1
|
Perry WB, Kaufmann J, Solberg MF, Brodie C, Coral Medina AM, Pillay K, Egerton A, Harvey A, Phillips KP, Coughlan J, Egan F, Grealis R, Hutton S, Leseur F, Ryan S, Poole R, Rogan G, Ryder E, Schaal P, Waters C, Wynne R, Taylor M, Prodöhl P, Creer S, Llewellyn M, McGinnity P, Carvalho G, Glover KA. Domestication-induced reduction in eye size revealed in multiple common garden experiments: The case of Atlantic salmon ( Salmo salar L.). Evol Appl 2021; 14:2319-2332. [PMID: 34603501 PMCID: PMC8477603 DOI: 10.1111/eva.13297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Domestication leads to changes in traits that are under directional selection in breeding programmes, though unintentional changes in nonproduction traits can also arise. In offspring of escaping fish and any hybrid progeny, such unintentionally altered traits may reduce fitness in the wild. Atlantic salmon breeding programmes were established in the early 1970s, resulting in genetic changes in multiple traits. However, the impact of domestication on eye size has not been studied. We measured body size corrected eye size in 4000 salmon from six common garden experiments conducted under artificial and natural conditions, in freshwater and saltwater environments, in two countries. Within these common gardens, offspring of domesticated and wild parents were crossed to produce 11 strains, with varying genetic backgrounds (wild, domesticated, F1 hybrids, F2 hybrids and backcrosses). Size-adjusted eye size was influenced by both genetic and environmental factors. Domesticated fish reared under artificial conditions had smaller adjusted eye size when compared to wild fish reared under identical conditions, in both the freshwater and marine environments, and in both Irish and Norwegian experiments. However, in parr that had been introduced into a river environment shortly after hatching and sampled at the end of their first summer, differences in adjusted eye size observed among genetic groups were of a reduced magnitude and were nonsignificant in 2-year-old sea migrating smolts sampled in the river immediately prior to sea entry. Collectively, our findings could suggest that where natural selection is present, individuals with reduced eye size are maladapted and consequently have reduced fitness, building on our understanding of the mechanisms that underlie a well-documented reduction in the fitness of the progeny of domesticated salmon, including hybrid progeny, in the wild.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
- Water Research InstituteSchool of BiosciencesCardiff UniversityCardiffUK
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Joshka Kaufmann
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Christopher Brodie
- Ecosystems and Environment Research CentreSchool of Environment and Life SciencesUniversity of SalfordSalfordUK
| | | | - Kirthana Pillay
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Anna Egerton
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Alison Harvey
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
| | - Karl P. Phillips
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Jamie Coughlan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Fintan Egan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Ronan Grealis
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Steve Hutton
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Floriane Leseur
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Sarah Ryan
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | | | - Ger Rogan
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Elizabeth Ryder
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Patrick Schaal
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Catherine Waters
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Robert Wynne
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Martin Taylor
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Paulo Prodöhl
- Institute for Global Food SecuritySchool of Biological SciencesMedical Biology CentreQueen’s UniversityBelfastUK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Martin Llewellyn
- Institute of BiodiversityAnimal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
- Marine InstituteFurnace, NewportCo. MayoIreland
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics LaboratorySchool of Biological ScienceBangor UniversityBangor, GwyneddUK
| | - Kevin Alan Glover
- Population Genetics Research GroupInstitute of Marine ResearchBergenNorway
- Institute of BiologyUniversity of BergenBergenNorway
| |
Collapse
|
2
|
Laforest K, Peele E, Yopak K. Ontogenetic Shifts in Brain Size and Brain Organization of the Atlantic Sharpnose Shark, Rhizoprionodon terraenovae. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:162-180. [DOI: 10.1159/000511304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/31/2020] [Indexed: 11/19/2022]
Abstract
Throughout an animal’s life, species may occupy different environments and exhibit distinct life stages, known as ontogenetic shifts. The life histories of most sharks (class: Chondrichthyes) are characterized by these ontogenetic shifts, which can be defined by changes in habitat and diet as well as behavioral changes at the onset of sexual maturity. In addition, fishes experience indeterminate growth, whereby the brain and body grow throughout the organism’s life. Despite a presupposed lifelong neurogenesis in sharks, very little work has been done on ontogenetic changes in the brain, which may be informative about functional shifts in sensory and behavioral specializations. This study quantified changes in brain-body scaling and the scaling of six major brain regions (olfactory bulbs, telencephalon, diencephalon, optic tectum, cerebellum, and medulla oblongata) throughout ontogeny in the Atlantic sharpnose shark, <i>Rhizoprionodon terraenovae</i>. As documented in other fishes, brain size increased significantly with body mass throughout ontogeny in this species, with the steepest period of growth in early life. The telencephalon, diencephalon, optic tectum, and medulla oblongata scaled with negative allometry against the rest of the brain throughout ontogeny. However, notably, the olfactory bulbs and cerebellum scaled hyperallometrically to the rest of the brain, whereby these structures enlarged disproportionately as this species matured. Changes in the relative size of the olfactory bulbs throughout ontogeny may reflect an increased reliance on olfaction at later life history stages in <i>R. terraenovae</i>, while changes in the relative size of the cerebellum throughout ontogeny may be indicative of the ability to capture faster prey or an increase in migratory nature as this species moves to offshore habitats, associated with the onset of sexual maturity.
Collapse
|
3
|
Birnie-Gauvin K, Lennox RJ, Guglielmo CG, Teffer AK, Crossin GT, Norris DR, Aarestrup K, Cooke SJ. The Value of Experimental Approaches in Migration Biology. Physiol Biochem Zool 2020; 93:210-226. [DOI: 10.1086/708455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Lennox RJ, Paukert CP, Aarestrup K, Auger-Méthé M, Baumgartner L, Birnie-Gauvin K, Bøe K, Brink K, Brownscombe JW, Chen Y, Davidsen JG, Eliason EJ, Filous A, Gillanders BM, Helland IP, Horodysky AZ, Januchowski-Hartley SR, Lowerre-Barbieri SK, Lucas MC, Martins EG, Murchie KJ, Pompeu PS, Power M, Raghavan R, Rahel FJ, Secor D, Thiem JD, Thorstad EB, Ueda H, Whoriskey FG, Cooke SJ. One Hundred Pressing Questions on the Future of Global Fish Migration Science, Conservation, and Policy. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00286] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
5
|
Ueda H. Sensory mechanisms of natal stream imprinting and homing in Oncorhynchus spp. JOURNAL OF FISH BIOLOGY 2019; 95:293-303. [PMID: 30101534 DOI: 10.1111/jfb.13775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Juvenile Oncorhynchus spp. can memorise their natal stream during downstream migration; juveniles migrate to feed during their growth phase and then they migrate long distances from their feeding habitat to their natal stream to reproduce as adults. Two different sensory mechanisms, olfaction and navigation, are involved in the imprinting and homing processes during short-distance migration within the natal stream and long-distance migration in open water, respectively. Here, olfactory functions are reviewed from both neurophysiological studies on the olfactory discrimination ability of natal stream odours and neuroendocrinological studies on the hormonal controlling mechanisms of olfactory memory formation and retrieval in the brain. These studies revealed that the long-term stability of dissolved free amino-acid composition in the natal stream is crucial for olfactory imprinting and homing. Additionally, the brain-pituitary-thyroid and brain-pituitary-gonadal hormones play important roles in olfactory memory formation and retrieval, respectively. Navigation functions were reviewed from physiological biotelemetry techniques with sensory interference experiments during the homing migration of anadromous and lacustrine Oncorhynchus spp. The experiments demonstrated that Oncorhynchus spp. used compass navigation mechanisms in the open water. These findings are discussed in relation to the sensory mechanisms involved in natal stream imprinting and homing in Oncorhynchus spp.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Hokkaido University, Sapporo, Japan
- Hokkaido Aquaculture Promotion Corporate, Sapporo, Japan
| |
Collapse
|
6
|
Takagi J, Ichikawa K, Arai N, Miyamoto Y, Uchida K, Shoji J, Mitamura H. Simultaneous observation of intermittent locomotion of multiple fish by fine-scale spatiotemporal three-dimensional positioning. PLoS One 2018; 13:e0201029. [PMID: 30024958 PMCID: PMC6053229 DOI: 10.1371/journal.pone.0201029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/06/2018] [Indexed: 11/18/2022] Open
Abstract
Recent advances in biotelemetry techniques, especially positioning methods, have revealed the detailed behaviour and movement of aquatic organisms. Behavioural intermittence in animal locomotion, such as the Lévy walk, is a popular topic in the field of movement ecology. Previous attempts to describe intermittent locomotion quantitatively have been constrained by the spatial and temporal resolution possible with conventional biotelemetry systems. This study developed a fine-scale spatiotemporal three-dimensional positioning method using a new biotelemetry system with a positional precision of <10 cm and positioning interval of <10 s. Using this proposed positioning method, the intermittent stop-and-go locomotion of Siebold’s wrasses (Pseudolabrus sieboldi) was observed during travel from an unsuitable to a suitable location following displacement. The fish displayed behavioural intermittence in relocating to a suitable location. Initially, their movement halted for reorientation, after which they moved intermittently yet in a straight line to the suitable location. To test the positioning ability of the proposed method, data sets were resampled at intervals of 5, 10, 30, 60, and 300 s. Longer sampling intervals failed to identify reorientations and underestimated the number of stops, distance travelled, and speed. Overall, the results highlighted the adequacy and ability of the proposed positioning method to observe the intermittent locomotion of fish, such as stop-and-go behaviour, in a natural environment.
Collapse
Affiliation(s)
- Junichi Takagi
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
- * E-mail:
| | - Kotaro Ichikawa
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Nobuaki Arai
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Field Science Education and Research Center, Kyoto University, Kyoto, Japan
| | - Yoshinori Miyamoto
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Ocean Science, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Keiichi Uchida
- CREST, Japan Science and Technology Agency, Saitama, Japan
- Department of Ocean Science, Faculty of Marine Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Jun Shoji
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | - Hiromichi Mitamura
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
- CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
7
|
Gardiner JM, Whitney NM, Hueter RE. Smells Like Home: The Role of Olfactory Cues in the Homing Behavior of Blacktip Sharks, Carcharhinus limbatus. Integr Comp Biol 2015; 55:495-506. [PMID: 26173711 DOI: 10.1093/icb/icv087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal navigation in the marine environment is believed to be guided by different sensory cues over different spatial scales. Geomagnetic cues are thought to guide long-range navigation, while visual or olfactory cues allow animals to pinpoint precise locations, but the complete behavioral sequence is not yet understood. Terra Ceia Bay is a primary nursery area for blacktip sharks, Carcharhinus limbatus, on southwestern Florida's Gulf of Mexico coast. Young-of-the-year animals show strong fidelity to a specific home range in the northeastern end of the bay and rapidly return when displaced. Older juveniles demonstrate annual philopatry for the first few years, migrating as far south as the Florida Keys each fall, then returning to Terra Ceia Bay each spring. To examine the sensory cues used in homing, we captured neonate (<3 weeks old) blacktip sharks from within their home range, fitted them with acoustic tags, and translocated them to sites 8 km away in adjacent Tampa Bay and released them. Intact animals returned to their home range, within 34 h on average, and remained there. With olfaction blocked, fewer animals returned to their home range and they took longer to do so, 130 h on average. However, they did not remain there but instead moved throughout Terra Ceia Bay and in and out of Tampa Bay. Since sharks from both treatments returned at night in tannic and turbid water, vision is likely not playing a major role in navigation by these animals. The animals in this study also returned on incoming or slack tides, suggesting that sharks, like many other fish, may use selective tidal stream transport to conserve energy and aid navigation during migration. Collectively, these results suggest that while other cues, possibly geomagnetic and/or tidal information, might guide sharks over long distances, olfactory cues are required for recognizing their specific home range.
Collapse
Affiliation(s)
- Jayne M Gardiner
- *Sensory Biology and Behavior Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA; New College of Florida, Division of Natural Sciences, 5800 Bayshore Rd, Sarasota, FL 34243, USA;
| | - Nicholas M Whitney
- Behavioral Ecology and Physiology Program, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - Robert E Hueter
- Center for Shark Research, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| |
Collapse
|
8
|
Bett NN, Hinch SG. Olfactory navigation during spawning migrations: a review and introduction of the Hierarchical Navigation Hypothesis. Biol Rev Camb Philos Soc 2015; 91:728-59. [PMID: 25923999 DOI: 10.1111/brv.12191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Migrations are characterized by periods of movement that typically rely on orientation towards directional cues. Anadromous fish undergo several different forms of oriented movement during their spawning migration and provide some of the most well-studied examples of migratory behaviour. During the freshwater phase of the migration, fish locate their spawning grounds via olfactory cues. In this review, we synthesize research that explores the role of olfaction during the spawning migration of anadromous fish, most of which focuses on two families: Salmonidae (salmonids) and Petromyzontidae (lampreys). We draw attention to limitations in this research, and highlight potential areas of investigation that will help fill in current knowledge gaps. We also use the information assembled from our review to formulate a new hypothesis for natal homing in salmonids. Our hypothesis posits that migrating adults rely on three types of cues in a hierarchical fashion: imprinted cues (primary), conspecific cues (secondary), and non-olfactory environmental cues (tertiary). We provide evidence from previous studies that support this hypothesis. We also discuss future directions of research that can test the hypothesis and further our understanding of the spawning migration.
Collapse
Affiliation(s)
- Nolan N Bett
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Scott G Hinch
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
9
|
Patle PJ, Baile VV. Olfactory Sensory Neuron Morphotypes in the Featherback Fish, Notopterus notopterus (Osteoglossiformes: Notopteridae). Ann Neurosci 2014; 21:51-6. [PMID: 25206061 PMCID: PMC4117162 DOI: 10.5214/ans.0972.7531.210205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/09/2014] [Accepted: 04/29/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND As in other vertebrates, olfactory sensory neurons (OSNs) in fishes are the main components of sensory part of olfactory epithelium that relay olfactory information (smell and taste) to the brain. PURPOSE Objective of the present study was to analyze if any polymorphism occurs in the OSNs in a featherback fish, Notopterus notopterus as far as the teleost lineage is concerned. METHODS With the help of neuronal staining technique, polymorphism of OSNs in N. notopterus was studied. RESULTS Three polymorphic forms of OSNs were identified which are ciliated OSNs, microvillus OSNs and crypt OSNs. These morphotypes were identified on the basis of location of their somata within the depth of olfactory epithelium and resulting length of their dendrites. The ciliated OSNs have basally situated somata and long, thin dendrites with a few apically arranged cilia while microvillous OSNs have somata located midway in the epithelium and thick moderate-length dendrites with microvilli. Third cell type is crypt OSNs which are spherical or pear-shaped, located apically just close to the epithelial surface having cilia and microvilli in an invagination and devoid of any dendrite. CONCLUSION N. notopterus belongs to order Osteoglossiformes which is a representative of an early evolutionary lineage of teleost fishes. OSN polymorphism reported in the present work indicates that it is a fairly conserved trait throughout the evolution of teleosts. To our knowledge, we are the first ones to report OSN polymorphism in a member of the order Osteoglossiformes.
Collapse
Affiliation(s)
- Pratap J. Patle
- Division of Fish Neurobiology, PG Department of Zoology, RTM Nagpur University Campus, Nagpur - 440 033, India
| | - Vidya V. Baile
- Division of Fish Neurobiology, PG Department of Zoology, RTM Nagpur University Campus, Nagpur - 440 033, India
| |
Collapse
|
10
|
Wasserman S, Lu P, Aptekar JW, Frye MA. Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight. ACTA ACUST UNITED AC 2012; 215:2833-40. [PMID: 22837456 DOI: 10.1242/jeb.072082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizing the flight vector. There are infinite escape vectors away from a noxious source, in contrast to a single best tracking vector towards an attractive source. Attractive and aversive odors are segregated into parallel neuronal pathways in flies; therefore, the behavioral algorithms for avoidance may be categorically different from tracking. Do flies plot random ballistic or otherwise variable escape vectors? Or do they instead make use of temporally dynamic mechanisms for continuously and directly avoiding noxious odors in a manner similar to tracking appetitive ones? We examine this question using a magnetic tether flight simulator that permits free yaw movements, such that flies can actively orient within spatially defined odor plumes. We show that in-flight aversive flight behavior shares all of the key features of attraction such that flies continuously 'anti-track' the noxious source.
Collapse
Affiliation(s)
- Sara Wasserman
- Howard Hughes Medical Institute, Department of Integrative Biology and Physiology, University of California Los Angeles, 610 Charles Young Drive East, Los Angeles, CA 90095-7239, USA
| | | | | | | |
Collapse
|
11
|
Warren MA, Morbey YE. Migration timing of female kokanee salmon Oncorhynchus nerka: diel patterns and effects of maturation state. JOURNAL OF FISH BIOLOGY 2012; 81:1234-1247. [PMID: 22957867 DOI: 10.1111/j.1095-8649.2012.03402.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Diel patterns of migration and migration speed were compared between reproductive timing phenotypes in female kokanee salmon Oncorhynchus nerka. Females of varying degrees of reproductive maturation were captured on their migration route to the Meadow Creek Spawning Channel (British Columbia, Canada), were tagged with passive-integrated transponders (PIT tags) and were subsequently monitored with stationary receivers. Females showed crepuscular migration timing, with approximately equal detections at dawn and dusk. In particular, peaks of movement were associated with the appearance of the sun over the mountains in the east and the disappearance of the sun over the mountains in the west. Over 25 m, migration speed was 1·0 body lengths (measured as fork length; L(F)) s(-1) and did not depend on maturation state. Over 3 km, migration speed was much slower (0·2-0·3 L(F) s(-1)) than over the short distance, with less mature females migrating more slowly than more mature females. Less mature females appeared to be in less of a hurry to reach breeding areas compared with more mature females.
Collapse
Affiliation(s)
- M A Warren
- Department of Biology, Western University, London, ON, N6A 5B7 Canada
| | | |
Collapse
|
12
|
Ueda H. Physiological mechanisms of imprinting and homing migration in Pacific salmon Oncorhynchus spp. JOURNAL OF FISH BIOLOGY 2012; 81:543-558. [PMID: 22803723 DOI: 10.1111/j.1095-8649.2012.03354.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
After several years of feeding at sea, salmonids have an amazing ability to migrate long distances from the open ocean to their natal stream to spawn. Three different research approaches from behavioural to molecular biological studies have been used to elucidate the physiological mechanisms underpinning salmonid imprinting and homing migration. The study was based on four anadromous Pacific salmon Oncorhynchus spp., pink salmon Oncorhynchus gorbuscha, chum salmon Oncorhynchus keta, sockeye salmon Oncorhynchus nerka and masu salmon Oncorhynchus masou, migrating from the North Pacific Ocean to the coast of Hokkaido, Japan, as well as lacustrine O. nerka and O. masou in Lake Toya, Hokkaido, where the lake serves as the model oceanic system. Behavioural studies using biotelemetry techniques showed swimming profiles from the Bering Sea to the coast of Hokkaido in O. keta as well as homing behaviours of lacustrine O. nerka and O. masou in Lake Toya. Endocrinological studies on hormone profiles in the brain-pituitary-gonad axis of O. keta, and lacustrine O. nerka identified the hormonal changes during homing migration. Neurophysiological studies revealed crucial roles of olfactory functions on imprinting and homing during downstream and upstream migration, respectively. These findings are discussed in relation to the physiological mechanisms of imprinting and homing migration in anadromous and lacustrine salmonids.
Collapse
Affiliation(s)
- H Ueda
- Field Science Center for Northern Biosphere, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan.
| |
Collapse
|
13
|
Ueda H. Physiological mechanism of homing migration in Pacific salmon from behavioral to molecular biological approaches. Gen Comp Endocrinol 2011; 170:222-32. [PMID: 20144612 DOI: 10.1016/j.ygcen.2010.02.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022]
Abstract
The amazing abilities of Pacific salmon to migrate long distances from the ocean to their natal streams for spawning have been investigated intensively since 1950's, but there are still many mysteries because of difficulties to follow their whole life cycle and to wait their sole reproductive timing for several years. In my laboratory, we have tried to clarify physiological mechanisms of homing migration in Pacific salmon, using four anadromous Pacific salmon (pink, Oncorhynchus gorbuscha; chum, Oncorhynchus keta; sockeye, Oncorhynchus nerka; masu, Oncorhynchus masou) in the north Pacific Ocean as well as two lacustrine salmon (sockeye and masu) in Lake Toya and Lake Shikotsu, Hokkaido, Japan, where the lakes serve as a model "ocean". Three different approaches from behavioral to molecular biological researches have been conducted using these model fish. First, the homing behaviors of adult chum salmon from the Bering Sea to Hokkaido as well as lacustrine sockeye and masu salmon in Lake Toya were examined by means of physiological biotelemetry techniques, and revealed that salmon can navigate in open water using different sensory systems. Second, the hormone profiles in the brain-pituitary-gonadal (BPG) axis were investigated in chum salmon and lacustrine sockeye salmon during their homing migration by means of hormone specific time-resolved fluoroimmunoassay (TR-FIA) systems, and clarified that salmon gonadotropin-releasing hormone (sGnRH) plays leading roles on homing migration. Third, the olfactory functions of salmon were studied by means of electrophysiological, behavioral, and molecular biological techniques, and made clear that olfactory discriminating ability of natal stream odors. These results have discussed with the evolutional aspects of four Pacific salmon, sexual differences in homing profiles, and the possibility of dissolved free amino acids (DFAA) as natal stream odors for salmon.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Laboratory of Aquatic Bioresources and Ecosystem, Field Science Center for Northern Biosphere, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0809, Japan.
| |
Collapse
|
14
|
Kudo H, Shinto M, Sakurai Y, Kaeriyama M. Morphometry of olfactory lamellae and olfactory receptor neurons during the life history of chum salmon (Oncorhynchus keta). Chem Senses 2009; 34:617-24. [PMID: 19587025 DOI: 10.1093/chemse/bjp042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is generally accepted that anadromous Pacific salmon (genus Oncorhynchus) imprint to odorants in their natal streams during their seaward migration and use olfaction to identify these during their homeward migration. Despite the importance of the olfactory organ during olfactory imprinting, the development of this structure is not well understood in Pacific salmon. Olfactory cues from the environment are relayed to the brain by the olfactory receptor neurons (ORNs) in the olfactory organ. Thus, we analyzed morphometric changes in olfactory lamellae of the peripheral olfactory organ and in the quantity of ORNs during life history from alevin to mature in chum salmon (Oncorhynchus keta). The number of lamellae increased markedly during early development, reached 18 lamellae per unilateral peripheral olfactory organ in young salmon with a 200 mm in body size, and maintained this lamellar complement after young period. The number of ORNs per olfactory organ was about 180,000 and 14.2 million cells in fry and mature salmon, respectively. The relationship between the body size (fork length) and number of ORNs therefore revealed an allometric association. Our results represent the first quantitative analysis of the number of ORNs in Pacific salmon and suggest that the number of ORNs is synchronized with the fork length throughout its life history.
Collapse
Affiliation(s)
- Hideaki Kudo
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | | | | | | |
Collapse
|
15
|
DeBose JL, Nevitt GA. The use of Odors at Different Spatial Scales: Comparing Birds with Fish. J Chem Ecol 2008; 34:867-81. [DOI: 10.1007/s10886-008-9493-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/18/2008] [Accepted: 04/28/2008] [Indexed: 11/29/2022]
|
16
|
Kinoshita M, Kobayashi S, Urano A, Ito E. Neuromodulatory effects of gonadotropin-releasing hormone on retinotectal synaptic transmission in the optic tectum of rainbow trout. Eur J Neurosci 2007; 25:480-4. [PMID: 17284189 DOI: 10.1111/j.1460-9568.2006.05294.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a hypophysiotropic decapeptide that stimulates the release of gonadotropins from the pituitary. In addition, there are extra-hypothalamic GnRH neurons that project to all regions of the brain and whose function remains unknown. Here, we investigated the effects of GnRH on retinotectal synaptic transmission, the synapses of which are formed between retinal fibers and tectal periventricular neurons that express GnRH receptor mRNA. We used rainbow trout as our study model. The excitatory postsynaptic currents (EPSCs), which were evoked by electrical stimulation of the retinal fibers and recorded in periventricular neurons, were suppressed by antagonists of ionotropic glutamate receptors. EPSCs were increased by application of each of two types of GnRH (GnRH2 and GnRH3) in the trout tectum. Such facilitation lasted for at least 10 min after application of the GnRH. To our knowledge, this is the first report of GnRH modulating conventional synaptic transmission in the brain, suggesting that tectal GnRH enhances tectal sensitivity for retinal inputs. Furthermore, such long-lasting facilitation might occur across all the brain regions innervated by GnRH neurons, and GnRH might simultaneously switch neuronal activities in the brain regions relevant to reproductive behaviors.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
17
|
Kinoshita M, Fukaya M, Tojima T, Kojima S, Ando H, Watanabe M, Urano A, Ito E. Retinotectal transmission in the optic tectum of rainbow trout. J Comp Neurol 2005; 484:249-59. [PMID: 15736228 DOI: 10.1002/cne.20473] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinotectal transmission has not yet been well characterized at the cellular level in the optic tectum. To address this issue, we used a teleost, the rainbow trout, and characterized periventricular neurons as postsynaptic cells expected to receive the retinotectal inputs to the optic tectum. The somata of periventricular neurons are localized in the upper zone of the stratum periventriculare (SPV), whereas the lower zone of the SPV comprises the cell body layer of radial glial cells. Ca2+ imaging identified functional ionotropic glutamate receptors in periventricular neurons. We also cloned cDNAs encoding the NR1 subunit of N-methyl-D-aspartic acid (NMDA) receptors and the GluR2 subunit of (+/-)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptors, and detected their mRNAs in periventricular neurons by in situ hybridization. The presence of the receptor subunit proteins was also confirmed in the dendrites of periventricular neurons by immunoblotting and immunohistochemistry. On the other hand, radial glial cells in the lower zone of the SPV did not respond to glutamate applications, and mRNA and immunoreactivities of ionotropic glutamate receptors were not detected in glial cells. The present findings suggest that glutamatergic transmission at synapses between retinotectal afferents and periventricular neurons is mediated by the functional NMDA and AMPA receptors.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Kinoshita M, Hosokawa T, Urano A, Ito E. Long-term potentiation in the optic tectum of rainbow trout. Neurosci Lett 2004; 370:146-50. [PMID: 15488312 DOI: 10.1016/j.neulet.2004.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/06/2004] [Accepted: 08/07/2004] [Indexed: 11/24/2022]
Abstract
We examined synaptic plasticity in the optic tectum of rainbow trout by extracellular recordings. We found that the field-excitatory postsynaptic potential in the retinotectal synapses was potentiated by repetitive stimuli of 1.0 Hz for 20 s to the retinotectal afferents. The long-term potentiation (LTP) developed slowly, and was maintained for at least 2 h. Applications of an antagonist for N-methyl-D-aspartic acid (NMDA) receptors or Mg2+ -free saline showed that activation of NMDA receptors was required to form the LTP beyond the induction period. The present findings indicate that presynaptic stimulation in the retinotectal synapses causes LTP mediated by NMDA receptors in the optic tectum of rainbow trout.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | |
Collapse
|
20
|
Nishi T, Kawamura G, Matsumoto K. Magnetic sense in the Japanese eel, Anguilla japonica, as determined by conditioning and electrocardiography. J Exp Biol 2004; 207:2965-70. [PMID: 15277551 DOI: 10.1242/jeb.01131] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Magnetosensitivity of the Japanese eel, Anguilla japonica, was examined by conditioning and electrocardiography. Marine eels, river eels and farmed eels were conditioned to an imposed magnetic field ranging from 12 663 nT to 192 473 nT parallel to the fish body, which was placed along the earth's west-east axis. Electrocardiograms were recorded with electrodes placed close to the fish body inside a PVC pipe shelter. After 10-40 conditioning runs, all the eels exhibited a significant conditioned response (i.e. slowing of the heart beat) to a 192 473 nT magnetic field and even to a 12 663 nT magnetic field, respectively equivalent to 5.92× and 0.38× the horizontal geomagnetic field (32 524 nT) at our laboratory. The west-east vector of the imposed magnetic field (12 663 nT) combined with that of the geomagnetic field and produced a horizontal resultant magnetic field of 21° easterly. Therefore, Japanese eel are magnetosensitive whether they are at sea, in the river or in the farm. Results of the present study were compared with those of past studies that showed no magnetic sense in the American eel, Anguilla rostrata, and the European eel, Anguilla anguilla.
Collapse
Affiliation(s)
- Takaaki Nishi
- Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan.
| | | | | |
Collapse
|
21
|
Kinoshita M, Ueda R, Kojima S, Sato K, Watanabe M, Urano A, Ito E. Multiple-site optical recording for characterization of functional synaptic organization of the optic tectum of rainbow trout. Eur J Neurosci 2002; 16:868-76. [PMID: 12372023 DOI: 10.1046/j.1460-9568.2002.02160.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To map the functional synaptic organization over a wide area in the optic tectum, we directly monitored two-dimensional propagation of postsynaptic depolarization evoked by firing of retinotectal afferents in optic tectum slices prepared from rainbow trout (Oncorhynchus mykiss), using a voltage-sensitive dye and a photodiode array system. The postsynaptic responses to afferent stimulation first propagated in the stratum opticum and stratum fibrosum et griseum superficiale in an anterograde fashion in the afferents and then expanded vertically into the deep layers. This vertical propagation appeared to occur along a bundle-like structure that corresponded well with a cluster of neurons whose somata are located in the stratum periventriculare. Pharmacological studies showed that these postsynaptic responses were mediated by ionotropic glutamate receptors. On the other hand, the optical signals appeared to consist of at least two components (a transient signal and a slow signal). The second transient signal summated with the first slow signal by paired stimulation, suggesting that the transient and slow signals originated from different cell types. Taken together, these results showed that the functional synaptic organization of the teleost optic tectum comprises of two depolarization-signal propagating paths along a horizontal layer structure and a vertical bundle-like structure and that these synaptic responses occur via glutamatergic transmission.
Collapse
Affiliation(s)
- Masae Kinoshita
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | | | | | | | | | |
Collapse
|