1
|
Dweck HKM, Rutledge CE. The subapical labial sensory organ of spotted lanternfly Lycorma delicatula. Open Biol 2024; 14:230438. [PMID: 38531420 PMCID: PMC10965328 DOI: 10.1098/rsob.230438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
Deciphering how spotted lanternfly (SLF), an invasive polyphagous planthopper in North America, engages with its environment is a pressing issue with fundamental biological significance and economic importance. This interaction primarily depends on olfaction. However, the cellular basis of olfaction in SLF remains elusive. Here we investigate the neuronal and functional organization of the subapical labial sensory organ using scanning electron microscopy and electrophysiological recordings. This organ is believed to supply planthoppers with crucial sensory information that influences their subsequent feeding behaviour. We find in SLF that this organ comprises two identical placoid sensilla, each housing two distinct neurons. The A neuron displays a remarkable sensitivity to changes in airflow speed. Importantly, the same neuron also exhibits robust excitatory responses exclusively to three aldehydes out of a diverse pool of 85 tested odorants and inhibitory responses to 62 other odorants. By contrast, the B neuron solely serves as an olfactory detector, showing strong excitatory responses to 17 odorants and inhibitory responses to only three. The results provide a potential cellular basis for the behavioural responses of SLF to its ecologically relevant stimuli. Our study also identifies new odorants that may be useful for managing this serious pest.
Collapse
Affiliation(s)
- Hany K. M. Dweck
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Claire E. Rutledge
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| |
Collapse
|
2
|
Miano RN, Mohamed SA, Cheseto X, Ndlela S, Biasazin TD, Yusuf AA, Rohwer E, Dekker T. Differential responses of Bactrocera dorsalis and its parasitoids to headspaces of different varieties of tree-attached mango fruits and the associated chemical profiles. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1021795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bactrocera dorsalis (Hendel) is a major pest of fruits and vegetables worldwide with documented losses of up to 100%. Various management techniques including the use of parasitoids, such as Fopius arisanus (Sonan) and Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) within the context of the Integrated Pest Management (IPM) approach have been deployed for its control. The effectiveness of parasitoids is well understood, but knowledge of the semiochemicals that mediate their behavior, as well as that of the host fruit fly to tree-attached mangoes, is lacking. Here, we first compared the attractiveness of the above-mentioned fruit fly and its parasitoids to volatiles of different treatments (non-infested physiologically mature unripe and ripe mangoes, mangoes newly exposed to ovipositing B. dorsalis, and mangoes on day 7 and day 9 post-oviposition) of tree-attached Kent, Apple, and Haden mango varieties relative to control (clean air). The fruit fly was significantly more attracted to the mango volatiles (up to 93% of responsive insects) compared to the control (clean air). Fopius arisanus was significantly more attracted to mangoes with ovipositing fruit flies (68–76%) while D. longicaudata was significantly more attracted to day 9 post-oviposited mangoes (64–72%) compared to the control. Secondly, we elucidated the headspace volatile profiles of the non-infested and infested tree-attached mangoes using gas chromatography linked to mass spectrometry (GC-MS). The volatiles revealed various types of organic compounds with qualitative and quantitative differences. The majority of the compounds were esters making 33.8% of the total number, followed by sesquiterpenes-16.4%, and monoterpenes-15.4% among others. Most compounds had higher release rates in headspace volatiles of fruit fly-infested mangoes. Lastly, we harvested the infested mangoes and incubated them for puparia recovery. The number of puparia recovered varied according to the mango variety with Apple mango registering 81.7% of the total, while none was recovered from Kent. These results represent the first report of the changes in the headspace components of non-infested and infested tree-attached mangoes and the associated differential responses of the mentioned insects. A follow-up study can reveal whether there is a convergence in olfactomes which is significant when developing baits that selectively attract the fruit fly and not its natural enemies and fill the knowledge gap from an evolutionary ecological perspective.
Collapse
|
3
|
Revadi SV, Giannuzzi VA, Rossi V, Hunger GM, Conchou L, Rondoni G, Conti E, Anderson P, Walker WB, Jacquin-Joly E, Koutroumpa F, Becher PG. Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae. BMC Biol 2021; 19:231. [PMID: 34706739 PMCID: PMC8555055 DOI: 10.1186/s12915-021-01159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood. Here, we hypothesize that expression patterns of odorant receptors (ORs) change during development, as a possible mechanism influencing instar-specific olfactory-guided behavior and food preferences. Results We investigated the expression patterns of ORs in larvae of the cotton leafworm Spodoptera littoralis between the first and fourth instar and revealed that some of the ORs show instar-specific expression. We functionally characterized one OR expressed in the first instar, SlitOR40, as responding to the plant volatile, β-caryophyllene and its isomer α-humulene. In agreement with the proposed hypothesis, we showed that first but not fourth instar larvae responded behaviorally to β-caryophyllene and α-humulene. Moreover, knocking out this odorant receptor via CRISPR-Cas9, we confirmed that instar-specific responses towards its cognate ligands rely on the expression of SlitOR40. Conclusion Our results provide evidence that larvae of S. littoralis change their peripheral olfactory system during development. Furthermore, our data demonstrate an unprecedented instar-specific behavioral plasticity mediated by an OR, and knocking out this OR disrupts larval behavioral plasticity. The ecological relevance of such behavioral plasticity for S. littoralis remains to be elucidated, but our results demonstrate an olfactory mechanism underlying this plasticity in foraging behavior during larval development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01159-1.
Collapse
Affiliation(s)
- Santosh V Revadi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden. .,INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France.
| | - Vito Antonio Giannuzzi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Valeria Rossi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Gert Martin Hunger
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - Lucie Conchou
- AGRIODOR, 6 rue Pierre Joseph Colin, 35000, Rennes, France
| | - Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,United States Department of Agriculture - Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Fotini Koutroumpa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| |
Collapse
|
4
|
Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl Environ Microbiol 2019; 85:AEM.01761-19. [PMID: 31444202 PMCID: PMC6803314 DOI: 10.1128/aem.01761-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/18/2019] [Indexed: 01/25/2023] Open
Abstract
Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques. Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer’s yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene, or (E,E)-α-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management. IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.
Collapse
|
5
|
Development of a Female-Targeted Lure for the Box Tree Moth Cydalima perspectalis (Lepidoptera: Crambidae): a Preliminary Report. J Chem Ecol 2019; 45:657-666. [PMID: 31407199 PMCID: PMC6708047 DOI: 10.1007/s10886-019-01094-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/30/2019] [Accepted: 08/01/2019] [Indexed: 10/26/2022]
Abstract
The box tree moth, Cydalima perspectalis, is an invasive pest in Europe causing damage on Buxus species. In this study, we aimed to develop a "bisexual" lure to attract both female and male moths. Based on a previous screening bioassay we tested methyl salicylate, phenylacetaldehyde and eugenol as potential attractants in different combinations. The trapping results showed that both binary and ternary blends attracted male and female moths. Catches with these blends were comparable to catches with the synthetic pheromone. Subsequently we carried out single sensillum recordings, which proved the peripheral detection of the above-mentioned compounds on male and female antennae. To identify synergistic flower volatiles, which can be also attractive and can increase the trap capture, we collected flower headspace volatiles from 12 different flowering plant species. Several components of the floral scents evoked good responses from antennae of both females and males in gas chromatography-electroantennographic detection. The most active components were tentatively identified by gas chromatography coupled mass spectrometry as benzaldehyde, cis-ß-ocimene, (±)-linalool and phenethyl alcohol. These selected compounds in combination did not increase significantly the trap capture compared to the methyl salicylate- phenyacetaldehyde blend. Based on these results we discovered the first attractive blend, which was able to attract both adult male and female C. perspectalis in field conditions. These results will yield a good basis for the optimization and development of a practically usable bisexual lure against this invasive pest.
Collapse
|
6
|
Conchou L, Anderson P, Birgersson G. Host Plant Species Differentiation in a Polyphagous Moth: Olfaction is Enough. J Chem Ecol 2017; 43:794-805. [PMID: 28812177 DOI: 10.1007/s10886-017-0876-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 11/25/2022]
Abstract
Polyphagous herbivorous insects need to discriminate suitable from unsuitable host plants in complex plant communities. While studies on the olfactory system of monophagous herbivores have revealed close adaptations to their host plant's characteristic volatiles, such adaptive fine-tuning is not possible when a large diversity of plants is suitable. Instead, the available literature on polyphagous herbivore preferences suggests a higher level of plasticity, and a bias towards previously experienced plant species. It is therefore necessary to take into account the diversity of plant odors that polyphagous herbivores encounter in the wild in order to unravel the olfactory basis of their host plant choice behaviour. In this study we show that a polyphagous moth, Spodoptera littoralis, has the sensory ability to distinguish five host plant species using olfaction alone, this being a prerequisite to the ability to make a choice. We have used gas chromatography mass spectrometry (GC-MS) and gas chromatography electroantennographic detection (GC-EAD) in order to describe host plant odor profiles as perceived by S. littoralis. We find that each plant emits specific combinations and proportions of GC-EAD active volatiles, leading to statistically distinct profiles. In addition, at least four of these plants show GC-EAD active compound proportions that are conserved across individual plants, a characteristic that enables insects to act upon previous olfactory experiences during host plant choice. By identifying the volatiles involved in olfactory differentiation of alternative host plants by Spodoptera littoralis, we set the groundwork for deeper investigations of how olfactory perceptions translate into behaviour in polyphagous herbivores.
Collapse
Affiliation(s)
- Lucie Conchou
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 23053, Alnarp, Sweden.
- UMR IEES, INRA, Route de Saint Cyr, 78026, Versailles, France.
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 23053, Alnarp, Sweden
| | - Göran Birgersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 23053, Alnarp, Sweden
| |
Collapse
|
7
|
Zhang QH, Wu ZN, Zhou JJ, Du YJ. Molecular and functional characterization of a candidate sex pheromone receptor OR1 in Spodoptera litura. INSECT SCIENCE 2017; 24:543-558. [PMID: 26573759 DOI: 10.1111/1744-7917.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Olfaction is primarily mediated by highly specified olfactory receptors (ORs). Here, we cloned and identified an olfactory receptor, named SlituOR1 (Genbank no. JN835269), from Spodoptera litura and found evidence that it is a candidate pheromone receptor. It exhibited male-biased expression in the antennae, where it was localized at the base of sensilla trichoidea, the antennal sensilla mainly responsive to pheromones in moths. Conserved orthologues of this receptor, found among known pheromone receptors within the Lepidoptera, and SlituOR1 were placed among a clade of candidate pheromone receptors in a phylogeny tree of insect OR gene sequences. SlituOR1 showed differential expression in S. litura populations attracted to traps baited with different ratios of the two sex pheromone components (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). Knocking down of SlituOR1 by RNA interference reduced the electroantennogram (EAG) response to Z9E11-14:OAc, and this result is consistent with the field trapping experiment. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could provide some of the flexibility required to maintain the functionality of communication with females when a population is adapting to a new niche and reproductive isolation becomes an advantage.
Collapse
Affiliation(s)
- Qin-Hui Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhong-Nan Wu
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, BBSRC, Harpenden, Herts. AL5 2JQ, UK
| | - Yong-Jun Du
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
8
|
de Fouchier A, Walker WB, Montagné N, Steiner C, Binyameen M, Schlyter F, Chertemps T, Maria A, François MC, Monsempes C, Anderson P, Hansson BS, Larsson MC, Jacquin-Joly E. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun 2017; 8:15709. [PMID: 28580965 PMCID: PMC5465368 DOI: 10.1038/ncomms15709] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/20/2017] [Indexed: 02/07/2023] Open
Abstract
Insects detect their hosts or mates primarily through olfaction, and olfactory receptors (ORs) are at the core of odorant detection. Each species has evolved a unique repertoire of ORs whose functional properties are expected to meet its ecological needs, though little is known about the molecular basis of olfaction outside Diptera. Here we report a pioneer functional analysis of a large array of ORs in a lepidopteran, the herbivorous pest Spodoptera littoralis. We demonstrate that most ORs are narrowly tuned to ubiquitous plant volatiles at low, relevant odorant titres. Our phylogenetic analysis highlights a basic conservation of function within the receptor repertoire of Lepidoptera, across the expansive evolutionary radiation of different major clades. Our study provides a reference for further studies of olfactory mechanisms in Lepidoptera, a historically crucial insect order in olfactory research.
Collapse
Affiliation(s)
- Arthur de Fouchier
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - William B. Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Nicolas Montagné
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Claudia Steiner
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Muhammad Binyameen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
- Chemical Ecology Laboratory, Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Fredrik Schlyter
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Thomas Chertemps
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Annick Maria
- Sorbonne Universités—UPMC University Paris 06, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, 7 quai Saint Bernard, 75252 Paris Cedex 05, France
| | - Marie-Christine François
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Christelle Monsempes
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Mattias C. Larsson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, 230 53 Alnarp, Sweden
| | - Emmanuelle Jacquin-Joly
- INRA, Institute of Ecology & Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
9
|
Koutroumpa FA, Monsempes C, François MC, de Cian A, Royer C, Concordet JP, Jacquin-Joly E. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Sci Rep 2016; 6:29620. [PMID: 27403935 PMCID: PMC4940732 DOI: 10.1038/srep29620] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Lepidoptera suffer critical lack of genetic tools and heritable genome edition has been achieved only in a few model species. Here we demonstrate that the CRISPR/Cas9 system is highly efficient for genome editing in a non-model crop pest Lepidoptera, the noctuid moth Spodoptera littoralis. We knocked-out the olfactory receptor co-receptor Orco gene to investigate its function in Lepidoptera olfaction. We find that 89.6% of the injected individuals carried Orco mutations, 70% of which transmitted them to the next generation. CRISPR/Cas9-mediated Orco knockout caused defects in plant odor and sex pheromone olfactory detection in homozygous individuals. Our work genetically defines Orco as an essential OR partner for both host and mate detection in Lepidoptera, and demonstrates that CRISPR/Cas9 is a simple and highly efficient genome editing technique in noctuid pests opening new routes for gene function analysis and the development of novel pest control strategies.
Collapse
Affiliation(s)
| | | | | | - Anne de Cian
- CNRS UMR 7196, INSERM U1154, Museum National d'Histoire Naturelle, Paris, France
| | - Corinne Royer
- INSA-Lyon, Villeurbanne F-69621, France.,INRA, UMR203 BF2I, Biologie Fonctionnelle Insecte et Interaction, F-69621, France
| | - Jean-Paul Concordet
- CNRS UMR 7196, INSERM U1154, Museum National d'Histoire Naturelle, Paris, France
| | | |
Collapse
|
10
|
Gonzalez F, Bengtsson JM, Walker WB, Sousa MFR, Cattaneo AM, Montagné N, de Fouchier A, Anfora G, Jacquin-Joly E, Witzgall P, Ignell R, Bengtsson M. A Conserved Odorant Receptor Detects the Same 1-Indanone Analogs in a Tortricid and a Noctuid Moth. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Bohbot JD, Pitts RJ. The narrowing olfactory landscape of insect odorant receptors. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Carrasco D, Larsson MC, Anderson P. Insect host plant selection in complex environments. CURRENT OPINION IN INSECT SCIENCE 2015; 8:1-7. [PMID: 32846657 DOI: 10.1016/j.cois.2015.01.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 06/11/2023]
Abstract
Selection of suitable host plants is essential for the development and survival of herbivorous insects. Here we address behavioural mechanisms and the role of olfactory cues governing host choice, and their adaptive significance in complicated ecological contexts, with a focus on polyphagous insects. We also consider how recent developments in the study of olfactory systems of insects can provide a functional description of physiological mechanisms behind host plant choice. This may apply from the broader evolutionary history and local adaptations of olfactory receptor genes, to the underlying neural mechanisms behind innate host preferences and experience-based plasticity in host plant choice.
Collapse
Affiliation(s)
- David Carrasco
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE 230 53 Alnarp, Sweden.
| | - Mattias C Larsson
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE 230 53 Alnarp, Sweden
| | - Peter Anderson
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE 230 53 Alnarp, Sweden
| |
Collapse
|