1
|
Zuo J, Zheng W, Shi N, Song R, Han F, Yang C, Li J, Peng C, Li B, Chen Y. Study on the Thermal Stability of the Sweet-Tasting Protein Brazzein Based on Its Structure-Sweetness Relationship. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7374-7382. [PMID: 38526016 DOI: 10.1021/acs.jafc.3c09616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Brazzein (Brz) is a sweet-tasting protein composed of 54 amino acids and is considered as a potential sugar substitute. The current methods for obtaining brazzein are complicated, and limited information is available regarding its thermal stability. In this study, we successfully expressed recombinant brazzein, achieving a sweetness threshold of 15.2 μg/mL. Subsequently, we conducted heat treatments at temperatures of 80, 90, 95, and 100 °C for a duration of 2 h to investigate the structural changes in the protein. Furthermore, we employed hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) to analyze the effect of heating on the protein structure-sweetness relationships. Our results indicated that the thermal inactivation process primarily affects residues 6-14 and 36-45 of brazzein, especially key residues Tyr8, Tyr11, Ser14, Glu36, and Arg43, which are closely associated with its sweetness. These findings have significant implications for improving the thermal stability of brazzein.
Collapse
Affiliation(s)
- Jingnan Zuo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Shi
- Xianning Vocational Technical College, Xianning 437100, China
| | - Rong Song
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Han
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Yang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Li
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
2
|
A Super Stable Mutant of the Plant Protein Monellin Endowed with Enhanced Sweetness. Life (Basel) 2021; 11:life11030236. [PMID: 33809397 PMCID: PMC7999979 DOI: 10.3390/life11030236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
Sweet proteins are a class of proteins with the ability to elicit a sweet sensation in humans upon interaction with sweet taste receptor T1R2/T1R3. Single-chain Monellin, MNEI, is among the sweetest proteins known and it could replace sugar in many food and beverage recipes. Nonetheless, its use is limited by low stability and high aggregation propensity at neutral pH. To solve this inconvenience, we designed a new construct of MNEI, dubbed Mut9, which led to gains in both sweetness and stability. Mut9 showed an extraordinary stability in acidic and neutral environments, where we observed a melting temperature over 20 °C higher than that of MNEI. In addition, Mut9 resulted twice as sweet than MNEI. Both proteins were extensively characterized by biophysical and sensory analyses. Notably, Mut9 preserved its structure and function even after 10 min boiling, with the greatest differences being observed at pH 6.8, where it remained folded and sweet, whereas MNEI lost its structure and function. Finally, we performed a 6-month shelf-life assessment, and the data confirmed the greater stability of the new construct in a wide range of conditions. These data prove that Mut9 has an even greater potential for food and beverage applications than MNEI.
Collapse
|
3
|
Tang N, Liu J, Cheng Y. Potential improvement of the thermal stability of sweet-tasting proteins by structural calculations. Food Chem 2020; 345:128750. [PMID: 33302109 DOI: 10.1016/j.foodchem.2020.128750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 11/19/2022]
Abstract
The low thermal stability of the sweet-tasting proteins limited their applications in food industry. Improve their thermal stability is the key to developing their applications in food processing. In the present study, saturation mutagenesis was performed on 4 sweet-tasting proteins, brazzein (988 mutations), curculin (2109 mutations), monellin (1824 mutations) and thaumatin (3933 mutations), using structural calculations in order to find more thermal stable mutations. The obtained results indicated that our calculated ΔΔG value (ΔΔG < 0 stabilizing, ΔΔG > 0 destabilizing) was a good predictor for predicting changes in thermal stability caused by mutations. Moreover, mutating the negatively charged residues to the other non-negatively charged amino acids was an efficient way to improve the thermal stability of the investigated sweet-tasting proteins. In addition, some promising mutations sites were identified for improving thermal stability using mutagenesis. This study provides useful information for future protein engineering to improve the thermal stability of the sweet-tasting proteins.
Collapse
Affiliation(s)
- Ning Tang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | - Jiachen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yongqiang Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| |
Collapse
|
4
|
Li B, Yang N, Wang X, Hao Y, Mao R, Li Z, Wang Z, Teng D, Wang J. An Enhanced Variant Designed From DLP4 Cationic Peptide Against Staphylococcus aureus CVCC 546. Front Microbiol 2020; 11:1057. [PMID: 32582062 PMCID: PMC7291858 DOI: 10.3389/fmicb.2020.01057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Insect defensins are promising candidates for the development of potent antimicrobials against antibiotic-resistant Staphylococcus aureus (S. aureus). An insect defensin, DLP4, isolated from the hemolymph of Hermetia illucens larvae, showed low antimicrobial activity against Gram-positive (G+) pathogens and high cytotoxicity, which limited its effective therapeutic application. To obtain more potent and low cytotoxicity molecules, a series of peptides was designed based on the DLP4 template by changing the conservative site, secondary structure, charge, or hydrophobicity. Among them, a variant designated as ID13 exhibited strong antibacterial activity at low MIC values of 4-8 μg/mL to G+ pathogens (S. aureus: 4 μg/mL; Staphylococcus epidermidis: 8 μg/mL; Streptococcus pneumoniae: 4 μg/mL; Streptococcus suis: 4 μg/mL), which were lower than those of DLP4 (S. aureus: 16 μg/mL; S. epidermidis: 64 μg/mL; S. pneumoniae: 32 μg/mL; S. suis: 16 μg/mL), and cytotoxicity of ID13 (71.4% viability) was less than that of DLP4 (63.8% viability). ID13 could penetrate and destroy the cell membrane of S. aureus CVCC 546, resulting in an increase in potassium ion leakage; it bound to genomic DNA (gDNA) and led to the change of gDNA conformation. After treatment with ID13, perforated, wrinkled, and collapsed S. aureus CVCC 546 cells were observed in electron microscopy. Additionally, ID13 killed over 99.99% of S. aureus within 1 h, 2 × MIC of ID13 induced a post-antibiotic effect (PAE) of 12.78 ± 0.28 h, and 10 mg/kg ID13 caused a 1.8 log10 (CFU/g) (CFU: colony-forming units) reduction of S. aureus in infected mouse thigh muscles and a downregulation of TNF-α, IL-6, and IL-10 levels, which were superior to those of DLP4 or vancomycin. These findings indicate that ID13 may be a promising peptide antimicrobial agent for therapeutic application.
Collapse
Affiliation(s)
- Bing Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhanzhan Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
5
|
Masuda T, Kigo S, Mitsumoto M, Ohta K, Suzuki M, Mikami B, Kitabatake N, Tani F. Positive Charges on the Surface of Thaumatin Are Crucial for the Multi-Point Interaction with the Sweet Receptor. Front Mol Biosci 2018; 5:10. [PMID: 29487853 PMCID: PMC5816810 DOI: 10.3389/fmolb.2018.00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/24/2018] [Indexed: 11/21/2022] Open
Abstract
Thaumatin, an intensely sweet-tasting protein, elicits sweet taste with a threshold of only 50 nM. Previous studies from our laboratory suggested that the complex model between the T1R2-T1R3 sweet receptor and thaumatin depends critically on the complementarity of electrostatic potentials. In order to further validate this model, we focused on three lysine residues (Lys78, Lys106, and Lys137), which were expected to be part of the interaction sites. Three thaumatin mutants (K78A, K106A, and K137A) were prepared and their threshold values of sweetness were examined. The results showed that the sweetness of K106A was reduced by about three times and those of K78A and K137A were reduced by about five times when compared to wild-type thaumatin. The three-dimensional structures of these mutants were also determined by X-ray crystallographic analyses at atomic resolutions. The overall structures of mutant proteins were similar to that of wild-type but the electrostatic potentials around the mutated sites became more negative. Since the three lysine residues are located in 20-40 Å apart each other on the surface of thaumatin molecule, these results suggest the positive charges on the surface of thaumatin play a crucial role in the interaction with the sweet receptor, and are consistent with a large surface is required for interaction with the sweet receptor, as proposed by the multipoint interaction model named wedge model.
Collapse
Affiliation(s)
- Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Satomi Kigo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Mayuko Mitsumoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Keisuke Ohta
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Mamoru Suzuki
- Laboratory of Supramolecular Crystallography, Research Center for State-of-the-Art Functional Protein Analysis, Institute for Protein Research, Osaka University, Suita, Japan
| | - Bunzo Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Japan
| | - Naofumi Kitabatake
- Department of Foods and Human Nutrition, Notre Dame Seishin University, Okayama, Japan
| | - Fumito Tani
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Japan
| |
Collapse
|
6
|
Ghanavatian P, Khalifeh K, Jafarian V. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine. Biochimie 2016; 131:20-28. [DOI: 10.1016/j.biochi.2016.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
7
|
Leone S, Pica A, Merlino A, Sannino F, Temussi PA, Picone D. Sweeter and stronger: enhancing sweetness and stability of the single chain monellin MNEI through molecular design. Sci Rep 2016; 6:34045. [PMID: 27658853 PMCID: PMC5034325 DOI: 10.1038/srep34045] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/07/2016] [Indexed: 11/22/2022] Open
Abstract
Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interaction.
Collapse
Affiliation(s)
- Serena Leone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Andrea Pica
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Antonello Merlino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Filomena Sannino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| | - Piero Andrea Temussi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy.,Department of Basic and Clinical Neurosciences, King's College London, London SE5 9RX, UK
| | - Delia Picone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, I-80126, Napoli, Italy
| |
Collapse
|
8
|
Lim JK, Jang JC, Kong JN, Kim MC, Kong KH. Importance of Glu53 in the C-terminal region of brazzein, a sweet-tasting protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3202-3206. [PMID: 26478244 DOI: 10.1002/jsfa.7501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The sweetness of brazzein, one of the known sweet proteins, is dependent on charges and/or structures of its specific amino acid side chains. As the residues in the C-terminus of brazzein are known to play a critical role in sweetness, the currently unknown function of Glu53 requires further study. RESULTS To identify important residues responsible for the sweetness of the protein brazzein, four mutants of the Glu53 residue in the C-terminal region of des-pE1M-brazzein, which lacks the N-terminal pyroglutamate, were constructed using site-directed mutagenesis. Mutations of Glu53 substitution to Ala or Asp significantly decreased the sweetness. On the other hand, a Lys mutation resulted in a molecule with sweetness similar to that of des-pE1M-brazzein. Mutation of Glu53 to Arg resulted in a molecule significantly sweeter than des-pE1M-brazzein, which agrees with previous findings showing that mutation with positively charged residues results in a sweeter protein. CONCLUSION Our results suggest that the residue at position 53 is crucial for the sweetness of brazzein, which may be interacting with the sweet-taste receptor. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Kyung Lim
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Ku, Seoul, 156-756, Korea
| | - Jin-Chul Jang
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Ku, Seoul, 156-756, Korea
| | - Ji-Na Kong
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Ku, Seoul, 156-756, Korea
| | - Myung-Chul Kim
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Ku, Seoul, 156-756, Korea
| | - Kwang-Hoon Kong
- Biomolecular Chemistry Laboratory, Department of Chemistry, College of Natural Sciences, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Ku, Seoul, 156-756, Korea
| |
Collapse
|
9
|
Leone S, Picone D. Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein. PLoS One 2016; 11:e0158372. [PMID: 27340829 PMCID: PMC4920389 DOI: 10.1371/journal.pone.0158372] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022] Open
Abstract
MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques.
Collapse
Affiliation(s)
- Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
10
|
Atomic structure of recombinant thaumatin II reveals flexible conformations in two residues critical for sweetness and three consecutive glycine residues. Biochimie 2014; 106:33-8. [PMID: 25066915 DOI: 10.1016/j.biochi.2014.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/16/2014] [Indexed: 11/23/2022]
Abstract
Thaumatin, an intensely sweet-tasting protein used as a sweetener, elicits a sweet taste at 50 nM. Although two major variants designated thaumatin I and thaumatin II exist in plants, there have been few dedicated thaumatin II structural studies and, to date, data beyond atomic resolution had not been obtained. To identify the detailed structural properties explaining why thaumatin elicits a sweet taste, the structure of recombinant thaumatin II was determined at the resolution of 0.99 Å. Atomic resolution structural analysis with riding hydrogen atoms illustrated the differences in the direction of the side-chains more precisely and the electron density maps of the C-terminal regions were markedly improved. Though it had been suggested that the three consecutive glycine residues (G142-G143-G144) have highly flexible conformations, G143, the central glycine residue was successfully modelled in two conformations for the first time. Furthermore, the side chain r.m.s.d. values for two residues (R67 and R82) critical for sweetness exhibited substantially higher values, suggesting that these residues are highly disordered. These results demonstrated that the flexible conformations in two critical residues favoring their interaction with sweet taste receptors are prominent features of the intensely sweet taste of thaumatin.
Collapse
|
11
|
|
12
|
Lee JW, Cha JE, Jo HJ, Kong KH. Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chem 2013; 138:1370-3. [DOI: 10.1016/j.foodchem.2012.10.140] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/09/2012] [Accepted: 10/25/2012] [Indexed: 11/30/2022]
|
13
|
Nagata K, Hongo N, Kameda Y, Yamamura A, Sasaki H, Lee WC, Ishikawa K, Suzuki EI, Tanokura M. The structure of brazzein, a sweet-tasting protein from the wild African plant Pentadiplandra brazzeana. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:642-7. [PMID: 23519673 DOI: 10.1107/s0907444913001005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/10/2013] [Indexed: 11/10/2022]
Abstract
Brazzein is the smallest sweet-tasting protein and was isolated from the wild African plant Pentadiplandra brazzeana. The brazzein molecule consists of 54 amino-acid residues and four disulfide bonds. Here, the first crystal structure of brazzein is reported at 1.8 Å resolution and is compared with previously reported solution structures. Despite the overall structural similarity, there are several remarkable differences between the crystal and solution structures both in their backbone folds and side-chain conformations. Firstly, there is an additional α-helix in the crystal structure. Secondly, the atomic r.m.s.d.s between the corresponding C(α)-atom pairs are as large as 2.0-2.2 Å between the crystal and solution structures. Thirdly, the crystal structure exhibits a molecular shape that is similar but not identical to the solution structures. The crystal structure of brazzein reported here will provide additional information and further insights into the intermolecular interaction of brazzein with the sweet-taste receptor.
Collapse
Affiliation(s)
- Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Do HD, Jo HJ, Jo DH, Kong KH. Mutagenesis of Critical Amino Acid Residues in α-Helix and β-Sheet Structures of Brazzein. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.11.4106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wintjens R, Viet TMVN, Mbosso E, Huet J. Hypothesis/review: the structural basis of sweetness perception of sweet-tasting plant proteins can be deduced from sequence analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:347-354. [PMID: 21889040 DOI: 10.1016/j.plantsci.2011.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 05/31/2023]
Abstract
Human perception of sweetness, behind the felt pleasure, is thought to play a role as an indicator of energy density of foods. For humans, only a small number of plant proteins taste sweet. As non-caloric sweeteners, these plant proteins have attracted attention as candidates for the control of obesity, oral health and diabetic management. Significant advances have been made in the characterization of the sweet-tasting plant proteins, as well as their binding interactions with the appropriate receptors. The elucidation of sweet-taste receptor gene sequences represents an important step towards the understanding of sweet taste perception. However, many questions on the molecular basis of sweet-taste elicitation by plant proteins remain unanswered. In particular, why homologues of these proteins do not elicit similar responses? This question is discussed in this report, on the basis of available sequences and structures of sweet-tasting proteins, as well as of sweetness-sensing receptors. A simple procedure based on sequence comparisons between sweet-tasting protein and its homologous counterparts was proposed to identify critical residues for sweetness elicitation. The open question on the physiological function of sweet-tasting plant proteins is also considered. In particular, this review leads us to suggest that sweet-tasting proteins may interact with taste receptor in a serendipity manner.
Collapse
Affiliation(s)
- René Wintjens
- Laboratoire de Chimie Générale, Faculté de Pharmacie, Université Libre de Bruxelles, Campus Plaine, boulevard du Triomphe, Brussels, Belgium.
| | | | | | | |
Collapse
|
16
|
Masuda T, Ohta K, Tani F, Mikami B, Kitabatake N. Crystal structure of the sweet-tasting protein thaumatin II at 1.27Å. Biochem Biophys Res Commun 2011; 410:457-60. [PMID: 21672520 DOI: 10.1016/j.bbrc.2011.05.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 05/27/2011] [Indexed: 11/27/2022]
Abstract
Thaumatin, an intensely sweet-tasting protein, elicits a sweet taste sensation at 50 nM. Here the X-ray crystallographic structure of one of its variants, thaumatin II, was determined at a resolution of 1.27 Å. Overall structure of thaumatin II is similar to thaumatin I, but a slight shift of the Cα atom of G96 in thaumatin II was observed. Furthermore, the side chain of residue 67 in thaumatin II is highly disordered. Since residue 67 is one of two residues critical to the sweetness of thaumatin, the present results suggested that the critical positive charges at positions 67 and 82 are disordered and the flexibility and fluctuation of these side chains would be suitable for interaction of thaumatin molecules with sweet receptors.
Collapse
Affiliation(s)
- Tetsuya Masuda
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | | | |
Collapse
|
17
|
Li X, Bachmanov AA, Maehashi K, Li W, Lim R, Brand JG, Beauchamp GK, Reed DR, Thai C, Floriano WB. Sweet taste receptor gene variation and aspartame taste in primates and other species. Chem Senses 2011; 36:453-75. [PMID: 21414996 DOI: 10.1093/chemse/bjq145] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aspartame is a sweetener added to foods and beverages as a low-calorie sugar replacement. Unlike sugars, which are apparently perceived as sweet and desirable by a range of mammals, the ability to taste aspartame varies, with humans, apes, and Old World monkeys perceiving aspartame as sweet but not other primate species. To investigate whether the ability to perceive the sweetness of aspartame correlates with variations in the DNA sequence of the genes encoding sweet taste receptor proteins, T1R2 and T1R3, we sequenced these genes in 9 aspartame taster and nontaster primate species. We then compared these sequences with sequences of their orthologs in 4 other nontasters species. We identified 9 variant sites in the gene encoding T1R2 and 32 variant sites in the gene encoding T1R3 that distinguish aspartame tasters and nontasters. Molecular docking of aspartame to computer-generated models of the T1R2 + T1R3 receptor dimer suggests that species variation at a secondary, allosteric binding site in the T1R2 protein is the most likely origin of differences in perception of the sweetness of aspartame. These results identified a previously unknown site of aspartame interaction with the sweet receptor and suggest that the ability to taste aspartame might have developed during evolution to exploit a specialized food niche.
Collapse
Affiliation(s)
- Xia Li
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|