1
|
Jiang S, Song B, Liu Z, Shen S, Qian W, Sun J, Chen G, Zhu Y. Neuronal activity in the anterior paraventricular nucleus of thalamus positively correlated with sweetener consumption in mice. Neurosci Res 2024; 205:16-26. [PMID: 38364907 DOI: 10.1016/j.neures.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Although the brain can discriminate between various sweet substances, the underlying neural mechanisms of this complex behavior remain elusive. This study examines the role of the anterior paraventricular nucleus of the thalamus (aPVT) in governing sweet preference in mice. We fed the mice six different diets with equal sweetness for six weeks: control diet (CD), high sucrose diet (HSD), high stevioside diet (HSSD), high xylitol diet (HXD), high glycyrrhizin diet (HGD), and high mogroside diet (HMD). The mice exhibited a marked preference specifically for the HSD and HSSD. Following consumption of these diets, c-Fos expression levels in the aPVT were significantly higher in these two groups compared to the others. Utilizing fiber photometry calcium imaging, we observed rapid activation of aPVT neurons in response to sucrose and stevioside intake, but not to xylitol or water. Our findings suggest that aPVT activity aligns with sweet preference in mice, and notably, stevioside is the sole plant-based sweetener that elicits an aPVT response comparable to that of sucrose.
Collapse
Affiliation(s)
- Shaolei Jiang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; The Brain Cognition and Brain Diseases Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China
| | - Bo Song
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhongdong Liu
- Grain College, Henan University of Technology, Zhengzhou 450001, China; Instituto de Física da Universidade de São Paulo, Sã o Paulo 05508-090, Brazil
| | - Shuifa Shen
- Hefei lnstitutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua 322100, China
| | - Weiliang Qian
- Instituto de Física da Universidade de São Paulo, Sã o Paulo 05508-090, Brazil
| | - Jing Sun
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, No.2004 Hongli Road, Shenzhen 518028, China
| | - Gaowei Chen
- The Brain Cognition and Brain Diseases Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| | - Yingjie Zhu
- The Brain Cognition and Brain Diseases Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
| |
Collapse
|
2
|
Mukherjee A, Paladino MS, McSain SL, Gilles-Thomas EA, Lichte DD, Camadine RD, Willock S, Sontate KV, Honeycutt SC, Loney GC. Escalation of alcohol intake is associated with regionally decreased insular cortex activity but not changes in taste quality. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:868-881. [PMID: 36941800 PMCID: PMC10289132 DOI: 10.1111/acer.15060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Intermittent access to ethanol drives persistent escalation of intake and rapid transition from moderate to compulsive-like drinking. Intermittent ethanol drinking may facilitate escalation of intake in part by altering aversion-sensitive neural substrates, such as the insular cortex (IC), thus driving greater approach toward stimuli previously treated as aversive. METHODS We conducted a series of experiments in rats to examine behavioral and neural responses associated with escalation of ethanol intake. First, taste reactivity analyses quantified the degree to which intermittent brief-access ethanol exposure (BAEE) alters sensitivity to the aversive properties of ethanol. Next, we determined whether pharmacological IC inhibition facilitated ethanol escalation. Finally, given that the IC is primary gustatory cortex, we employed psychophysical paradigms to assess whether escalation of ethanol intake induced changes in ethanol taste. These paradigms measured changes in sensitivity to the intensity of ethanol taste and whether escalation in intake shifts the salient taste quality of ethanol by measuring the degree to which the taste of ethanol generalized to a sucrose-like ("sweet") or quinine-like ("bitter") percept. RESULTS We found a near-complete loss of aversive oromotor responses in ethanol-exposed relative to ethanol-naïve rats. Additionally, we observed significantly lower expression of ethanol-induced c-Fos expression in the posterior IC in exposed rats relative to naïve rats. Inhibition of the IC resulted in a modest, but statistically reliable increase in the acceptance of higher ethanol concentrations in naïve rats. Finally, we found no evidence of changes in the psychophysical assessment of the taste of ethanol in exposed, relative to naïve, rats. CONCLUSIONS Our results demonstrate that neural activity within the IC adapts following repeated presentations of ethanol in a manner that correlates with reduced sensitivity to the aversive hedonic properties of ethanol. These data help to establish that alterations in IC activity may be driving exposure-induced escalations in ethanol intake.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Morgan S Paladino
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Shannon L McSain
- Program in Biological Sciences, Department of Biology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Rece D Camadine
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Saidah Willock
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Kajol V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|