1
|
Moustafa MAM, Fouad EA, Ibrahim E, Erdei AL, Kárpáti Z, Fónagy A. The Comparative Toxicity, Biochemical and Physiological Impacts of Chlorantraniliprole and Indoxacarb on Mamestra brassicae (Lepidoptera: Noctuidae). TOXICS 2023; 11:212. [PMID: 36976977 PMCID: PMC10055103 DOI: 10.3390/toxics11030212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The cabbage moth, Mamestra brassicae, is a polyphagous pest that attacks several crops. Here, the sublethal and lethal effects of chlorantraniliprole and indoxacarb were investigated on the developmental stages, detoxification enzymes, reproductive activity, calling behavior, peripheral physiology, and pheromone titer of M. brasssicae. Methods: To assess pesticide effects, the second instar larvae were maintained for 24 h on a semi-artificial diet containing insecticides at their LC10, LC30, and LC50 concentrations. RESULTS M. brassicae was more susceptible to chlorantraniliprole (LC50 = 0.35 mg/L) than indoxacarb (LC50 = 1.71 mg/L). A significantly increased developmental time was observed with both insecticides at all tested concentrations but decreases in pupation rate, pupal weight, and emergence were limited to the LC50 concentration. Reductions in both the total number of eggs laid per female and the egg viability were observed with both insecticides at their LC30 and LC50 concentrations. Both female calling activity and the sex pheromone (Z11-hexadecenyl acetate and hexadecenyl acetate) titer were significantly reduced by chlorantraniliprole in LC50 concentration. Antennal responses of female antennae to benzaldehyde and 3-octanone were significantly weaker than controls after exposure to the indoxocarb LC50 concentration. Significant reductions in the enzymatic activity of glutathione S-transferases, mixed-function oxidases, and carboxylesterases were observed in response to both insecticides.
Collapse
Affiliation(s)
- Moataz A. M. Moustafa
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Eman A. Fouad
- Department of Bioassay, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza 12618, Egypt
| | - Emad Ibrahim
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Plant Virus and Vector Interactions, Crop Research Institute, 16106 Prague, Czech Republic
| | - Anna Laura Erdei
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network (ELKH), 1022 Budapest, Hungary
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 23053 Uppsala, Sweden
| | - Zsolt Kárpáti
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network (ELKH), 1022 Budapest, Hungary
- Animal Ecology and Tropical Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Adrien Fónagy
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network (ELKH), 1022 Budapest, Hungary
| |
Collapse
|
2
|
Reisenman CE, Riffell JA. The neural bases of host plant selection in a Neuroecology framework. Front Physiol 2015; 6:229. [PMID: 26321961 PMCID: PMC4532911 DOI: 10.3389/fphys.2015.00229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding how animals make use of environmental information to guide behavior is a fundamental problem in the field of neuroscience. Similarly, the field of ecology seeks to understand the role of behavior in shaping interactions between organisms at various levels of organization, including population-, community- and even ecosystem-level scales. Together, the newly emerged field of “Neuroecology” seeks to unravel this fundamental question by studying both the function of neurons at many levels of the sensory pathway and the interactions between organisms and their natural environment. The interactions between herbivorous insects and their host plants are ideal examples of Neuroecology given the strong ecological and evolutionary forces and the underlying physiological and behavioral mechanisms that shaped these interactions. In this review we focus on an exemplary herbivorous insect within the Lepidoptera, the giant sphinx moth Manduca sexta, as much is known about the natural behaviors related to host plant selection and the involved neurons at several level of the sensory pathway. We also discuss how herbivore-induced plant odorants and secondary metabolites in floral nectar in turn can affect moth behavior, and the underlying neural mechanisms.
Collapse
Affiliation(s)
- Carolina E Reisenman
- Department of Molecular and Cell Biology, University of California Berkeley, CA, USA
| | | |
Collapse
|
3
|
Ahuja I, van Dam NM, Winge P, Trælnes M, Heydarova A, Rohloff J, Langaas M, Bones AM. Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:579-92. [PMID: 25563968 PMCID: PMC4286410 DOI: 10.1093/jxb/eru490] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Brassicaceae family is characterized by a unique defence mechanism known as the 'glucosinolate-myrosinase' system. When insect herbivores attack plant tissues, glucosinolates are hydrolysed by the enzyme myrosinase (EC 3.2.1.147) into a variety of degradation products, which can deter further herbivory. This process has been described as 'the mustard oil bomb'. Additionally, insect damage induces the production of glucosinolates, myrosinase, and other defences. Brassica napus seeds have been genetically modified to remove myrosinase-containing myrosin cells. These plants are termed MINELESS because they lack myrosin cells, the so-called toxic mustard oil mines. Here, we examined the interaction between B. napus wild-type and MINELESS plants and the larvae of the cabbage moth Mamestra brassicae. No-choice feeding experiments showed that M. brassicae larvae gained less weight and showed stunted growth when feeding on MINELESS plants compared to feeding on wild-type plants. M. brassicae feeding didn't affect myrosinase activity in MINELESS plants, but did reduce it in wild-type seedlings. M. brassicae feeding increased the levels of indol-3-yl-methyl, 1-methoxy-indol-3-yl-methyl, and total glucosinolates in both wild-type and MINELESS seedlings. M. brassicae feeding affected the levels of glucosinolate hydrolysis products in both wild-type and MINELESS plants. Transcriptional analysis showed that 494 and 159 genes were differentially regulated after M. brassicae feeding on wild-type and MINELESS seedlings, respectively. Taken together, the outcomes are very interesting in terms of analysing the role of myrosin cells and the glucosinolate-myrosinase defence system in response to a generalist cabbage moth, suggesting that similar studies with other generalist or specialist insect herbivores, including above- and below-ground herbivores, would be useful.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Nicole Marie van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103 Leipzig, Germany; Institute of Ecology, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany; Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Marianne Trælnes
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Aysel Heydarova
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Mette Langaas
- Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| |
Collapse
|
4
|
Andersson MN, Larsson MC, Svensson GP, Birgersson G, Rundlöf M, Lundin O, Lankinen Å, Anderbrant O. Characterization of olfactory sensory neurons in the white clover seed weevil, Apion fulvipes (Coleoptera: Apionidae). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1325-1333. [PMID: 22841598 DOI: 10.1016/j.jinsphys.2012.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/05/2012] [Accepted: 07/16/2012] [Indexed: 06/01/2023]
Abstract
Seed-eating Apion weevils (Coleoptera: Apionidae) cause large economic losses in white and red clover seed production across Europe. Monitoring and control of clover weevils would be facilitated by semiochemical-based methods. Until now, however, nothing was known about physiological or behavioral responses to semiochemicals in this insect group. Here we analyzed the antenna of the white clover (Trifolium repens L.) specialist Apion fulvipes Geoffroy with scanning electron microscopy, and used single sensillum recordings with a set of 28 host compounds to characterize 18 classes of olfactory sensory neurons (OSNs). Nine of the OSN classes responded strongly to synthetic compounds with high abundance in clover leaves, flowers, or buds. Eight classes responded only weakly to the synthetic stimuli, whereas one collective class responded exclusively to volatiles released from a crushed clover leaf. The OSNs showed a remarkable degree of specificity, responding to only one or a few chemically related compounds. In addition, we recorded a marked difference in the temporal dynamics of responses between different neurons, compounds, and doses. The identified physiologically active compounds will be screened for behavioral activity, with the ultimate goal to develop an odor-based control strategy for this pest.
Collapse
Affiliation(s)
- Martin N Andersson
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Huigens ME, Woelke JB, Pashalidou FG, Bukovinszky T, Smid HM, Fatouros NE. Chemical espionage on species-specific butterfly anti-aphrodisiacs by hitchhiking Trichogramma wasps. Behav Ecol 2010. [DOI: 10.1093/beheco/arq007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
6
|
Fatouros NE, Pashalidou FG, Aponte Cordero WV, van Loon JJA, Mumm R, Dicke M, Hilker M, Huigens ME. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. J Chem Ecol 2009; 35:1373-81. [PMID: 19949841 PMCID: PMC2797620 DOI: 10.1007/s10886-009-9714-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/20/2009] [Accepted: 11/04/2009] [Indexed: 12/28/2022]
Abstract
During mating in many butterfly species, males transfer spermatophores that contain anti-aphrodisiacs to females that repel conspecific males. For example, males of the large cabbage white, Pieris brassicae (Lepidoptera: Pieridae), transfer the anti-aphrodisiac, benzyl cyanide (BC) to females. Accessory reproductive gland (ARG) secretion of a mated female P. brassicae that is deposited with an egg clutch contains traces of BC, inducing Brussels sprouts plants (Brassica oleracea var. gemmifera) to arrest certain Trichogramma egg parasitoids. Here, we assessed whether deposition of one egg at a time by the closely related small cabbage white, Pieris rapae, induced B. oleracea var. gemmifera to arrest Trichogramma wasps, and whether this plant synomone is triggered by substances originating from male P. rapae seminal fluid. We showed that plants induced by singly laid eggs of P. rapae arrest T. brassicae wasps three days after butterfly egg deposition. Elicitor activity was present in ARG secretion of mated female butterflies, whereas the secretion of virgin females was inactive. Pieris rapae used a mixture of methyl salicylate (MeSA) and indole as an anti-aphrodisiac. We detected traces of both anti-aphrodisiacal compounds in the ARG secretion of mated female P. rapae, whereas indole was lacking in the secretion of virgin female P. rapae. When applied onto the leaf, indole induced changes in the foliar chemistry that arrested T. brassicae wasps. This study shows that compounds of male seminal fluid incur possible fitness costs for Pieris butterflies by indirectly promoting egg parasitoid attack.
Collapse
Affiliation(s)
- Nina E Fatouros
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|