1
|
Cieri F, Giriprakash PP, Nandy R, Zhuang X, Doty RL, Caldwell JZK, Cordes D. Functional connectivity differences of the olfactory network in Parkinson's Disease, mild cognitive impairment and cognitively normal individuals: A resting-state fMRI study. Neuroscience 2024; 559:8-16. [PMID: 39179019 DOI: 10.1016/j.neuroscience.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/26/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Olfactory dysfunction is an early sign of such neurodegenerative diseases as Parkinson's (PD) and Alzheimer's (AD), and is often present in Mild Cognitive Impairment (MCI), a precursor of AD. Understanding neuro-temporal relationships, i.e., functional connectivity, between olfactory eloquent structures in such disorders, could shed light on their basic pathophysiology. To this end, we employed region-based analyses using resting-state functional magnetic resonance imaging (rs-fMRI) obtained from cognitively normal (CN), MCI, and PD patients with cognitive impairment (PD-CogImp). Using machine learning (linear and ensemble learning), we determined whether the identified functional patterns could classify abnormal function from normal function. Olfaction, as measured by objective testing, was found to be most strongly associated with diagnostic status, emphasizing the fundamental association of this primary sensory system with these conditions. Consistently lower functional connectivity was observed in the PD-CogImp cohort compared to the CN cohort among all identified brain regions. Differences were also found between PD-CogImp and MCI at the level of the orbitofrontal and cingulate cortices. MCI and CN subjects had different functional connectivity between the posterior orbitofrontal cortex and thalamus. Regardless of study group, males showed significantly higher connectivity than females in connections involving the orbitofrontal cortex. The logistic regression model trained using the top discriminatory features revealed that caudate was the most involved olfaction-related brain structure (accuracy = 0.88, Area under the Receiver operator characteristic curve of 0.90). In aggregate, our study demonstrates that resting functional connectivity among olfactory eloquent structures has potential value in better understanding the pathophysiology of several neurodegenerative diseases.
Collapse
Affiliation(s)
- F Cieri
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - P P Giriprakash
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - R Nandy
- Department of Biostatistics & Epidemiology, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - X Zhuang
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - R L Doty
- Smell and Taste Center, Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Z K Caldwell
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| | - D Cordes
- Department of Neurology, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
2
|
Schmidt M, Bauer T, Kehl M, Minarik A, Walger L, Schultz J, Otte M, Trautner P, Hoppe C, Baumgartner T, Specht‐Riemenschneider L, Mormann F, Radbruch A, Surges R, Rüber T. Olfactory Dysfunction and Limbic Hypoactivation in Temporal Lobe Epilepsy. Hum Brain Mapp 2024; 45:e70061. [PMID: 39487626 PMCID: PMC11530705 DOI: 10.1002/hbm.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 11/04/2024] Open
Abstract
The epileptogenic network in temporal lobe epilepsy (TLE) contains structures of the primary and secondary olfactory cortex such as the piriform and entorhinal cortex, the amygdala, and the hippocampus. Olfactory auras and olfactory dysfunction are relevant symptoms of TLE. This study aims to characterize olfactory function in TLE using olfactory testing and olfactory functional magnetic resonance imaging (fMRI). We prospectively enrolled 20 individuals with unilateral TLE (age 45 ± 20 years [mean ± SD], 65% female, 90% right-handed) and 20 healthy individuals (age 33 ± 15 years [mean ± SD], 35% female, 90% right-handed). In the TLE group, the presumed seizure onset zone was left-sided in 75%; in 45% of the individuals with TLE limbic encephalitis was the presumed etiology; and 15% of the individuals with TLE reported olfactory auras. Olfactory function was assessed with a Screening Sniffin' Sticks Test (Burkhart, Wedel, Germany) during a pre-assessment. During a pre-testing, all individuals were asked to rate the intensity, valence, familiarity, and associated memory of five different odors (eugenol, vanillin, phenethyl alcohol, decanoic acid, valeric acid) and a control solution. During the fMRI experiment, all individuals repeatedly smelled eugenol (positively valenced odor), valeric acid (negatively valenced odor), and the control solution and were asked to rate odor intensity on a five-point Likert scale. We acquired functional EPI sequences and structural images (T1, T2, FLAIR). Compared to healthy individuals, individuals with TLE rated the presented odors as more neutral (two-sided Mann-Whitney U tests, FDR-p < 0.05) and less familiar (two-sided Mann-Whitney U tests, FDR-p < 0.05). fMRI data analysis revealed a reduced response contrast in secondary olfactory areas (e.g., hippocampus) connected to the limbic system when comparing eugenol and valeric acid in individuals with TLE when compared with healthy individuals. However, no lateralization effect was obtained when calculating a lateralization index by the number of activated voxels in the olfactory system (two-sided Mann-Whitney U test; U = 176.0; p = 0.525). TLE is characterized by olfactory dysfunction and associated with hypoactivation of secondary olfactory structures connected to the limbic system. These findings contribute to our understanding of the pathophysiology of TLE. This study was preregistered on OSF Registries (www.osf.io).
Collapse
Affiliation(s)
- Markus Schmidt
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Tobias Bauer
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Marcel Kehl
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Anna Minarik
- Department of EpileptologyUniversity Hospital BonnBonnGermany
- Department of Medical Neuroscience, Faculty of MedicineDalhousie UniversityHalifaxNova ScotiaCanada
| | - Lennart Walger
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Johannes Schultz
- Institute of Experimental Epileptology and Cognition ResearchUniversity of BonnBonnGermany
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
| | - Martin S. Otte
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical FacultyUniversity of CologneCologneGermany
| | - Peter Trautner
- Institute of Experimental Epileptology and Cognition ResearchUniversity of BonnBonnGermany
| | - Christian Hoppe
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | | | | | - Florian Mormann
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Alexander Radbruch
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Center for Medical Data Usability and TranslationUniversity of BonnBonnGermany
| | - Rainer Surges
- Department of EpileptologyUniversity Hospital BonnBonnGermany
| | - Theodor Rüber
- Department of NeuroradiologyUniversity Hospital BonnBonnGermany
- Department of EpileptologyUniversity Hospital BonnBonnGermany
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Center for Medical Data Usability and TranslationUniversity of BonnBonnGermany
| |
Collapse
|
3
|
Georgiopoulos C, Buechner MA, Falkenburger B, Engström M, Hummel T, Haehner A. Differential connectivity of the posterior piriform cortex in Parkinson's disease and postviral olfactory dysfunction: an fMRI study. Sci Rep 2024; 14:6256. [PMID: 38491209 PMCID: PMC10943068 DOI: 10.1038/s41598-024-56996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Olfactory dysfunction is a common feature of both postviral upper respiratory tract infections (PV) and idiopathic Parkinson's disease (PD). Our aim was to investigate potential differences in the connectivity of the posterior piriform cortex, a major component of the olfactory cortex, between PV and PD patients. Fifteen healthy controls (median age 66 years, 9 men), 15 PV (median age 63 years, 7 men) and 14 PD patients (median age 70 years, 9 men) were examined with task-based olfactory fMRI, including two odors: peach and fish. fMRI data were analyzed with the co-activation pattern (CAP) toolbox, which allows a dynamic temporal assessment of posterior piriform cortex (PPC) connectivity. CAP analysis revealed 2 distinct brain networks interacting with the PPC. The first network included regions related to emotion recognition and attention, such as the anterior cingulate and the middle frontal gyri. The occurrences of this network were significantly fewer in PD patients compared to healthy controls (p = 0.023), with no significant differences among PV patients and the other groups. The second network revealed a dissociation between the olfactory cortex (piriform and entorhinal cortices), the anterior cingulate gyrus and the middle frontal gyri. This second network was significantly more active during the latter part of the stimulation, across all groups, possibly due to habituation. Our study shows how the PPC interacts with areas that regulate higher order processing and how this network is substantially affected in PD. Our findings also suggest that olfactory habituation is independent of disease.
Collapse
Affiliation(s)
- Charalampos Georgiopoulos
- Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden.
- Department of Radiology, Section of Neuroradiology and Odontology, Skånes Universitetssjukhus, Entrégatan 7, 221 85, Lund, Sweden.
| | | | | | - Maria Engström
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| | - Antje Haehner
- Smell and Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
| |
Collapse
|
4
|
Alahäivälä ALI, Thaploo D, Wein S, Seidel P, Riebel M, Hummel T, Schwarzbach JV. Inhalation-modulated detection of olfactory BOLD responses in the human brain. FRONTIERS IN NEUROIMAGING 2023; 2:1260893. [PMID: 38107774 PMCID: PMC10725246 DOI: 10.3389/fnimg.2023.1260893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/02/2023] [Indexed: 12/19/2023]
Abstract
Introduction In contrast to other sensory domains, detection of primary olfactory processes using functional magnetic resonance imaging has proven to be notably challenging with conventional block designs. This difficulty arises from significant habituation and hemodynamic responses in olfactory areas that do not appear to align with extended boxcar functions convolved with a generic hemodynamic response model. Consequently, some researchers have advocated for a transition to event-related designs, despite their known lower detection power compared to block designs. Methods Here, we conducted a block design experiment with 16s of continuous odorant stimulation alternating with 16s of continuous odorless air stimulation in 33 healthy participants. We compared four statistical analyses that relied either on standard block designs (SBD1-2) or on block designs that were modulated by the participants' individual breathing patterns (MBD1-2). Results We found that such modulated block designs were comparatively more powerful than standard block designs, despite having a substantially lower design efficiency. Using whole-brain effect size maps, we observed that the right insular and medial aspects of the left piriform cortex exhibited a preference for a breathing-modulated analysis approach. Discussion Research in olfaction that necessitates designs with longer-lasting blocks, such as those employed in the investigation of state-dependent processing, will benefit from the breathing-modulated analyses outlined in this study.
Collapse
Affiliation(s)
- Aino-Lotta I. Alahäivälä
- Biomedical Imaging Group, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Divesh Thaploo
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Simon Wein
- Biomedical Imaging Group, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Philipp Seidel
- Biomedical Imaging Group, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Marco Riebel
- Biomedical Imaging Group, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Jens Volkmar Schwarzbach
- Biomedical Imaging Group, Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Farruggia MC, Pellegrino R, Scheinost D. Functional Connectivity of the Chemosenses: A Review. Front Syst Neurosci 2022; 16:865929. [PMID: 35813269 PMCID: PMC9257046 DOI: 10.3389/fnsys.2022.865929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity approaches have long been used in cognitive neuroscience to establish pathways of communication between and among brain regions. However, the use of these analyses to better understand how the brain processes chemosensory information remains nascent. In this review, we conduct a literature search of all functional connectivity papers of olfaction, gustation, and chemesthesis, with 103 articles discovered in total. These publications largely use approaches of seed-based functional connectivity and psychophysiological interactions, as well as effective connectivity approaches such as Granger Causality, Dynamic Causal Modeling, and Structural Equation Modeling. Regardless of modality, studies largely focus on elucidating neural correlates of stimulus qualities such as identity, pleasantness, and intensity, with task-based paradigms most frequently implemented. We call for further "model free" or data-driven approaches in predictive modeling to craft brain-behavior relationships that are free from a priori hypotheses and not solely based on potentially irreproducible literature. Moreover, we note a relative dearth of resting-state literature, which could be used to better understand chemosensory networks with less influence from motion artifacts induced via gustatory or olfactory paradigms. Finally, we note a lack of genomics data, which could clarify individual and heritable differences in chemosensory perception.
Collapse
Affiliation(s)
- Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,*Correspondence: Michael C. Farruggia,
| | | | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,Child Study Center, Yale School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, United States,Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States,Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Improved Activation and Hemodynamic Response Function of Olfactory fMRI Using Simultaneous Multislice with Reduced TR Acquisition. BIOMED RESEARCH INTERNATIONAL 2022; 2021:9965756. [PMID: 35005024 PMCID: PMC8731284 DOI: 10.1155/2021/9965756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Objectives The respiration could decrease the time synchronization between odor stimulation and data acquisition, consequently deteriorating the functional activation and hemodynamic response function (HRF) in olfactory functional magnetic resonance imaging (fMRI) with a conventional repetition time (TR). In this study, we aimed to investigate whether simultaneous multislice (SMS) technology with reduced TR could improve the blood oxygen level-dependent (BOLD) activation and optimize HRF modeling in olfactory fMRI. Methods Sixteen young healthy subjects with normal olfaction underwent olfactory fMRI on a 3T MRI scanner using a 64 channel head coil. FMRI data were acquired using SMS acceleration at three different TRs: 3000 ms, 1000 ms, and 500 ms. Both metrics of BOLD activation (activated voxels, mean, and maximum t-scores) and the HRF modeling (response height and time to peak) were calculated in the bilateral amygdalae, hippocampi, and insulae. Results The 500 ms and 1000 ms TRs both significantly improved the number of activated voxels, mean, and maximum t-score in the amygdalae and insulae, compared with a 3000 ms TR (all P < 0.05). But the increase of these metrics in the hippocampi did not reach a statistical significance (all P > 0.05). No significant difference in any BOLD activation metrics between TR 500 ms and 1000 ms was observed in all regions of interest (ROIs) (all P > 0.05). The HRF curves showed that higher response height and shorter time to peak in all ROIs were obtained at 500 ms and 1000 ms TRs compared to 3000 ms TR. TR 500 ms had a more significant effect on response height than TR 1000 ms in the amygdalae (P = 0.017), and there was no significant difference in time to peak between TR 500 ms and 1000 ms in all ROIs (all P > 0.05). Conclusions The fast image acquisition technique of SMS with reduced TR could significantly improve the functional activation and HRF curve in olfactory fMRI.
Collapse
|
7
|
Decreased activity of piriform cortex and orbitofrontal hyperactivation in Usher Syndrome, a human disorder of ciliary dysfunction. Brain Imaging Behav 2021; 16:1176-1185. [PMID: 34850367 PMCID: PMC9107447 DOI: 10.1007/s11682-021-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Usher syndrome (USH) is a condition characterized by ciliary dysfunction leading to retinal degeneration and hearing/vestibular loss. Putative olfactory deficits in humans have been documented at the psychophysical level and remain to be proven at the neurophysiological level. Thus, we aimed to study USH olfactory impairment using functional magnetic resonance imaging. We analyzed differences in whole-brain responses between 27 USH patients and 26 healthy participants during an olfactory detection task with a bimodal odorant (n-butanol). The main research question was whether between-group differences could be identified using a conservative whole-brain approach and in a ROI-based approach in key olfactory brain regions. Results indicated higher olfactory thresholds in USH patients, thereby confirming the hypothesis of reduced olfactory acuity. Importantly, we found decreased BOLD activity for USH patients in response to odorant stimulation in the right piriform cortex, while right orbitofrontal cortex showed increased activity. We also found decreased activity in other higher-level regions in a whole brain approach. We suggest that the hyper activation in the orbitofrontal cortex possibly occurs as a compensatory mechanism after the under-recruitment of the piriform cortex. This study suggests that olfactory deficits in USH can be objectively assessed using functional neuroimaging which reveals differential patterns of activity both in low- and high-level regions of the olfactory network. 1. Psychophysical olfactory deficits are present in Usher Syndrome, a ciliary disorder. 2. USH patients show decreased BOLD activity in the right piriform olfactory cortex; 3. USH patients show increased activity in the orbitofrontal olfactory cortex; 4. USH patients show patterns of decreased activity in high-level cortical regions; 5. Functional neuroimaging unravels USH olfactory deficits at the population level.
Collapse
|
8
|
Callara AL, Greco A, Frasnelli J, Rho G, Vanello N, Scilingo EP. Cortical network and connectivity underlying hedonic olfactory perception. J Neural Eng 2021; 18. [PMID: 34547740 DOI: 10.1088/1741-2552/ac28d2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Objective.The emotional response to olfactory stimuli implies the activation of a complex cascade of events triggered by structures lying in the limbic system. However, little is known about how this activation is projected up to cerebral cortex and how different cortical areas dynamically interact each other.Approach.In this study, we acquired EEG from human participants performing a passive odor-perception task with odorants conveying positive, neutral and negative valence. A novel methodological pipeline integrating global field power (GFP), independent component analysis (ICA), dipole source localization was applied to estimate effective connectivity in the challenging scenario of single-trial low-synchronized stimulation.Main results.We identified the brain network and the neural paths, elicited at different frequency bands, i.e.θ(4-7Hz),α(8-12Hz)andβ(13-30Hz), involved in odor valence processing. This brain network includes the orbitofrontal cortex (OFC), the cingulate gyrus (CgG), the superior temporal gyrus (STG), the posterior cingulate cortex/precuneus (PCC/PCu) and the parahippocampal gyrus (PHG). It was analyzed using a time-varying multivariate autoregressive model to resolve time-frequency causal interactions. Specifically, the OFC acts as the main node for odor perception and evaluation of pleasant and unpleasant stimuli, whereas no specific path was observed for a neutral stimulus.Significance.The results introduce new evidences on the role of the OFC during hedonic perception and underpin its specificity during the odor valence assessment. Our findings suggest that, after the odor onset different, bidirectional interactions occur between the OFC and other brain regions associated with emotion recognition/categorization and memory according to the stimulus valence. This outcome unveils how the hedonic olfactory network dynamically changes based on odor valence.
Collapse
Affiliation(s)
- Alejandro Luis Callara
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Alberto Greco
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Johannes Frasnelli
- Département d'anatomie, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, G9A 5H7
- Local 3439 L.-P, Trois-Rivières, Québec, Canada
| | - Gianluca Rho
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Nicola Vanello
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Enzo Pasquale Scilingo
- Research Center 'E. Piaggio', School of Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.,Dipartimento di Ingegneria dell'Informazione, University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| |
Collapse
|
9
|
Miao X, Paez AG, Rajan S, Cao D, Liu D, Pantelyat AY, Rosenthal LI, van Zijl PCM, Bassett SS, Yousem DM, Kamath V, Hua J. Functional Activities Detected in the Olfactory Bulb and Associated Olfactory Regions in the Human Brain Using T2-Prepared BOLD Functional MRI at 7T. Front Neurosci 2021; 15:723441. [PMID: 34588949 PMCID: PMC8476065 DOI: 10.3389/fnins.2021.723441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Olfaction is a fundamental sense that plays a vital role in daily life in humans, and can be altered in neuropsychiatric and neurodegenerative diseases. Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) using conventional echo-planar-imaging (EPI) based sequences can be challenging in brain regions important for olfactory processing, such as the olfactory bulb (OB) and orbitofrontal cortex, mainly due to the signal dropout and distortion artifacts caused by large susceptibility effects from the sinonasal cavity and temporal bone. To date, few studies have demonstrated successful fMRI in the OB in humans. T2-prepared (T2prep) BOLD fMRI is an alternative approach developed especially for performing fMRI in regions affected by large susceptibility artifacts. The purpose of this technical study is to evaluate T2prep BOLD fMRI for olfactory functional experiments in humans. Olfactory fMRI scans were performed on 7T in 14 healthy participants. T2prep BOLD showed greater sensitivity than GRE EPI BOLD in the OB, orbitofrontal cortex and the temporal pole. Functional activation was detected using T2prep BOLD in the OB and associated olfactory regions. Habituation effects and a bi-phasic pattern of fMRI signal changes during olfactory stimulation were observed in all regions. Both positively and negatively activated regions were observed during olfactory stimulation. These signal characteristics are generally consistent with literature and showed a good intra-subject reproducibility comparable to previous human BOLD fMRI studies. In conclusion, the methodology demonstrated in this study holds promise for future olfactory fMRI studies in the OB and other brain regions that suffer from large susceptibility artifacts.
Collapse
Affiliation(s)
- Xinyuan Miao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Adrian G Paez
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Suraj Rajan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Di Cao
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Dapeng Liu
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Alex Y Pantelyat
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Liana I Rosenthal
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Peter C M van Zijl
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Susan S Bassett
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - David M Yousem
- Department of Radiology, Johns Hopkins Hospital, Baltimore, MD, United States
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jun Hua
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
10
|
Functional Magnetic Resonance Imaging in the Olfactory Perception of the Same Stimuli. Life (Basel) 2020; 11:life11010011. [PMID: 33375540 PMCID: PMC7823816 DOI: 10.3390/life11010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Data in the literature report that a number of studies have attempted to identify the exact location of the cortical olfaction representation, searching for evidence suggesting that sniffing odors can initiate a primary activation of the piriform cortex and the insula. Nowadays, due to the SARS-CoV-2 (COVID-19) outbreak, the functional study of the olfactory system could offer a better understanding of the physiopathology of olfactory perception, elucidating better the possible site(s) of damage induced by the COVID-19 infection. The aim of this paper was to evaluate brain maps generated from functional Magnetic Resonance Imaging (fMRI) data, collected from healthy individuals in response to the same olfactory stimulus. METHODS A total of 45 healthy volunteers, without history and/or no clinical signs of sinonasal disease and without history and/or presence of olfactory dysfunction underwent fMRI assessment. Subjects were presented with the same odorous stimuli at specific intervals. fMRI generated brain maps were used in the identification of different cortical areas, involved in the stimuli perception. RESULTS The fMRI brain maps showed that odorous stimuli activate primarily the left anterior insula (in 35/45 cases or 77.8%). Other activated areas include: the low temporal gyri, the middle and superior temporal gyri, the frontal and piriform cortex, the anterior cingulate gyrus, the parahippocampal gyrus, the temporopolar area, the para-insular area, the subcentral area, the supramarginal gyrus, the occipital cortex and the cerebellum. CONCLUSIONS fMRI resulted as a safe and reliable means to study the perception of olfaction in the cortex. The data of this study suggest that the anterior insula is the main stimulated area when olfactory stimuli are present. This area is always activated, despite the hand and nostril dominance.
Collapse
|
11
|
Individual variability of olfactory fMRI in normosmia and olfactory dysfunction. Eur Arch Otorhinolaryngol 2020; 278:379-387. [PMID: 32803385 PMCID: PMC7826297 DOI: 10.1007/s00405-020-06233-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022]
Abstract
Purpose The diagnosis of olfactory dysfunction is mainly based on psychophysical measurements. The aim of the current study was to investigate how well the olfactory functional magnetic resonance imaging (fMRI) can effectively distinguish between normosmic people and subjects with olfactory dysfunction. Methods Thirty-eight participants were recruited for the study. Group 1 consisted of 22 subjects with olfactory dysfunction (mean age = 44.3 years, SD = 18.6), and Group two consisted of 16 participants with normal olfactory function (mean age = 49.6 years, SD = 11.6). Olfactory functions were assessed in great detail for all participants, and brain activation in response to odorous stimulation was assessed using fMRI. Results The between-group comparison showed stronger odor induced brain activation of the primary olfactory area and the insular cortex among the normosmic group as compared to the dysosmic group. As indicated by the individual analysis, positive responses in the primary olfactory cortex were significantly higher in normosmic people (94%) than in subjects with olfactory dysfunction (41%). However, there was no association between individual fMRI parameters (including the percentage of BOLD signal change, activated cluster size and peak z value), and psychophysical olfactory test scores. Receiver operating characteristic analysis suggested the subjects could not be differentiated from normosmics based on their BOLD signal from the primary olfactory area, orbitofrontal cortex, or the insular cortex. Conclusion There are large inter-individual variabilities for odor-induced brain activation among normosmic subjects and subjects with olfactory dysfunction, due to this variation, at present it appears problematic to diagnose olfactory dysfunction on an individual level using fMRI.
Collapse
|
12
|
Georgiopoulos C, Witt ST, Haller S, Dizdar N, Zachrisson H, Engström M, Larsson EM. A study of neural activity and functional connectivity within the olfactory brain network in Parkinson's disease. NEUROIMAGE-CLINICAL 2019; 23:101946. [PMID: 31491835 PMCID: PMC6661283 DOI: 10.1016/j.nicl.2019.101946] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/23/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Olfactory dysfunction is an early manifestation of Parkinson's disease (PD). The present study aimed to illustrate potential differences between PD patients and healthy controls in terms of neural activity and functional connectivity within the olfactory brain network. Twenty PD patients and twenty healthy controls were examined with olfactory fMRI and resting-state fMRI. Data analysis of olfactory fMRI included data-driven tensorial independent component (ICA) and task-driven general linear model (GLM) analyses. Data analysis of resting-state fMRI included probabilistic ICA based on temporal concatenation and functional connectivity analysis within the olfactory network. ICA of olfactory fMRI identified an olfactory network consisting of the posterior piriform cortex, insula, right orbitofrontal cortex and thalamus. Recruitment of this network was less significant for PD patients. GLM analysis revealed significantly lower activity in the insula bilaterally and the right orbitofrontal cortex in PD compared to healthy controls but no significant differences in the olfactory cortex itself. Analysis of resting-state fMRI did not reveal any differences in the functional connectivity within the olfactory, default mode, salience or central executive networks between the two groups. In conclusion, olfactory dysfunction in PD is associated with less significant recruitment of the olfactory brain network. ICA could demonstrate differences in both the olfactory cortex and its main projections, compared to GLM that revealed differences only on the latter. Resting-state fMRI did not reveal any significant differences in functional connectivity within the olfactory, default mode, salience and central executive networks in this cohort. Less significant recruitment of the olfactory brain network was found in Parkinson's disease. Independent component analysis reveals differences in both olfactory cortex and its projections. Differences in functional connectivity within the olfactory network were not significant.
Collapse
Affiliation(s)
- Charalampos Georgiopoulos
- Department of Radiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| | - Suzanne T Witt
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Sven Haller
- Centre Imagerie Rive Droite SA, Geneva, Switzerland; Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Nil Dizdar
- Department of Neurology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Helene Zachrisson
- Department of Clinical Physiology and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Engström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Elna-Marie Larsson
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Schäfer L, Hummel T, Croy I. The Design Matters: How to Detect Neural Correlates of Baby Body Odors. Front Neurol 2019; 9:1182. [PMID: 30700979 PMCID: PMC6343458 DOI: 10.3389/fneur.2018.01182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/21/2018] [Indexed: 11/25/2022] Open
Abstract
Functional magnetic resonance imaging of body odors is challenging due to methodological obstacles of odor presentation in the scanner and low intensity of body odors. Hence, few imaging studies investigated neural responses to body odors. Those differ in design characteristics and have shown varying results. Evidence on central processing of baby body odors has been scarce but might be important in order to detect neural correlates of bonding in mothers. A suitable paradigm for investigating perception of baby body odors has still to be established. We compared neural responses to baby body odors in a new to a conventional block design in a sample of ten normosmic mothers. For the new short design, 6 s of continuous odor presentation were followed by 19 s baseline and 13 repetitions were performed. For the conventional long design, 15 s of pulsed odor presentation were followed by 30 s of baseline and eight repetitions were performed. Neural responses were observed in brain structures related to basal and higher-order olfactory processing, such as insula, orbitofrontal cortex, and amygdala. Neural responses following the short design were significantly higher in comparison to the long design. This effect was based on higher number of repetitions but affected olfactory areas differently. The BOLD signal in the primary olfactory structures was enhanced by short and continuous stimulation, secondary structures did profit from longer stimulations with many repetitions. The short design is recommended as a suitable paradigm in order to detect neuronal correlates of baby body odors.
Collapse
Affiliation(s)
- Laura Schäfer
- Department of Psychotherapy and Psychosomatic Medicine, Technische Universität Dresden, Dresden, Germany
| | - Thomas Hummel
- Smell and Taste Clinic, Department of Otorhinolaryngology, Technische Universität Dresden, Dresden, Germany
| | - Ilona Croy
- Department of Psychotherapy and Psychosomatic Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|