period when language, speech, and personality start to
develop. ASDs manifest by deficits in social communication and
interaction, restricted and repetitive patterns of behavior across
multiple contexts, sensory abnormalities across multiple modalities
and comorbidities, such as epilepsy among many others. ASDs are
disorders of connectivity, as synaptic dysfunction is common to both
syndromic and idiopathic forms. While multiple theories have been
proposed, particularly in idiopathic ASDs, none address why certain
brain areas (e.g., frontotemporal) appear more vulnerable than others
or identify factors that may affect phenotypic specificity. In this
hypothesis article, we identify possible routes leading to, and the
consequences of, altered connectivity and review the evidence of
central and peripheral synaptic dysfunction in ASDs. We postulate that
phenotypic specificity could arise from aberrant experience-dependent
plasticity mechanisms in frontal brain areas and peripheral sensory
networks and propose why the vulnerability of these areas could be
part of a model to unify preexisting pathophysiological theories.
Collapse
Affiliation(s)
- Liam Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Sven Braeutigam
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, Oxfordshire, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivica Kostovic
- Croatian Institute for Brain Research, Centre of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ester Coutinho
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Jennifer M Dewing
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, UK
| | - Christopher A Horton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, UK
| | - Diego Gomez-Nicola
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - David A Menassa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK.,Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|