1
|
Ma Q, Yang Z, Yang C, Lin M, Gong M, Deng P, He M, Lu Y, Zhang K, Pi H, Qu M, Yu Z, Zhou Z, Chen C. A single-cell transcriptomic landscape of cadmium-hindered brain development in mice. Commun Biol 2024; 7:997. [PMID: 39147853 PMCID: PMC11327346 DOI: 10.1038/s42003-024-06685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
The effects of neurotoxicant cadmium (Cd) exposure on brain development have not been well elucidated. To investigate this, we have herein subjected pregnant mice to low-dose Cd throughout gestation. Using single-cell RNA sequencing (scRNA-seq), we explored the cellular responses in the embryonic brain to Cd exposure, and identified 18 distinct cell subpopulations that exhibited varied responses to Cd. Typically, Cd exposure impeded the development and maturation of cells in the brain, especially progenitor cells such as neural progenitor cells (NPCs) and oligodendrocyte progenitor cells (OPCs). It also caused significant cell subpopulation shifts in almost all the types of cells in the brain. Additionally, Cd exposure reduced the dendritic sophistication of cortical neurons in the offspring. Importantly, these changes led to aberrant Ca2+ activity in the cortex and neural behavior changes in mature offspring. These data contribute to our understanding of the effects and mechanisms of Cd exposure on brain development and highlight the importance of controlling environmental neurotoxicant exposure at the population level.
Collapse
Affiliation(s)
- Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqi Yang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chuanyan Yang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Lin
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingyue Gong
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Kuan Zhang
- Brain Research Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Mingyue Qu
- The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China.
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
2
|
CO 2-Sensitive Connexin Hemichannels in Neurons and Glia: Three Different Modes of Signalling? Int J Mol Sci 2021; 22:ijms22147254. [PMID: 34298872 PMCID: PMC8304244 DOI: 10.3390/ijms22147254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Connexins can assemble into either gap junctions (between two cells) or hemichannels (from one cell to the extracellular space) and mediate cell-to-cell signalling. A subset of connexins (Cx26, Cx30, Cx32) are directly sensitive to CO2 and fluctuations in the level within a physiological range affect their open probability, and thus, change cell conductance. These connexins are primarily found on astrocytes or oligodendrocytes, where increased CO2 leads to ATP release, which acts on P2X and P2Y receptors of neighbouring neurons and changes excitability. CO2-sensitive hemichannels are also found on developing cortical neurons, where they play a role in producing spontaneous neuronal activity. It is plausible that the transient opening of hemichannels allows cation influx, leading to depolarisation. Recently, we have shown that dopaminergic neurons in the substantia nigra and GABAergic neurons in the VTA also express Cx26 hemichannels. An increase in the level of CO2 results in hemichannel opening, increasing whole-cell conductance, and decreasing neuronal excitability. We found that the expression of Cx26 in the dopaminergic neurons in the substantia nigra at P7-10 is transferred to glial cells by P17-21, displaying a shift from being inhibitory (to neuronal activity) in young mice, to potentially excitatory (via ATP release). Thus, Cx26 hemichannels could have three modes of signalling (release of ATP, excitatory flickering open and shut and inhibitory shunting) depending on where they are expressed (neurons or glia) and the stage of development.
Collapse
|
3
|
Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S. Back to Nucleus: Combating with Cadmium Toxicity Using Nrf2 Signaling Pathway as a Promising Therapeutic Target. Biol Trace Elem Res 2020; 197:52-62. [PMID: 31786752 DOI: 10.1007/s12011-019-01980-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
There are concerns about the spread of heavy metals in the environment, and human activities are one of the most important factors in their spread. These agents have the high half-life resulting in their persistence in the environment. So, prevention of their spread is the first step. However, heavy metals are an inevitable part of modern and industrial life and they are applied in different fields. Cadmium is one of the heavy metals which has high carcinogenesis ability. Industrial waste, vehicle emissions, paints, and fertilizers are ways of exposing human to cadmium. This potentially toxic agent harmfully affects the various organs and systems of body such as the liver, kidney, brain, and cardiovascular system. Oxidative stress is one of the most important pathways of cadmium toxicity. So, improving the antioxidant defense system can be considered as a potential target. On the other hand, the Nrf2 signaling pathway involves improving the antioxidant capacity by promoting the activity of antioxidant enzymes such as catalase and superoxide dismutase. At the present review, we demonstrate how Nrf2 signaling pathway can be modulated to diminish the cadmium toxicity.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|