1
|
He L, Shi X, Han K, Huang W, Chen D, Lian Z, Ruan S. Molecular characterization of adenosine monophosphate deaminase 1 and the correlation analysis between its mRNA expression levels and inosine monophosphate content in large yellow croaker (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 2024; 272:110966. [PMID: 38452850 DOI: 10.1016/j.cbpb.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Declining flesh quality has drawn considerable attention in the farmed large yellow croaker (LYC; Larimichthys crocea) industry. Inosine monophosphate (IMP) is the primary flavor substance in aquatic animals. Adenosine monophosphate deaminase 1 (AMPD1) plays a critical role in IMP formation by catalyzing the deamination of AMP to IMP in the purine nucleotide cycle. To further evaluate the correlation between ampd1 mRNA expression levels and IMP content in the LYC muscle tissue, the relevant open reading frame (ORF) of L. crocea (Lcampd1) was cloned, and the IMP content and Lcampd1 mRNA expression in the muscles of LYCs of different sizes were examined. The ORF cDNA of Lcampd1 was 2211 bp in length and encoded a polypeptide of 736 amino acids (AAs). The deduced protein, LcAMPD1, possesses conserved AMPD active regions (SLSTDDP) and shows high homology with AMPD proteins of other teleost fishes. The genomic DNA sequence of Lcampd1 exhibits a high degree of evolutionary conservation in terms of structural organization among species. Phylogenetic analysis of the deduced AA sequence revealed that teleost fish and mammalian AMPD1 were separate from each other and formed a cluster with AMPD3, suggesting that AMPD1 and AMPD3 arose by duplication of a common primordial gene. In healthy LYC, Lcampd1 mRNA was expressed only in the muscle tissue. The IMP content in the muscle of LYCs with different average body weights was measured by high-performance liquid chromatography; the results showed that the IMP content in the muscle of LYCs with greater body weight was significantly higher than that in LYC with lower body weight. Moreover, a similar trend in Lcampd1 expression was observed in these muscle tissues. The Pearson correlation analysis further showed that the Lcampd1 mRNA expression was positively correlated with IMP content in the muscles of different-sized LYCs. These results suggest the potential function of Lcampd1 in determining the IMP content in LYC and provide a theoretical basis for flesh quality improvement, as well as a scientific basis for the development of the molecular breeding of LYC.
Collapse
Affiliation(s)
- Liangyin He
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China; Fujian Xinyiding agricultural development Co., Ltd, Ningde 352100, China.
| | - Xiaoli Shi
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China
| | - Kunhuang Han
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China
| | - Weiqing Huang
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China
| | - Delong Chen
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Zhidi Lian
- College of Life Science, Ningde Normal University, Ningde 352100, China
| | - Shaojiang Ruan
- College of Life Science, Ningde Normal University, Ningde 352100, China; Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde Normal University, Ningde 352100, China.
| |
Collapse
|
2
|
Amado NJ, Hanselman EC, Harmon CP, Deng D, Alarcon SM, Sharples AA, Breslin PAS. Ribonucleotides differentially modulate oral glutamate detection thresholds. Chem Senses 2024; 49:bjad049. [PMID: 38197318 PMCID: PMC10824162 DOI: 10.1093/chemse/bjad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Indexed: 01/11/2024] Open
Abstract
The savory or umami taste of the amino acid glutamate is synergistically enhanced by the addition of the purines inosine 5'-monophosphate (IMP) and guanosine 5'-monophosphate (GMP) disodium salt. We hypothesized that the addition of purinergic ribonucleotides, along with the pyrimidine ribonucleotides, would decrease the absolute detection threshold of (increase sensitivity to) l-glutamic acid potassium salt (MPG). To test this, we measured both the absolute detection threshold of MPG alone and with a background level (3 mM) of 5 different 5'-ribonucleotides. The addition of the 3 purines IMP, GMP, and adenosine 5'-monophosphate (AMP) lowered the MPG threshold in all participants (P < 0.001), indicating they are positive modulators or enhancers of glutamate taste. The average detection threshold of MPG was 2.08 mM, and with the addition of IMP, the threshold was decreased by approximately 1.5 orders of magnitude to 0.046 mM. In contrast to the purines, the pyrimidines uridine 5'-monophosphate (UMP) and cytidine 5'-monophosphate (CMP) yielded different results. CMP reliably raised glutamate thresholds in 10 of 17 subjects, suggesting it is a negative modulator or diminisher of glutamate taste for them. The rank order of effects on increasing sensitivity to glutamate was IMP > GMP> AMP >> UMP// CMP. These data confirm that ribonucleotides are modulators of glutamate taste, with purines enhancing sensitivity and pyrimidines displaying variable and even negative modulatory effects. Our ability to detect the co-occurrence of glutamate and purines is meaningful as both are relatively high in evolutionarily important sources of nutrition, such as insects and fermented foods.
Collapse
Affiliation(s)
- Nicholas J Amado
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Emily C Hanselman
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Caroline P Harmon
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Daiyong Deng
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
| | - Suzanne M Alarcon
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
- AUGenomics, 9276 Scranton Rd, Suite 200, San Diego, CA 92121, United States
| | - Ashley A Sharples
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
- Ocean University Medical Center, 425 Jack Martin Blvd, Brick, NJ 08724, United States
| | - Paul A S Breslin
- Department of Nutritional Sciences, Rutgers University, 65 Dudley Rd, New Brunswick, NJ 08901, United States
- Monell Chemical Senses Center, 3500 Market St, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Zhao W, Cai Z, Wei C, Ma X, Yu B, Fu X, Zhang T, Gu Y, Zhang J. Functional identification of PGM1 in the regulating development and depositing of inosine monophosphate specific for myoblasts. Front Vet Sci 2023; 10:1276582. [PMID: 38164393 PMCID: PMC10758172 DOI: 10.3389/fvets.2023.1276582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background Inosine monophosphate (IMP) is naturally present in poultry muscle and plays a key role in improving meat flavour. However, IMP deposition is regulated by numerous genes and complex molecular networks. In order to excavate key candidate genes that may regulate IMP synthesis, we performed proteome and metabolome analyses on the leg muscle, compared to the breast muscle control of 180-day-old Jingyuan chickens (hens), which had different IMP content. The key candidate genes identified by a differential analysis were verified to be associated with regulation of IMP-specific deposition. Results The results showed that the differentially expressed (DE) proteins and metabolites jointly involve 14 metabolic pathways, among which the purine metabolic pathway closely related to IMP synthesis and metabolism is enriched with four DE proteins downregulated (with higher expression in breast muscles than in leg muscles), including adenylate kinase 1 (AK1), adenosine monophosphate deaminase 1 (AMPD1), pyruvate kinase muscle isoenzyme 2 (PKM2) and phosphoglucomutase 1 (PGM1), six DE metabolites, Hypoxanthine, Guanosine, L-Glutamine, AICAR, AMP and Adenylsuccinic acid. Analysis of PGM1 gene showed that the high expression of PGM1 promoted the proliferation and differentiation of myoblasts and inhibited the apoptosis of myoblasts. ELISA tests have shown that PGM1 reduced adenosine triphosphate (ATP) and IMP and uric acid (UA), while enhancing the biosynthesis of hypoxanthine (HX). In addition, up-regulation of PGM1 inhibited the expression of purine metabolism pathway related genes, and promoted the IMP de novo and salvage synthesis pathways. Conclusion This study preliminarily explored the mechanism of action of PGM1 in regulating the growth and development of myoblasts and specific IMP deposition in Jingyuan chickens, which provided certain theoretical basis for the development and utilization of excellent traits in Jingyuan chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
4
|
Huang Z, Cai Z, Zhang J, Gu Y, Wang J, Yang J, Lv G, Yang C, Zhang Y, Ji C, Jiang S. Integrating proteomics and metabolomics to elucidate the molecular network regulating of inosine monophosphate-specific deposition in Jingyuan chicken. Poult Sci 2023; 102:103118. [PMID: 37862870 PMCID: PMC10590753 DOI: 10.1016/j.psj.2023.103118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/22/2023] Open
Abstract
Inosine monophosphate (IMP) plays a significant role in meat taste, yet the molecular mechanisms controlling IMP deposition in muscle tissues still require elucidation. The present study systematically and comprehensively explores the molecular network governing IMP deposition in different regions of Jingyuan chicken muscle. Two muscle groups, the breast and leg, were examined as test materials. Using nontargeted metabolomic sequencing, we screened and identified 20 metabolites that regulate IMP-specific deposition. We maintained regular author and institution formatting, used clear, objective, and value-neutral language, and avoided biased or emotional language. We followed a consistent footnote style and formatting features and used precise word choice with technical terms where appropriate. Out of these, 5 were identified as significant contributors to the regulation of IMP deposition. We explained technical term abbreviations when first used and ensured a logical flow of information with causal connections between statements. The results indicate that PGM1, a key enzyme involved in synthesis, is higher in the breast muscle compared to the leg muscle, which may provide an explanation for the increased deposition of IMP in the breast muscle. We aimed for a clear structure with logical progression, avoided filler words, and ensured grammatical correctness. The activity of key enzymes (PKM2, AK1, AMPD1) involved in this process was higher in the breast muscle than in the leg muscle. In the case of IMP degradation metabolism, the activity of its participating enzyme (PurH) was lower in the breast muscle than in the leg muscle. These findings suggest that the increased deposition of IMP in Jingyuan chickens' breast muscle may result from elevated metabolism and reduced catabolism of key metabolites. In summary, a metaomic strategy was utilized to assess the molecular network regulation mechanism of IMP-specific deposition in various segments of Jingyuan chicken. These findings provide insight into genetic improvement and molecular breeding of meat quality traits for top-notch broilers.
Collapse
Affiliation(s)
- Zengwen Huang
- Agriculture College, Ningxia University, Ningxia, Yinchuan 750021, China; College of Animal Science, Xichang University, Sichuan, Xichang 615012, China; Xinjiang Taikun Group Co., Ltd., Xinjiang, Changji 831100, China
| | - Zhengyun Cai
- Agriculture College, Ningxia University, Ningxia, Yinchuan 750021, China
| | - Juan Zhang
- Agriculture College, Ningxia University, Ningxia, Yinchuan 750021, China.
| | - Yaling Gu
- Agriculture College, Ningxia University, Ningxia, Yinchuan 750021, China
| | - Jing Wang
- College of Animal Science, Xichang University, Sichuan, Xichang 615012, China
| | - Jinzeng Yang
- Department of Human Nutrition, Food & Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Manoa, HI 96822
| | - Gang Lv
- Xinjiang Taikun Group Co., Ltd., Xinjiang, Changji 831100, China
| | - Chaoyun Yang
- College of Animal Science, Xichang University, Sichuan, Xichang 615012, China
| | - Yi Zhang
- College of Animal Science, Xichang University, Sichuan, Xichang 615012, China
| | - Chen Ji
- College of Animal Science, Xichang University, Sichuan, Xichang 615012, China
| | - Shengwang Jiang
- College of Animal Science, Xichang University, Sichuan, Xichang 615012, China
| |
Collapse
|
5
|
Kondoh T. Enhanced preference for dried bonito dashi by prior experience with dashi and various taste substances in mice. Physiol Behav 2023; 261:114084. [PMID: 36640957 DOI: 10.1016/j.physbeh.2023.114084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
Dried bonito dashi, a complex mixture of sour, bitter, and umami substances as well as over 400 odorants, is the most widely used Japanese fish broth that enhances palatability of various dishes. Recent studies have suggested that prior experience with dried bonito dashi produces strong enhancement of subsequent intake and preference for dried bonito dashi. The present study investigated taste substances in dried bonito dashi that enhance subsequent dashi preference by its prior exposure. Male C57BL/6N mice were initially exposed for 10 days to (1) dried bonito dashi, (2) a chemical mixture of taste substances identified in dried bonito dashi (artificially reconstituted dashi), or (3) individual chemical solutions such as NaCl, monosodium l-glutamate (MSG), inosine 5'-monophosphate (IMP), lactic acid, histidine, and glucose. Intakes of 0.01-100% dried bonito dashi with water were then measured using ascending concentration series of 2-day two-bottle choice tests. Prior exposure to 1-100% dashi enhanced subsequent dashi preference in a concentration-dependent manner and the greatest effects were attained with 10-100% dashi exposure. Exposure to the reconstituted dashi also enhanced subsequent dashi preference. Among individual chemical solutions, 0.1% IMP produced modest enhancement of subsequent dashi preference, but neither NaCl, MSG, histidine, lactic acid, nor glucose did. These results suggest that IMP is at least a key substance that produces experience-based enhancement of dried bonito dashi preference.
Collapse
Affiliation(s)
- Takashi Kondoh
- Laboratory of Food Chemistry, Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara 631-8505, Japan; AJINOMOTO Integrative Research for Advanced Dieting, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
6
|
Yu B, Liu J, Cai Z, Mu T, Gu Y, Xin G, Zhang J. miRNA-mRNA associations with inosine monophosphate specific deposition in the muscle of Jingyuan chicken. Br Poult Sci 2022; 63:821-832. [PMID: 35895079 DOI: 10.1080/00071668.2022.2106777] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Inosine monophosphate (IMP), is an essential component for meat flavour and microRNAs (miRNAs) play a vital role in its post-transcriptional regulation. However, the mechanism of how miRNA expression affects muscle-specific IMP deposition is unclear.2. The following study performed transcriptome sequencing and bioinformatics analysis of breast and leg muscle, which have significantly different IMP content in Jingyuan chicken. The differential miRNA-mRNAs were screened out and correlation analysis with IMP content was performed.3. A total of 39 differentially expressed miRNAs (DE miRNAs) and 666 differentially expressed mRNAs (DE mRNAs) were identified between breast muscles and leg muscles. Using miRNA-mRNA integrated analysis, 29 miRNA-target gene pairs were obtained, composed of 13 DE miRNAs and 28 DE mRNAs. Next, purine metabolism, glycolysis/gluconeogenesis, pyruvate metabolism and the biosynthesis of amino acid pathways as necessary for muscle IMP-specific deposition were identified. The differentially expressed gene PKM2, which was significantly enriched in all four pathways, is involved in IMP anabolism in the form of energy metabolism and enzyme activity regulation. The correlation analysis suggested that the gga-miR-107-3p-KLHDC2 negative interaction may be a key regulator in IMP deposition.4. This study explores the functional mechanism of IMP-specific deposition in Jingyuan chicken muscles at the miRNA and mRNA levels and highlights multiple candidate miRNAs and mRNAs for molecular-assisted breeding.
Collapse
Affiliation(s)
- Baojun Yu
- College of Agriculture, Ningxia University, Yinchuan China
| | - Jiamin Liu
- College of Agriculture, Ningxia University, Yinchuan China
| | - Zhengyun Cai
- College of Agriculture, Ningxia University, Yinchuan China
| | - Tong Mu
- College of Agriculture, Ningxia University, Yinchuan China
| | - Yaling Gu
- College of Agriculture, Ningxia University, Yinchuan China
| | - Guosheng Xin
- School of Life Sciences, Ningxia University/Ningxia Feed Engineering Technology Research Center, Yinchuan China
| | - Juan Zhang
- College of Agriculture, Ningxia University, Yinchuan China
| |
Collapse
|
7
|
Huang Z, Zhang J, Gu Y, Cai Z, Wei D, Feng X, Yang C. Analysis of the molecular mechanism of inosine monophosphate deposition in Jingyuan chicken muscles using a proteomic approach. Poult Sci 2022; 101:101741. [PMID: 35259688 PMCID: PMC8904228 DOI: 10.1016/j.psj.2022.101741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Inosine monophosphate (IMP) is an indicator of meat taste, and the molecular mechanism underlying IMP deposition in muscle tissues is important to developing superior poultry breeds. The aim of this study was to identify the key proteins regulating IMP deposition in different muscle groups of 180-day-old Jingyuan chickens (Hen) using a proteomics-based approach. We identified 1,300 proteins in the muscle tissues of Jingyuan chickens, of which 322 were differentially expressed between the breast and leg muscles (129 proteins were highly expressed in breast muscles and 193 proteins were highly expressed in leg muscles). PGM1, PKM2, AK1, AMPD1, and PurH/ATIC were among the differentially expressed proteins (DEPs) involved in the purine metabolism pathway, of which purH was highly expressed in leg muscles, while the others were highly expressed in breast muscles. The proteomics screening results were verified by PRM, qPCR, and western blotting, showing consistency with the proteomics results. Our findings are not only significant in terms of protecting the Jingyuan chicken germplasm resources, but also provide the molecular basis for generating high-quality broiler chicken breeds.
Collapse
Affiliation(s)
- Zengwen Huang
- Agriculture College, Ningxia University, Yinchuan, China; Xichang University, Sichuan 615012, China
| | - Juan Zhang
- Agriculture College, Ningxia University, Yinchuan, China
| | - Yaling Gu
- Agriculture College, Ningxia University, Yinchuan, China.
| | - Zhengyun Cai
- Agriculture College, Ningxia University, Yinchuan, China
| | - Dawei Wei
- Agriculture College, Ningxia University, Yinchuan, China
| | - Xiaofang Feng
- Agriculture College, Ningxia University, Yinchuan, China
| | - Chaoyun Yang
- Agriculture College, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Wu B, Eldeghaidy S, Ayed C, Fisk ID, Hewson L, Liu Y. Mechanisms of umami taste perception: From molecular level to brain imaging. Crit Rev Food Sci Nutr 2021; 62:7015-7024. [PMID: 33998842 DOI: 10.1080/10408398.2021.1909532] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Due to unique characteristics, umami substances have gained much attention in the food industry during the past decade as potential replacers to sodium or fat to increase food palatability. Umami is not only known to increase appetite, but also to increase satiety, and hence could be used to control food intake. Therefore, it is important to understand the mechanism(s) involved in umami taste perception. This review discusses current knowledge of the mechanism(s) of umami perception from receptor level to human brain imaging. New findings regarding the molecular mechanisms for detecting umami tastes and their pathway(s), and the peripheral and central coding to umami taste are reviewed. The representation of umami in the human brain and the individual variation in detecting umami taste and associations with genotype are discussed. The presence of umami taste receptors in the gastrointestinal tract, and the interactions between the brain and gut are highlighted. The review concludes that more research is required into umami taste perception to include not only oral umami taste perception, but also the wider "whole body" signaling mechanisms, to explore the interaction between the brain and gut in response to umami perception and ingestion.
Collapse
Affiliation(s)
- Ben Wu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sally Eldeghaidy
- Division of Food, Nutrition and Dietetics, and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK.,Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University Park Campus, University of Nottingham, UK
| | - Charfedinne Ayed
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Ian D Fisk
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK.,The University of Adelaide, North Terrace, Adelaide, South Australia, Australia
| | - Louise Hewson
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, UK
| | - Yuan Liu
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Abstract
Umami, the fifth taste, has been recognized as a legitimate taste modality only recently relative to the other tastes. Dozens of compounds from vastly different chemical classes elicit a savory (also called umami) taste. The prototypical umami substance glutamic acid or its salt monosodium glutamate (MSG) is present in numerous savory food sources or ingredients such as kombu (edible kelp), beans, soy sauce, tomatoes, cheeses, mushrooms, and certain meats and fish. Derivatives of glutamate (Glu), other amino acids, nucleotides, and small peptides can also elicit or modulate umami taste. In addition, many potent umami tasting compounds structurally unrelated to amino acids, nucleotides, and MSG have been either synthesized or discovered as naturally occurring in plants and other substances. Over the last 20 years several receptors have been suggested to mediate umami taste, including members of the metabotropic and ionotropic Glu receptor families, and more recently, the heterodimeric G protein-coupled receptor, T1R1/T1R3. Careful assessment of representative umami tasting molecules from several different chemical classes shows activation of T1R1/T1R3 with the expected rank order of potency in cell-based assays. Moreover, 5'-ribonucleotides, molecules known to enhance the savory note of Glu, considerably enhance the effect of MSG on T1R1/T1R3 in vitro. Binding sites are found on at least 4 distinct locations on T1R1/T1R3, explaining the propensity of the receptor to being activated or modulated by many structurally distinct compounds and these binding sites allosterically interact to modulate receptor activity. Activation of T1R1/T1R3 by all known umami substances evaluated and the receptor's pharmacological properties are sufficient to explain the basic human sensory experience of savory taste and it is therefore unlikely that other receptors are involved.
Collapse
|
10
|
Kalyanasundar B, Blonde GD, Spector AC, Travers SP. Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice. J Neurophysiol 2020; 123:843-859. [PMID: 31913749 DOI: 10.1152/jn.00584.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Strong evidence supports a major role for heterodimers of the type 1 taste receptor (T1R) family in the taste transduction of sugars (T1R2+T1R3) and amino acids (T1R1+T1R3), but there are also neural and behavioral data supporting T1R-independent mechanisms. Most neural evidence for alternate mechanisms comes from whole nerve recordings in mice with deletion of a single T1R family member, limiting conclusions about the functional significance and T1R independence of the remaining responses. To clarify these issues, we recorded single-unit taste responses from the nucleus of the solitary tract in T1R double-knockout (double-KO) mice lacking functional T1R1+T1R3 [KO1+3] or T1R2+T1R3 [KO2+3] receptors and their wild-type background strains [WT; C57BL/6J (B6), 129X1/SvJ (S129)]. In both double-KO strains, responses to sugars and a moderate concentration of an monosodium glutamate + amiloride + inosine 5'-monophosphate cocktail (0.1 M, i.e., umami) were profoundly depressed, whereas a panel of 0.6 M amino acids were mostly unaffected. Strikingly, in contrast to WT mice, no double-KO neurons responded selectively to sugars and umami, precluding segregation of this group of stimuli from those representing other taste qualities in a multidimensional scaling analysis. Nevertheless, residual sugar responses, mainly elicited by monosaccharides, persisted as small "sideband" responses in double-KOs. Thus other receptors may convey limited information about sugars to the central nervous system, but T1Rs appear critical for coding the distinct perceptual features of sugar and umami stimuli. The persistence of amino acid responses supports previous proposals of alternate receptors, but because these stimuli affected multiple neuron types, further investigations are necessary.NEW & NOTEWORTHY The type 1 taste receptor (T1R) family is crucial for transducing sugars and amino acids, but there is evidence for T1R-independent mechanisms. In this study, single-unit recordings from the nucleus of the solitary tract in T1R double-knockout mice lacking T1R1+T1R3 or T1R2+T1R3 receptors revealed greatly reduced umami synergism and sugar responses. Nevertheless, residual sugar responses persisted, mainly elicited by monosaccharides and evident as "sidebands" in neurons activated more vigorously by other qualities.
Collapse
Affiliation(s)
- B Kalyanasundar
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida
| | - Susan P Travers
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Zanfirescu A, Ungurianu A, Tsatsakis AM, Nițulescu GM, Kouretas D, Veskoukis A, Tsoukalas D, Engin AB, Aschner M, Margină D. A review of the alleged health hazards of monosodium glutamate. Compr Rev Food Sci Food Saf 2019; 18:1111-1134. [PMID: 31920467 PMCID: PMC6952072 DOI: 10.1111/1541-4337.12448] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Monosodium glutamate (MSG) is an umami substance widely used as flavor enhancer. Although it is generally recognized as being safe by food safety regulatory agencies, several studies have questioned its long-term safety. The purpose of this review was to survey the available literature on preclinical studies and clinical trials regarding the alleged adverse effects of MSG. Here, we aim to provide a comprehensive overview of the reported possible risks that may potentially arise following chronic exposure. Furthermore, we intend to critically evaluate the relevance of this data for dietary human intake. Preclinical studies have associated MSG administration with cardiotoxicity, hepatotoxicity, neurotoxicity, low-grade inflammation, metabolic disarray and premalignant alterations, along with behavioral changes. Moreover, links between MSG consumption and tumorigenesis, increased oxidative stress and apoptosis in thymocytes, as well as genotoxic effects in lymphocytes have been reported. However, in reviewing the available literature, we detected several methodological flaws, which led us to conclude that these studies have limited relevance for extrapolation to dietary human intakes of MSG risk exposure. Clinical trials have focused mainly on the effects of MSG on food intake and energy expenditure. Besides its well-known impact on food palatability, MSG enhances salivary secretion and interferes with carbohydrate metabolism, while the impact on satiety and post-meal recovery of hunger varied in relation to meal composition. Reports on MSG hypersensitivity, also known as 'Chinese restaurant syndrome', or links of its use to increased pain sensitivity and atopic dermatitis were found to have little supporting evidence. Based on the available literature, we conclude that further clinical and epidemiological studies are needed, with an appropriate design, accounting for both added and naturally occurring dietary MSG. Critical analysis of existing literature, establishes that many of the reported negative health effects of MSG have little relevance for chronic human exposure and are poorly informative as they are based on excessive dosing that does not meet with levels normally consumed in food products.
Collapse
Affiliation(s)
- Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Aristides M. Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
| | - George M. Nițulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Aris Veskoukis
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa 41500, Greece
| | - Dimitrios Tsoukalas
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71409, Crete, Greece
- Metabolomic Medicine Clinic, Athens 10674, Greece
| | - Ayse B. Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara 06330, Turkey
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx NY 10463, USA
| | - Denisa Margină
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
12
|
Blonde GD, Travers SP, Spector AC. Taste sensitivity to a mixture of monosodium glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1+T1R3 amino acid receptor. Am J Physiol Regul Integr Comp Physiol 2018; 314:R802-R810. [PMID: 29443544 DOI: 10.1152/ajpregu.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The taste of l-glutamate and its synergism with 5'-ribonucleotides is thought to be primarily mediated through the T1R1+T1R3 heterodimer in some mammals, including rodents and humans. While knockout (KO) mice lacking either receptor subunit show impaired sensitivity to a range of monosodium glutamate (MSG) concentrations mixed with 2.5 mM inosine 5'-monophosphate (IMP) in amiloride, wild-type (WT) controls can detect this IMP concentration, hindering direct comparison between genotypes. Moreover, some residual sensitivity persists in the KO group, suggesting that the remaining subunit could maintain a limited degree of function. Here, C57BL/6J, 129X1/SvJ, and T1R1+T1R3 double KO mice ( n = 16 each to start the experiment) were trained in a two-response operant task in gustometers and then tested for their ability to discriminate 100 µM amiloride from MSG (starting with 0.6 M) and IMP (starting with 2.5 mM) in amiloride (MSG+I+A). Testing continued with successive dilutions of both MSG and IMP (in amiloride). The two WT strains were similarly sensitive to MSG+I+A ( P > 0.8). KO mice, however, were significantly impaired relative to either WT strain ( P < 0.01), although they were able to detect the highest concentrations. Thus, normal detectability of MSG+I+A requires an intact T1R1+T1R3 receptor, without regard for allelic variation in the T1R3 gene between the WT strains. Nevertheless, residual sensitivity by the T1R1+T1R3 KO mice demonstrates that a T1R-independent mechanism can contribute to the detectability of high concentrations of this prototypical umami compound stimulus.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Susan P Travers
- Division of Biosciences, College of Dentistry, Ohio State University , Columbus, Ohio
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|