1
|
Li A, Chen H, Naya Y. Mnemonically modulated perceptual processing to represent allocentric space in macaque inferotemporal cortex. Prog Neurobiol 2024; 241:102670. [PMID: 39366505 DOI: 10.1016/j.pneurobio.2024.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
To encode allocentric space information of a viewing object, it is important to relate perceptual information in the first-person perspective to the representation of an entire scene which would be constructed before. A substantial number of studies investigated the constructed scene information (e.g., cognitive map). However, only few studies have focused on its influence on perceptual processing. Therefore, we designed a visually guided saccade task requiring monkeys to gaze at objects in different locations on different backgrounds clipped from large self-designed mosaic pictures (parental pictures). In each trial, we presented moving backgrounds prior to object presentations, indicating a frame position of the background image on a parental picture. We recorded single-unit activities from 377 neurons in the posterior inferotemporal (PIT) cortex of two macaques. Equivalent numbers of neurons showed space-related (119 of 377) and object-related (125 of 377) information. The space-related neurons coded the gaze locations and background images jointly rather than separately. These results suggest that PIT neurons represent a particular location within a particular background image. Interestingly, frame positions of background images on parental pictures modulated the space-related responses dependently on parental pictures. As the frame positions could be acquired by only preceding visual experiences, the present results may provide neuronal evidence of a mnemonic effect on current perception, which might represent allocentric object location in a scene beyond the current view.
Collapse
Affiliation(s)
- Ao Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; Department of Biological Structure, University of Washington, Seattle, WA 98195, United States; Washington National Primate Research Center, University of Washington, Seattle, WA 98195, United States
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Forcelli PA, LaFlamme EM, Waguespack HF, Saunders RC, Malkova L. Hippocampal lesions impair non-navigational spatial memory in macaques. Hippocampus 2024; 34:261-275. [PMID: 38516827 PMCID: PMC11295105 DOI: 10.1002/hipo.23603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Decades of studies robustly support a critical role for the hippocampus in spatial memory across a wide range of species. Hippocampal damage produces clear and consistent deficits in allocentric spatial memory that requires navigating through space in rodents, non-human primates, and humans. By contrast, damage to the hippocampus spares performance in most non-navigational spatial memory tasks-which can typically be resolved using egocentric cues. We previously found that transient inactivation of the hippocampus impairs performance in the Hamilton Search Task (HST), a self-ordered non-navigational spatial search task. A key question, however, still needs to be addressed. Acute, reversible inactivation of the hippocampus may have resulted in an impairment in the HST because this approach does not allow for neuroplastic compensation, may prevent the development of an alternative learning strategy, and/or may produce network-based effects that disrupt performance. We compared learning and performance on the HST in male rhesus macaques (six unoperated control animals and six animals that underwent excitotoxic lesions of the hippocampus). We found a significant impairment in animals with hippocampal lesions. While control animals improved in performance over the course of 45 days of training, performance in animals with hippocampal lesions remained at chance levels. The HST thus represents a sensitive assay for probing the integrity of the hippocampus in non-human primates. These data provide evidence demonstrating that the hippocampus is critical for this type of non-navigational spatial memory, and help to reconcile the many null findings previously reported.
Collapse
Affiliation(s)
- Patrick A. Forcelli
- Department of Pharmacology & Physiology, Georgetown University
- Department of Neuroscience, Georgetown University
- Interdisciplinary Program in Neuroscience, Georgetown University
| | | | - Hannah F. Waguespack
- Department of Pharmacology & Physiology, Georgetown University
- Interdisciplinary Program in Neuroscience, Georgetown University
| | | | - Ludise Malkova
- Department of Pharmacology & Physiology, Georgetown University
- Interdisciplinary Program in Neuroscience, Georgetown University
| |
Collapse
|
3
|
Yang C, Naya Y. Sequential involvements of the perirhinal cortex and hippocampus in the recall of item-location associative memory in macaques. PLoS Biol 2023; 21:e3002145. [PMID: 37289802 DOI: 10.1371/journal.pbio.3002145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
The standard consolidation theory suggests that the hippocampus (HPC) is critically involved in acquiring new memory, while storage and recall gradually become independent of it. Converging studies have shown separate involvements of the perirhinal cortex (PRC) and parahippocampal cortex (PHC) in item and spatial processes, whereas HPC relates the item to a spatial context. These 2 strands of literature raise the following question; which brain region is involved in the recall process of item-location associative memory? To solve this question, this study applied an item-location associative (ILA) paradigm in a single-unit study of nonhuman primates. We trained 2 macaques to associate 4 visual item pairs with 4 locations on a background map in an allocentric manner before the recording sessions. In each trial, 1 visual item and the map image at a tilt (-90° to 90°) were sequentially presented as the item-cue and the context-cue, respectively. The macaques chose the item-cue location relative to the context-cue by positioning their gaze. Neurons in the PRC, PHC, and HPC, but not area TE, exhibited item-cue responses which signaled retrieval of item-location associative memory. This retrieval signal first appeared in the PRC, followed by the HPC and PHC. We examined whether neural representations of the retrieved locations were related to the external space that the macaques viewed. A positive representation similarity was found in the HPC and PHC, but not in the PRC, thus suggesting a contribution of the HPC to relate the retrieved location from the PRC with a first-person perspective of the subjects and provide the self-referenced retrieved location to the PHC. These results imply distinct but complementary contributions of the PRC and HPC to recall of item-location associative memory that can be used across multiple spatial contexts.
Collapse
Affiliation(s)
- Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Center for Life Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
4
|
Yang C, Chen H, Naya Y. Allocentric information represented by self-referenced spatial coding in the primate medial temporal lobe. Hippocampus 2023; 33:522-532. [PMID: 36728411 DOI: 10.1002/hipo.23501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 02/03/2023]
Abstract
For living organisms, the ability to acquire information regarding the external space around them is critical for future actions. While the information must be stored in an allocentric frame to facilitate its use in various spatial contexts, each case of use requires the information to be represented in a particular self-referenced frame. Previous studies have explored neural substrates responsible for the linkage between self-referenced and allocentric spatial representations based on findings in rodents. However, the behaviors of rodents are different from those of primates in several aspects; for example, rodents mainly explore their environments through locomotion, while primates use eye movements. In this review, we discuss the brain mechanisms responsible for the linkage in nonhuman primates. Based on recent physiological studies, we propose that two types of neural substrates link the first-person perspective with allocentric coding. The first is the view-center background signal, which represents an image of the background surrounding the current position of fixation on the retina. This perceptual signal is transmitted from the ventral visual pathway to the hippocampus (HPC) via the perirhinal cortex and parahippocampal cortex. Because images that share the same objective-position in the environment tend to appear similar when seen from different self-positions, the view-center background signals are easily associated with one another in the formation of allocentric position coding and storage. The second type of neural substrate is the HPC neurons' dynamic activity that translates the stored location memory to the first-person perspective depending on the current spatial context.
Collapse
Affiliation(s)
- Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Naya Y, Sakai KL. Editorial: Task-Related Brain Systems Revealed by Human Imaging Experiments. Front Behav Neurosci 2022; 16:889486. [PMID: 35517572 PMCID: PMC9063723 DOI: 10.3389/fnbeh.2022.889486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research at Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Kuniyoshi L Sakai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Zhang B, Wang F, Zhang Q, Naya Y. Distinct networks coupled with parietal cortex for spatial representations inside and outside the visual field. Neuroimage 2022; 252:119041. [PMID: 35231630 DOI: 10.1016/j.neuroimage.2022.119041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Our mental representation of egocentric space is influenced by the disproportionate sensory perception of the body. Previous studies have focused on the neural architecture for egocentric representations within the visual field. However, the space representation underlying the body is still unclear. To address this problem, we applied both functional Magnitude Resonance Imaging (fMRI) and Magnetoencephalography (MEG) to a spatial-memory paradigm by using a virtual environment in which human participants remembered a target location left, right, or back relative to their own body. Both experiments showed larger involvement of the frontoparietal network in representing a retrieved target on the left/right side than on the back. Conversely, the medial temporal lobe (MTL)-parietal network was more involved in retrieving a target behind the participants. The MEG data showed an earlier activation of the MTL-parietal network than that of the frontoparietal network during retrieval of a target location. These findings suggest that the parietal cortex may represent the entire space around the self-body by coordinating two distinct brain networks.
Collapse
Affiliation(s)
- Bo Zhang
- School of Psychological and Cognitive Sciences, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China; Beijing Academy of Artificial Intelligence, Beijing, 100084, China; Tsinghua Laboratory of Brain and Intelligence, 160 Chengfu Rd., SanCaiTang Building, Haidian District, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Qi Zhang
- School of Psychological and Cognitive Sciences, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China; School of Educational Science, Minnan Normal University, No. 36, Xianqianzhi Street, Zhangzhou 363000, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China; IDG/McGovern Institute for Brain Research at Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China; Center for Life Sciences, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, No. 52, Haidian Road, Haidian District, Beijing 100805, China.
| |
Collapse
|
7
|
Chen H, Naya Y. Reunification of Object and View-Center Background Information in the Primate Medial Temporal Lobe. Front Behav Neurosci 2021; 15:756801. [PMID: 34938164 PMCID: PMC8685287 DOI: 10.3389/fnbeh.2021.756801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent work has shown that the medial temporal lobe (MTL), including the hippocampus (HPC) and its surrounding limbic cortices, plays a role in scene perception in addition to episodic memory. The two basic factors of scene perception are the object (“what”) and location (“where”). In this review, we first summarize the anatomical knowledge related to visual inputs to the MTL and physiological studies examining object-related information processed along the ventral pathway briefly. Thereafter, we discuss the space-related information, the processing of which was unclear, presumably because of its multiple aspects and a lack of appropriate task paradigm in contrast to object-related information. Based on recent electrophysiological studies using non-human primates and the existing literature, we proposed the “reunification theory,” which explains brain mechanisms which construct object-location signals at each gaze. In this reunification theory, the ventral pathway signals a large-scale background image of the retina at each gaze position. This view-center background signal reflects the first person’s perspective and specifies the allocentric location in the environment by similarity matching between images. The spatially invariant object signal and view-center background signal, both of which are derived from the same retinal image, are integrated again (i.e., reunification) along the ventral pathway-MTL stream, particularly in the perirhinal cortex. The conjunctive signal, which represents a particular object at a particular location, may play a role in scene perception in the HPC as a key constituent element of an entire scene.
Collapse
Affiliation(s)
- He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Beijing Key Laboratory of Behavioral and Mental Health, Faculty of Science, College of Psychology and Cognitive Sciences, Peking University, Beijing, China
| |
Collapse
|
8
|
Zhang X, Naya Y. Retrospective memory trace sustained by the human hippocampus during working memory task. Eur J Neurosci 2021; 55:107-120. [PMID: 34841619 DOI: 10.1111/ejn.15549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/24/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Working memory is a subcategory of short-term memory that voluntarily maintains behaviourally relevant information to prepare for a subsequent action. An established theory is that working memory is supported by the prefrontal cortex (PFC) for executive control, while the hippocampus (HPC) is largely involved in long-term episodic memory. Recent studies suggest that the HPC is also involved in perception and short-term storage. However, it remains unclear whether the HPC supports active maintenance of short-term memory as working memory. To address this question, we devised a new delayed matching-to-sample task in which two visual items were presented at different locations one by one as samples. The sequential presentations of sample stimuli allowed us to dissociate the contents of working memory (i.e., identities and locations of two samples) from the constituent perceived information of single samples. By applying representational similarity analysis (RSA) to the blood-oxygen-level-dependent (BOLD) signals of human participants, we investigated the delay activity after the two sample presentations. The results of the RSA showed that the right HPC signalled only the second sample as a conjunctional representation of its item identity and location. In contrast, the right PFC, including both lateral and medial parts, represented the conjunctional information of both samples. These results suggested that the HPC may support short-term memory for retrospective coding to retain information of the last event rather than for prospective coding coupled with working memory.
Collapse
Affiliation(s)
- Xinyi Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Life Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Center for Life Sciences, Peking University, Beijing, China.,IDG/McGovern Institute for Brain Research at Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
9
|
Yang C, Naya Y. Hippocampal cells integrate past memory and present perception for the future. PLoS Biol 2020; 18:e3000876. [PMID: 33206640 PMCID: PMC7673575 DOI: 10.1371/journal.pbio.3000876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
The ability to use stored information in a highly flexible manner is a defining feature of the declarative memory system. However, the neuronal mechanisms underlying this flexibility are poorly understood. To address this question, we recorded single-unit activity from the hippocampus of 2 nonhuman primates performing a newly devised task requiring the monkeys to retrieve long-term item-location association memory and then use it flexibly in different circumstances. We found that hippocampal neurons signaled both mnemonic information representing the retrieved location and perceptual information representing the external circumstance. The 2 signals were combined at a single-neuron level to construct goal-directed information by 3 sequentially occurring neuronal operations (e.g., convergence, transference, and targeting) in the hippocampus. Thus, flexible use of knowledge may be supported by the hippocampal constructive process linking memory and perception, which may fit the mnemonic information into the current situation to present manageable information for a subsequent action. This study reveals that three neuronal operations in the macaque hippocampus combine retrieved memory and incoming perceptual information to construct goal-directed information; this constructive memory process may equip us to use past knowledge flexibly according to the current situation.
Collapse
Affiliation(s)
- Cen Yang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Life Sciences, Peking University, Beijing, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
- Center for Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
10
|
Zhang B, Naya Y. Medial Prefrontal Cortex Represents the Object-Based Cognitive Map When Remembering an Egocentric Target Location. Cereb Cortex 2020; 30:5356-5371. [PMID: 32483594 DOI: 10.1093/cercor/bhaa117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 01/25/2023] Open
Abstract
A cognitive map, representing an environment around oneself, is necessary for spatial navigation. However, compared with its constituent elements such as individual landmarks, neural substrates of coherent spatial information, which consists in a relationship among the individual elements, remain largely unknown. The present study investigated how the brain codes map-like representations in a virtual environment specified by the relative positions of three objects. Representational similarity analysis revealed an object-based spatial representation in the hippocampus (HPC) when participants located themselves within the environment, while the medial prefrontal cortex (mPFC) represented it when they recollected a target object's location relative to their self-body. During recollection, task-dependent functional connectivity increased between the two areas implying exchange of self-location and target location signals between the HPC and mPFC. Together, the object-based cognitive map, whose coherent spatial information could be formed by objects, may be recruited in the HPC and mPFC for complementary functions during navigation, which may generalize to other aspects of cognition, such as navigating social interactions.
Collapse
Affiliation(s)
- Bo Zhang
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100805, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100805, China.,IDG/McGovern Institute for Brain Research, Peking University, Beijing 100805, China.,Center for Life Sciences, Peking University, Beijing 100805, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100805, China
| |
Collapse
|
11
|
Chen H, Naya Y. Automatic Encoding of a View-Centered Background Image in the Macaque Temporal Lobe. Cereb Cortex 2020; 30:6270-6283. [DOI: 10.1093/cercor/bhaa183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/07/2020] [Indexed: 11/14/2022] Open
Abstract
Abstract
Perceptual processing along the ventral visual pathway to the hippocampus (HPC) is hypothesized to be substantiated by signal transformation from retinotopic space to relational space, which represents interrelations among constituent visual elements. However, our visual perception necessarily reflects the first person’s perspective based on the retinotopic space. To investigate this two-facedness of visual perception, we compared neural activities in the temporal lobe (anterior inferotemporal cortex, perirhinal and parahippocampal cortices, and HPC) between when monkeys gazed on an object and when they fixated on the screen center with an object in their peripheral vision. We found that in addition to the spatially invariant object signal, the temporal lobe areas automatically represent a large-scale background image, which specify the subject’s viewing location. These results suggest that a combination of two distinct visual signals on relational space and retinotopic space may provide the first person’s perspective serving for perception and presumably subsequent episodic memory.
Collapse
Affiliation(s)
- He Chen
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
| | - Yuji Naya
- School of Psychological and Cognitive Sciences, Peking University, Beijing 100871, China
- IDG/McGovern Institute for Brain Research at Peking University, Beijing 100871, China
- Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| |
Collapse
|