NMR Assignments of Six Asymmetrical N-Nitrosamine Isomers Determined in an Active Pharmaceutical Ingredient by DFT Calculations.
Molecules 2022;
27:molecules27154749. [PMID:
35897926 PMCID:
PMC9331877 DOI:
10.3390/molecules27154749]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/03/2022] Open
Abstract
N-nitrosamines, which are well-known pro-mutagens, are found in drugs, pickled food and tobacco. Therefore, controlling their concentrations is very important. When an HPLC, GC or NMR analysis is conducted to investigate certain asymmetrical N-nitrosamines, two sets of signals attributed to the asymmetric N-nitrosamine isomers are usually observed. However, few reports on the NMR assignment of asymmetrical N-nitrosamine isomers have been published. In this study, we investigated the NMR assignments of the Z/E isomers of six asymmetrical N-nitrosamines by means of density functional theory (DFT) calculations. The configuration of the major isomer of asymmetrical N-nitrosamine 3 was the Z-configuration. The configuration of the major isomers of asymmetrical N-nitrosamines 4–7 was the E-configuration. Then, we determined the Z/E ratios of these asymmetrical N-nitrosamines by means of variable temperature (VT) and room temperature (RT) 1H-NMR experiments. The ratios of the Z/E isomer 3 quickly increased beyond 100% in the VT 1H NMR experiments. The ratios of Z/E isomers 4–7 were increased in the range of 10–60% in the VT 1H NMR experiments. The results of this study indicate that identifying the isomers of asymmetrical N-nitrosamine is necessary to control the quality of N-nitrosamines for active pharmaceutical ingredients (APIs).
Collapse