1
|
Nolan E, Loh KK, Petrides M. Morphological patterns and spatial probability maps of the inferior frontal sulcus in the human brain. Hum Brain Mapp 2024; 45:e26759. [PMID: 38989632 PMCID: PMC11237881 DOI: 10.1002/hbm.26759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
The inferior frontal sulcus (ifs) is a prominent sulcus on the lateral frontal cortex, separating the middle frontal gyrus from the inferior frontal gyrus. The morphology of the ifs can be difficult to distinguish from adjacent sulci, which are often misidentified as continuations of the ifs. The morphological variability of the ifs and its relationship to surrounding sulci were examined in 40 healthy human subjects (i.e., 80 hemispheres). The sulci were identified and labeled on the native cortical surface meshes of individual subjects, permitting proper intra-sulcal assessment. Two main morphological patterns of the ifs were identified across hemispheres: in Type I, the ifs was a single continuous sulcus, and in Type II, the ifs was discontinuous and appeared in two segments. The morphology of the ifs could be further subdivided into nine subtypes based on the presence of anterior and posterior sulcal extensions. The ifs was often observed to connect, either superficially or completely, with surrounding sulci, and seldom appeared as an independent sulcus. The spatial variability of the ifs and its various morphological configurations were quantified in the form of surface spatial probability maps which are made publicly available in the standard fsaverage space. These maps demonstrated that the ifs generally occupied a consistent position across hemispheres and across individuals. The normalized mean sulcal depths associated with the main morphological types were also computed. The present study provides the first detailed description of the ifs as a sulcal complex composed of segments and extensions that can be clearly differentiated from adjacent sulci. These descriptions, together with the spatial probability maps, are critical for the accurate identification of the ifs in anatomical and functional neuroimaging studies investigating the structural characteristics and functional organization of this region in the human brain.
Collapse
Affiliation(s)
- Erika Nolan
- Department of Psychology, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Kep Kee Loh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Psychology, National University of Singapore, Singapore
| | - Michael Petrides
- Department of Psychology, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Wang X, Leprince Y, Lebenberg J, Langlet C, Mohlberg H, Rivière D, Auzias G, Dickscheid T, Amunts K, Mangin JF. A framework to improve the alignment of individual cytoarchitectonic maps of the Julich-Brain atlas using cortical folding landmarks. Cereb Cortex 2024; 34:bhad538. [PMID: 38236742 DOI: 10.1093/cercor/bhad538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
The segregation of the cortical mantle into cytoarchitectonic areas provides a structural basis for the specialization of different brain regions. In vivo neuroimaging experiments can be linked to this postmortem cytoarchitectonic parcellation via Julich-Brain. This atlas embeds probabilistic maps that account for inter-individual variability in the localization of cytoarchitectonic areas in the reference spaces targeted by spatial normalization. We built a framework to improve the alignment of architectural areas across brains using cortical folding landmarks. This framework, initially designed for in vivo imaging, was adapted to postmortem histological data. We applied this to the first 14 brains used to establish the Julich-Brain atlas to infer a refined atlas with more focal probabilistic maps. The improvement achieved is significant in the primary regions and some of the associative areas. This framework also provides a tool for exploring the relationship between cortical folding patterns and cytoarchitectonic areas in different cortical regions to establish new landmarks in the remainder of the cortex.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Yann Leprince
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Jessica Lebenberg
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
- Lariboisière University Hospital, APHP, Translational Neurovascular Centre and Department of Neurology, FHU NeuroVasc, Paris, France
| | - Clement Langlet
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
- Institute of Computer Science, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
- Cecile und Oskar Vogt Institut für Hirnforschung, University Hospital Düsseldorf, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
3
|
Yadav R, Dupé FX, Takerkart S, Auzias G. Population-wise labeling of sulcal graphs using multi-graph matching. PLoS One 2023; 18:e0293886. [PMID: 37943809 PMCID: PMC10635518 DOI: 10.1371/journal.pone.0293886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Population-wise matching of the cortical folds is necessary to compute statistics, a required step for e.g. identifying biomarkers of neurological or psychiatric disorders. The difficulty arises from the massive inter-individual variations in the morphology and spatial organization of the folds. The task is challenging both methodologically and conceptually. In the widely used registration-based techniques, these variations are considered as noise and the matching of folds is only implicit. Alternative approaches are based on the extraction and explicit identification of the cortical folds. In particular, representing cortical folding patterns as graphs of sulcal basins-termed sulcal graphs-enables to formalize the task as a graph-matching problem. In this paper, we propose to address the problem of sulcal graph matching directly at the population level using multi-graph matching techniques. First, we motivate the relevance of the multi-graph matching framework in this context. We then present a procedure for generating populations of artificial sulcal graphs, which allows us to benchmark several state-of-the-art multi-graph matching methods. Our results on both artificial and real data demonstrate the effectiveness of multi-graph matching techniques in obtaining a population-wise consistent labeling of cortical folds at the sulcal basin level.
Collapse
Affiliation(s)
- Rohit Yadav
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
- Institut Marseille Imaging, Aix Marseille Université, Marseille, France
- Laboratoire d’Informatique et Systèmes UMR 7020, CNRS, Aix-Marseille Université, Marseille, France
| | - François-Xavier Dupé
- Laboratoire d’Informatique et Systèmes UMR 7020, CNRS, Aix-Marseille Université, Marseille, France
| | - Sylvain Takerkart
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone UMR 7289, CNRS, Aix-Marseille Université, Marseille, France
| |
Collapse
|
4
|
Cordeau M, Bichoutar I, Meunier D, Loh KK, Michaud I, Coulon O, Auzias G, Belin P. Anatomo-functional correspondence in the voice-selective regions of human prefrontal cortex. Neuroimage 2023; 279:120336. [PMID: 37597590 DOI: 10.1016/j.neuroimage.2023.120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
Group level analyses of functional regions involved in voice perception show evidence of 3 sets of bilateral voice-sensitive activations in the human prefrontal cortex, named the anterior, middle and posterior Frontal Voice Areas (FVAs). However, the relationship with the underlying sulcal anatomy, highly variable in this region, is still unknown. We examined the inter-individual variability of the FVAs in conjunction with the sulcal anatomy. To do so, anatomical and functional MRI scans from 74 subjects were analyzed to generate individual contrast maps of the FVAs and relate them to each subject's manually labeled prefrontal sulci. We report two major results. First, the frontal activations for the voice are significantly associated with the sulcal anatomy. Second, this correspondence with the sulcal anatomy at the individual level is a better predictor than coordinates in the MNI space. These findings offer new perspectives for the understanding of anatomical-functional correspondences in this complex cortical region. They also shed light on the importance of considering individual-specific variations in subject's anatomy.
Collapse
Affiliation(s)
- Mélina Cordeau
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, Marseille 13005, France.
| | - Ihsane Bichoutar
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - David Meunier
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, Marseille 13005, France
| | - Kep-Kee Loh
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Psychology, National University of Singapore, Singapore
| | - Isaure Michaud
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, Marseille 13005, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, Marseille 13005, France; Institute of Language Communication and the Brain, ILCB, Aix-en-Provence, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, Marseille 13005, France
| | - Pascal Belin
- Institut de Neurosciences de la Timone, Aix Marseille Université, UMR 7289 CNRS, Marseille 13005, France; Psychology Department, Montreal University, C.P. 6128, succ. Centre-ville, Montreal, Quebec H3C 3J7, Canada; Institute of Language Communication and the Brain, ILCB, Aix-en-Provence, France
| |
Collapse
|
5
|
Willbrand EH, Ferrer E, Bunge SA, Weiner KS. Development of Human Lateral Prefrontal Sulcal Morphology and Its Relation to Reasoning Performance. J Neurosci 2023; 43:2552-2567. [PMID: 36828638 PMCID: PMC10082454 DOI: 10.1523/jneurosci.1745-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Previous findings show that the morphology of folds (sulci) of the human cerebral cortex flatten during postnatal development. However, previous studies did not consider the relationship between sulcal morphology and cognitive development in individual participants. Here, we fill this gap in knowledge by leveraging cross-sectional morphologic neuroimaging data in the lateral PFC (LPFC) from individual human participants (6-36 years old, males and females; N = 108; 3672 sulci), as well as longitudinal morphologic and behavioral data from a subset of child and adolescent participants scanned at two time points (6-18 years old; N = 44; 2992 sulci). Manually defining thousands of sulci revealed that LPFC sulcal morphology (depth, surface area, and gray matter thickness) differed between children (6-11 years old)/adolescents (11-18 years old) and young adults (22-36 years old) cross-sectionally, but only cortical thickness showed differences across childhood and adolescence and presented longitudinal changes during childhood and adolescence. Furthermore, a data-driven approach relating morphology and cognition identified that longitudinal changes in cortical thickness of four left-hemisphere LPFC sulci predicted longitudinal changes in reasoning performance, a higher-level cognitive ability that relies on LPFC. Contrary to previous findings, these results suggest that sulci may flatten either after this time frame or over a longer longitudinal period of time than previously presented. Crucially, these results also suggest that longitudinal changes in the cortex within specific LPFC sulci are behaviorally meaningful, providing targeted structures, and areas of the cortex, for future neuroimaging studies examining the development of cognitive abilities.SIGNIFICANCE STATEMENT Recent work has shown that individual differences in neuroanatomical structures (indentations, or sulci) within the lateral PFC are behaviorally meaningful during childhood and adolescence. Here, we describe how specific lateral PFC sulci develop at the level of individual participants for the first time: from both cross-sectional and longitudinal perspectives. Further, we show, also for the first time, that the longitudinal morphologic changes in these structures are behaviorally relevant. These findings lay the foundation for a future avenue to precisely study the development of the cortex and highlight the importance of studying the development of sulci in other cortical expanses and charting how these changes relate to the cognitive abilities those areas support at the level of individual participants.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Emilio Ferrer
- Department of Psychology
- Center for Mind and Brain, University of California-Davis, Davis, California 95616
| | - Silvia A Bunge
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| | - Kevin S Weiner
- Department of Psychology
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
6
|
Novek J, Sprung-Much T, Nolan E, Petrides M. Optimal blocking of the cerebral cortex for cytoarchitectonic examination: a neuronavigation-based approach. Cereb Cortex 2023; 33:2704-2714. [PMID: 35780434 DOI: 10.1093/cercor/bhac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/11/2022] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Certain sulci of the human cerebral cortex hold consistent relationships to cytoarchitectonic areas (e.g. the primary motor cortical area 4 and the somatosensory cortical area 3 occupy the anterior and posterior banks of the central sulcus, respectively). Recent research has improved knowledge of the cortical sulci and their variability across individuals. However, other than the so-called primary sulci, understanding of the precise relationships cortical folds hold with many cytoarchitectonic areas remains elusive. To examine these relationships, the cortex must be blocked, sectioned, and histologically processed in a manner that allows the cytoarchitectonic layers to be clearly observed. The optimal strategy to view the cytoarchitecture is to block and section the cortex perpendicular to the sulcal orientation. Most cytoarchitectonic investigations of the cortex, however, have been conducted on specimens cut along a single axis (e.g. the coronal plane), which distorts the appearance of the cytoarchitectonic layers within parts of the cortical ribbon not sectioned optimally. Thus, to understand further the relationships between sulci and cytoarchitectonic areas, the cortex should be sectioned optimally to the sulci of interest. A novel approach for blocking the cortex optimally using structural magnetic resonance imaging (MRI) and surgical neuronavigation tools is presented here.
Collapse
Affiliation(s)
- Jennifer Novek
- Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada, H3A 2B4
| | - Trisanna Sprung-Much
- Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada, H3A 2B4
| | - Erika Nolan
- Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada, H3A 2B4
| | - Michael Petrides
- Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada, H3A 2B4
| |
Collapse
|
7
|
Yao JK, Voorhies WI, Miller JA, Bunge SA, Weiner KS. Sulcal depth in prefrontal cortex: a novel predictor of working memory performance. Cereb Cortex 2023; 33:1799-1813. [PMID: 35589102 PMCID: PMC9977365 DOI: 10.1093/cercor/bhac173] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
The neuroanatomical changes that underpin cognitive development are of major interest in neuroscience. Of the many aspects of neuroanatomy to consider, tertiary sulci are particularly attractive as they emerge last in gestation, show a protracted development after birth, and are either human- or hominoid-specific. Thus, they are ideal targets for exploring morphological-cognitive relationships with cognitive skills that also show protracted development such as working memory (WM). Yet, the relationship between sulcal morphology and WM is unknown-either in development or more generally. To fill this gap, we adopted a data-driven approach with cross-validation to examine the relationship between sulcal depth in lateral prefrontal cortex (LPFC) and verbal WM in 60 children and adolescents between ages 6 and 18. These analyses identified 9 left, and no right, LPFC sulci (of which 7 were tertiary) whose depth predicted verbal WM performance above and beyond the effect of age. Most of these sulci are located within and around contours of previously proposed functional parcellations of LPFC. This sulcal depth model outperformed models with age or cortical thickness. Together, these findings build empirical support for a classic theory that tertiary sulci serve as landmarks in association cortices that contribute to late-maturing human cognitive abilities.
Collapse
Affiliation(s)
- Jewelia K Yao
- Princeton Neuroscience Institute, Princeton University, Washington Rd, Princeton, NJ 08540, United States
| | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
| | - Jacob A Miller
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Silvia A Bunge
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, 175 Li Ka Shing Center, Berkeley, CA 94720, United States
| |
Collapse
|
8
|
Wang Y, Xu F, Zhou W, Hou L, Tang Y, Liu S. Morphological and hemispheric and sex differences of the anterior ascending ramus and the horizontal ascending ramus of the lateral sulcus. Brain Struct Funct 2022; 227:1949-1961. [PMID: 35441988 PMCID: PMC9232435 DOI: 10.1007/s00429-022-02482-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/13/2022] [Indexed: 11/30/2022]
Abstract
Broca’s area is composed of the pars opercularis (PO) and the pars triangularis (PTR) of the inferior frontal gyrus; the anterior ascending ramus of the lateral sulcus (aals) separates the PO from the PTR, and the horizontal ascending ramus of the lateral sulcus (hals) separates the PTR from the pars orbitalis. The morphometry of these two sulci maybe has potential effects on the various functions of Broca’s area. Exploring the morphological variations, hemispheric differences and sex differences of these two sulci contributed to a better localization of Broca's area. BrainVISA was used to reconstruct and parameterize these two sulci based on data from 3D MR images of 90 healthy right-handed subjects. The 3D anatomic morphologies of these two sulci were investigated using 4 sulcal parameters: average depth (AD), average width (AW), outer length (OL) and inner length (IL). The aals and hals could be identified in 98.89% and 98.33%, respectively, of the hemispheres evaluated. The morphological patterns of these two sulci were categorized into four typical types. There were no statistically significant interhemispheric or sex differences in the frequency of the morphological patterns. There was statistically significant interhemispheric difference in the IL of the aals. Significant sex differences were found in the AD and the IL of the aals and OL of the hals. Our results not only provide a structural basis for functional studies related to Broca’s area but also are helpful in determining the precise position of Broca’s area in neurosurgery.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjuan Zhou
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Lanwei Hou
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Drudik K, Zlatkina V, Petrides M. Morphological patterns and spatial probability maps of the superior parietal sulcus in the human brain. Cereb Cortex 2022; 33:1230-1245. [PMID: 35388402 PMCID: PMC9930623 DOI: 10.1093/cercor/bhac132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/14/2022] Open
Abstract
The superior parietal sulcus (SPS) is the defining sulcus within the superior parietal lobule (SPL). The morphological variability of the SPS was examined in individual magnetic resonance imaging (MRI) scans of the human brain that were registered to the Montreal Neurological Institute (MNI) standard stereotaxic space. Two primary morphological patterns were consistently identified across hemispheres: (i) the SPS was identified as a single sulcus, separating the anterior from the posterior part of the SPL and (ii) the SPS was found as a complex of multiple sulcal segments. These morphological patterns were subdivided based on whether the SPS or SPS complex remained distinct or merged with surrounding parietal sulci. The morphological variability and spatial extent of the SPS were quantified using volumetric and surface spatial probabilistic mapping. The current investigation established consistent morphological patterns in a common anatomical space, the MNI stereotaxic space, to facilitate structural and functional analyses within the SPL.
Collapse
Affiliation(s)
- Kristina Drudik
- Corresponding author: Kristina Drudik, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Veronika Zlatkina
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec, Canada H3A 2B4,Department of Psychology, McGill University, 2001 McGill College, Montreal, Quebec, Canada H3A 1G1
| |
Collapse
|
10
|
Zlatkina V, Sprung-Much T, Petrides M. Spatial probability maps of the segments of the postcentral sulcus in the human brain. Cereb Cortex 2021; 32:3651-3668. [PMID: 34963136 PMCID: PMC9433426 DOI: 10.1093/cercor/bhab439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The postcentral sulcus is the posterior boundary of the postcentral gyrus where the somatosensory cortex is represented. In the human brain, the postcentral sulcus is composed of five distinct segments that are related to the somatosensory representation of different parts of the body. Segment 1 of the postcentral sulcus, located near the dorsomedial boundary of each hemisphere, is associated with toe/leg representations, segment 2 with arm/hand representations, segment 3 with blinking, and segments 4 and 5, which are near the lateral fissure and the parietal operculum, with the mouth and tongue representations. The variability in location and spatial extent of these five segments were quantified in 40 magnetic resonance imaging (MRI) anatomical brain scans registered to the stereotaxic space of the Montreal Neurological Institute (MNI space), in the form of volumetric (using MINC Toolkit) and surface (using FreeSurfer) spatial probability maps. These probability maps can be used by researchers and clinicians to improve the localization of the segments of the postcentral sulcus in MRI images of interest and also to improve the interpretation of the location of activation peaks generated in functional neuroimaging studies investigating somatosensory cortex.
Collapse
Affiliation(s)
- Veronika Zlatkina
- Address correspondence to Veronika Zlatkina, Montreal Neurological Institute, 3801 University St., Montreal, QC H3A 2B4, Canada.
| | - Trisanna Sprung-Much
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
11
|
Broca's area and the search for anatomical asymmetry: commentary and perspectives. Brain Struct Funct 2021; 227:441-449. [PMID: 34390415 DOI: 10.1007/s00429-021-02357-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
We present a brief commentary on the field's search for an anatomical asymmetry between Broca's area and its homologue in the non-dominant hemisphere, focusing on a selection of studies, including research from the last decade. We demonstrate that, several years after the influential review of Keller and colleagues from 2009, and despite recent advances in neuroimaging, the existence of a structural asymmetry of Broca's area is still controversial. This is especially the case for studies of the macroanatomy of this region. We point out the inconsistencies in methodology across studies that could account for the discrepancy in results. Investigations of the microstructure of Broca's area show a trend of a leftward asymmetry, but it is still unclear how these results relate to language dominance. We suggest that it may be necessary to combine multiple metrics in a systematic manner to find robust asymmetries and to expand the regional scope of structural investigations. Finally, based on the current state of the literature, we should not rule out the possibility that language dominance may simply not be reflected in local anatomical differences in the brain.
Collapse
|
12
|
Eichert N, Watkins KE, Mars RB, Petrides M. Morphological and functional variability in central and subcentral motor cortex of the human brain. Brain Struct Funct 2020; 226:263-279. [PMID: 33355695 PMCID: PMC7817568 DOI: 10.1007/s00429-020-02180-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
There is a long-established link between anatomy and function in the somatomotor system in the mammalian cerebral cortex. The morphology of the central sulcus is predictive of the location of functional activation peaks relating to movement of different effectors in individuals. By contrast, morphological variation in the subcentral region and its relationship to function is, as yet, unknown. Investigating the subcentral region is particularly important in the context of speech, since control of the larynx during human speech production is related to activity in this region. Here, we examined the relationship between morphology in the central and subcentral region and the location of functional activity during movement of the hand, lips, tongue, and larynx at the individual participant level. We provide a systematic description of the sulcal patterns of the subcentral and adjacent opercular cortex, including the inter-individual variability in sulcal morphology. We show that, in the majority of participants, the anterior subcentral sulcus is not continuous, but consists of two distinct segments. A robust relationship between morphology of the central and subcentral sulcal segments and movement of different effectors is demonstrated. Inter-individual variability of underlying anatomy might thus explain previous inconsistent findings, in particular regarding the ventral larynx area in subcentral cortex. A surface registration based on sulcal labels indicated that such anatomical information can improve the alignment of functional data for group studies.
Collapse
Affiliation(s)
- Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 AJ, Nijmegen, The Netherlands
| | - Michael Petrides
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, 3801 University Street, Montreal, QC, H3A 2B4, Canada.,Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| |
Collapse
|