1
|
Caplette JN, Wilson SC, Mestrot A. Antimony release and volatilization from organic-rich and iron-rich submerged soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134230. [PMID: 38608583 DOI: 10.1016/j.jhazmat.2024.134230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Antimony (Sb) is an poorly understood, increasingly common pollutant, especially in soils susceptible to waterlogging. We investigated the impact of waterlogging on Sb release, methylation, and volatilization from an organic-rich wetland soil and an iron (Fe)-rich floodplain soil in a 27-day microcosm experiment. The release of Sb into the porewaters of the organic-rich soil was environmentally relevant and immediate with waterlogging (3.2 to 3.5 mg L-1), and likely associated with a complex interplay of sulfide precipitation, sorption with organic matter and manganese (Mn) (oxyhydr)oxides in the soil. The release of Sb from the Fe-rich soil was likely associated with Fe-(oxyhydr)oxide reduction and immobilized due to co-precipitation with Fe-sulfides or as Sb-sulfides. Volatile Sb was produced from the soils after waterlogging. The organic-rich soil produced more volatile Sb (409 to 835 ng kgsoil-1), but the Fe-rich soil volatilized Sb more efficiently. The negligible association of Sb volatilization with soil parameters indicates a more complex underlying, potentially microbial, mechanism and that antimony volatilization could be ubiquitous and not dependent on specific soil properties. Future works should investigate the microbial and physiochemical drivers of Sb volatilization in soils as it may be an environmentally relevant part of the biogeochemical cycle.
Collapse
Affiliation(s)
- J N Caplette
- Institute of Geography, University of Bern, Switzerland; Minnow Aquatic Environmental Services, Toronto, Canada.
| | - S C Wilson
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - A Mestrot
- Institute of Geography, University of Bern, Switzerland.
| |
Collapse
|
2
|
Zhao J, Luo Q, Ding L, Fu R, Zhang F, Cui C. Valency distributions and geochemical fractions of arsenic and antimony in non-ferrous smelting soils with varying particle sizes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113312. [PMID: 35217308 DOI: 10.1016/j.ecoenv.2022.113312] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Arsenic and antimony are common toxic metalloids found in associated minerals. These metalloids generally cause high-concentration pollution in non-ferrous metal smelting soils; however, few studies have investigated the pollution characteristics of these two metalloids at non-ferrous smelting sites using varying soil particle sizes. In this study, the valency distributions and geochemical fractions were investigated with varying soil particle sizes (≤ 0.05, 0.05-0.25, 0.25-1, and 1-2 mm). Soils were mainly concentrated in ≤ 0.05 and 0.05-0.25 mm with mass percentages of 32.97% and 29.02%, respectively. The highest total As and Sb concentrations in ≤ 0.05 mm were found to be 20,350 and 3655 mg/kg, respectively. In addition, As(Ⅲ), As(Ⅴ), Sb(Ⅲ), and Sb(Ⅴ) concentrations in this soil particle size were found to be 224, 19,813, 1036, and 24 mg/kg, respectively. The geochemical fractions of As and Sb in varying soil particle sizes were mainly residual, accounting for 50% and 90% in the ≤ 0.05 mm. Soil may bind ≤ 0.25 mm due to the disparity found in the geochemical compositions and valency distributions of arsenic and antimony. X-ray diffraction and scanning electron microscopy/energy dispersive system analysis confirmed that arsenolite accumulated in particle sizes of ≤ 0.05 and 0.05-0.25 mm. The results of this study may provide a scientific reference for risk assessment and restoration strategies for non-ferrous metal smelting soils.
Collapse
Affiliation(s)
- Jianfeng Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qishi Luo
- Shanghai Shenglong Environmental Co., Ltd, Shanghai 200235, China
| | - Lei Ding
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ruifeng Fu
- Analytical Application Center, Shimadzu (China), Co., LTD, Shanghai 200233, China
| | - Feng Zhang
- Shanghai Greenment Environment Technology Co., Ltd, Shanghai 200001, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Li J, Huang B, Long J. Effects of different antimony contamination levels on paddy soil bacterial diversity and community structure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112339. [PMID: 34015637 DOI: 10.1016/j.ecoenv.2021.112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
To clarify the response mechanism of paddy soil microorganisms to contamination caused by antimony (Sb) alone, we added K(SbO)C4H4O6.1/2 H2O with different contents to uncontaminated paddy soil and carried out related studies. 16S rRNA was sequenced in V3-V4 regions of paddy soil bacteria with different Sb contamination levels. Then, α diversity and species enrichment and separation of paddy soil microorganisms were analyzed. The biochemical behavior and the influences of Sb fractions on bacterial communities and ecological function were explored in paddy soil with different contamination levels. The results showed that the contents of Sbtot and Sb(V) increased with the increase of contamination level, and the difference was significant among the groups. For Sbexe and Sbsrp there were slight differences between S100 and S200 groups, but significant differences among other groups. The diversity index increased with the increase of Sb concentration, which reached the maximum value in S200 group and the minimum value in control group (SC). The relative importance analysis demonstrated that Sb(III) and Sbsrp were the main Sb fractions affecting the diversity index of bacterial community. In addition, the results of principal coordinate analysis (PCoA) showed that there were significant differences between the bacterial communities in SC and in the soil with different Sb contamination levels. Based on diversity analysis, it was found that Proteobacteria, Actinobacteria and Bacteroidetes were the main dominant phyla in paddy soil with different Sb concentrations, and their enrichment and separation were greater than those of other dominant phyla. Though the Static Bayesian network inference, it was shown that Sbtot affected Sphingomonadaceae, and Sbsrp affected Burkholderiaceae, Xanthomonadaceae and Acidobacteriale to further affect bacterial communities, while Sb(V) mainly affected Flavobacteriaceae, Rhodopirillaceae and Acidobacteriale. The above results provide a scientific basis for the biochemical restoration potential of paddy soils with different Sb contamination levels.
Collapse
Affiliation(s)
- Juan Li
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, China.
| | - Bocong Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Jian Long
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
4
|
Huang B, Long J, Li J, Ai Y. Effects of antimony contamination on bioaccumulation and gut bacterial community of earthworm Eisenia fetida. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126110. [PMID: 34492908 DOI: 10.1016/j.jhazmat.2021.126110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Antimony (Sb) contamination has brought great environmental problems to the surrounding soils. However, few studies focused on the response of bacterial communities in earthworm gut to Sb. Eisenia fetida was cultured in four soils with Sb contents (5,25,50,100 mg•kg-1) to investigate the distribution of Sb species in earthworm gut and the response mechanism of bacterial communities to Sb contamination. The results showed that Sb accumulated in the gut and tissues of earthworms, and the mortality of earthworms showed a dose-response relationship with the increase of Sb content. Sb(III) and Sbexe were the major species in gut, whereas Sb(V) and Sbsrp were predominant in surrounding soil. There were significant differences in bacterial diversity between earthworm gut and soil, but there was no significant between the two with different Sb content. The network constructed by gut bacterial community of earthworm was less stable and more sensitive to Sb species than that in soil. Sb(III) had the greatest influence on the gut bacterial community of earthworm, which not only directly affected the community through Xanthomonadaceae, Rhodomicrobiaceae and Anaerolineaceae, but also indirectly influenced through Chthoniobacteraceae. This study fills a research gap on the effect of Sb contamination on the gut bacterial community of earthworm.
Collapse
Affiliation(s)
- Bocong Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China
| | - Jian Long
- Guizhou Provincial Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, PR China
| | - Juan Li
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550001, PR China
| | - Yingwei Ai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan 610065, PR China.
| |
Collapse
|
5
|
Zhang Z, Lu Y, Li H, Zhang N, Cao J, Qiu B, Yang Z. Simultaneous Separation of Sb(III) and Sb(V) by High Performance Liquid Chromatography (HPLC) – Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) with Application to Plants, Soils, and Sediments. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1788049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhaoxue Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| | - Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| | - Nan Zhang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| | - Junfei Cao
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| | - Bo Qiu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, China
| |
Collapse
|
6
|
Sun X, Li B, Han F, Xiao E, Xiao T, Sun W. Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients. MICROBIAL ECOLOGY 2019; 78:589-602. [PMID: 30725170 DOI: 10.1007/s00248-019-01327-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Arsenic (As) and antimony (Sb) are both toxic metalloids that are of primary concern for human health. Mining activity has introduced elevated levels of arsenic and antimony into the rivers and has increased the risks of drinking water contamination in China. Due to their mobility, the majority of the metalloids originating from mining activities are deposited in the river sediments. Thus, depending on various geochemical conditions, sediment could either be a sink or source for As and Sb in the water column. Microbes are key mediators for biogeochemical transformation and can both mobilize or precipitate As and Sb. To further understand the microbial community responses to As and Sb contamination, sediment samples with different contamination levels were collected from three rivers. The result of the study suggested that the major portions of As and Sb were in strong association with the sediment matrix and considered nonbioavailable. These fractions, however, were also suggested to have profound influences on the microbial community composition. As and Sb contamination caused strong reductions in microbial diversity in the heavily contaminated river sediments. Microorganisms were more sensitive to As comparing to Sb, as revealed by the co-occurrence network and random forest predictions. Operational taxonomic units (OTUs) that were potentially involved in As and Sb metabolism, such as Anaerolinea, Sphingomonas, and Opitutus, were enriched in the heavily contaminated samples. In contrast, many keystone taxa, including members of the Hyphomicrobiaceae and Bradyrhizobiaceae families, were inhibited by metalloid contamination, which could further impair crucial environmental services provided by these members.
Collapse
Affiliation(s)
- Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China.
| |
Collapse
|
7
|
Sun W, Sun X, Li B, Häggblom MM, Han F, Xiao E, Zhang M, Wang Q, Li F. Bacterial response to antimony and arsenic contamination in rice paddies during different flooding conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 675:273-285. [PMID: 31030134 DOI: 10.1016/j.scitotenv.2019.04.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Rice is more vulnerable to arsenic (As) and antimony (Sb) contamination than other cereals due to the special cultivation methods, during which irrigation conditions are adjusted depending upon the growth stages. The changes in irrigation conditions may alter the oxidation states of Sb and As, which influences their mobility and bioavailability and hence uptake by rice. In this study, bacterial responses to As and Sb contamination in rice fields were investigated during two different stages of rice growth: the vegetative stage (flooded conditions), and the ripening stage (drained conditions). The substantial changes in the irrigation conditions caused a variation in geochemical parameters including the As- and Sb-extractable fractions. As and Sb were more mobile and bioaccessible during the flooded than under drained conditions. The microbial communities varied during two irrigation conditions, suggesting that the geochemical conditions may have different effects on the innate paddy microbiota. Therefore, various statistical tools including co-occurrence network and random forest (RF) were performed to reveal the environment-microbe interactions in two different irrigation conditions. One of the notable findings is that Sb- and As-related parameters exerted more influences during the flooded than under drained conditions. Furthermore, a detailed RF analysis indicated that the individual bacterial taxa may also respond differently to contaminant fractions during the two irrigation conditions. Notably, RF indicated that individual taxa such as Clostridiaceae and Geobacter may be responsible for biotransformation of As and Sb (e.g., As and Sb reduction). The results provided knowledge for As and Sb transformation during contrasting irrigation conditions and the potential mitigation strategy for contaminant removal.
Collapse
Affiliation(s)
- Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China.
| | - Xiaoxu Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Feng Han
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Miaomiao Zhang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Qi Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
8
|
Yousefi SR, Zolfonoun E. On-line determination of ultra-trace of antimony species via hydride generation technique using ultrasonic nebulization system coupled to ICP-OES. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-018-01573-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Gao P, Yang P, Zhou R, Ma S, Zhang W, Hao Z, Tang S, Li X, Zeng X. Determination of antimony in soil using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence. APPLIED OPTICS 2018; 57:8942-8946. [PMID: 30461880 DOI: 10.1364/ao.57.008942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Antimony (Sb) in soil is attracting attention in the research community due to its potential toxicity and carcinogenicity. Traditional methods of detecting Sb lack the ability of rapid and nondigestion analysis, which hinders their development and application. Moreover, it is still a challenge for laser-induced breakdown spectroscopy (LIBS) to detect Sb in soil due to the weak intensities and intense interference of spectral lines. Here, LIBS, assisted with laser-induced fluorescence (LIBS-LIF), was used to selectively enhance the Sb's characteristic spectral lines under optimal parameters. The quantitative analysis performance was notably improved with a determination coefficient (R2) of 0.991, the limit of detection of 0.221 μg/g, and root mean square error of cross validation of 3.592 μg/g. These results demonstrate that LIBS-LIF has the potential to realize the rapid and accurate analysis of Sb in soil.
Collapse
|
10
|
Release and Biomethylation of Antimony in Shooting Range Soils upon Flooding. SOIL SYSTEMS 2018. [DOI: 10.3390/soilsystems2020034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Sun W, Xiao E, Xiao T, Krumins V, Wang Q, Häggblom M, Dong Y, Tang S, Hu M, Li B, Xia B, Liu W. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9165-9175. [PMID: 28700218 DOI: 10.1021/acs.est.7b00294] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mining of sulfide ore deposits containing metalloids, such as antimony and arsenic, has introduced serious soil contamination around the world, posing severe threats to food safety and human health. Hence, it is important to understand the behavior and composition of the microbial communities that control the mobilization or sequestration of these metal(loid)s. Here, we selected two sites in Southwest China with different levels of Sb and As contamination to study interactions among various Sb and As fractions and the soil microbiota, with a focus on the microbial response to metalloid contamination. Comprehensive geochemical analyses and 16S rRNA gene amplicon sequencing demonstrated distinct soil taxonomic inventories depending on Sb and As contamination levels. Stochastic gradient boosting indicated that citric acid extractable Sb(V) and As(V) contributed 5% and 15%, respectively, to influencing the community diversity. Random forest predicted that low concentrations of Sb(V) and As(V) could enhance the community diversity but generally, the Sb and As contamination impairs microbial diversity. Co-occurrence network analysis indicated a strong correlation between the indigenous microbial communities and various Sb and As fractions. A number of taxa were identified as core genera due to their elevated abundances and positive correlation with contaminant fractions (total Sb and As concentrations, bioavailable Sb and As extractable fractions, and Sb and As redox species). Shotgun metagenomics indicated that Sb and As biogeochemical redox reactions may exist in contaminated soils. All these observations suggest the potential for bioremediation of Sb- and As-contaminated soils.
Collapse
Affiliation(s)
- Weimin Sun
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, China
| | - Enzong Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University , Guangzhou 510006, China
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University , Guangzhou 510006, China
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences , Guiyang 550081, China
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Qi Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, China
| | - Max Häggblom
- Department of Biochemistry and Microbiology, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Yiran Dong
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention , Beijing 100021, China
| | - Min Hu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, China
| | - Baoqin Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, China
| | - Bingqing Xia
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental Science & Technology , Guangzhou 510650, China
| | - Wei Liu
- Water Resources Protection Bureau of Pearl River Water Resources Commission, Guangzhou 510611, China
| |
Collapse
|
12
|
Lin YA, Jiang SJ, Sahayam AC. Determination of antimony compounds in waters and juices using ion chromatography-inductively coupled plasma mass spectrometry. Food Chem 2017; 230:76-81. [PMID: 28407974 DOI: 10.1016/j.foodchem.2017.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/25/2017] [Accepted: 03/03/2017] [Indexed: 11/30/2022]
Abstract
A method was developed by coupling ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) for the speciation of antimony. In this study, antimony species such as antimonite [Sb(III)], antimonate [Sb(V)] and trimethyl antimony(V) (TMeSb) were separated in less than 8min using anion exchange chromatography with a Hamilton PRP-X100 column as the stationary phase. Mobile phase A was 20mmolL-1 ethylenediaminetetraacetic acid (EDTA), 2mmolL-1 potassium hydrogen phthalate (KHP) in 1% v/v methanol (pH 5.5) and 20mmolL-1 EDTA, 2mmolL-1 KHP, 40mmolL-1 (NH4)2CO3 in 1% v/v methanol (pH 9.0) formed mobile phase B. Detection limits and relative standard deviations (RSD) were 0.012-0.032ngmL-1 and 2.2-2.8% respectively. This method was applied to bottled waters and fruit juices purchased in Kaohsiung, Taiwan. In water samples, Sb(V) was the major species where as in juices organometallic Sb species were also present.
Collapse
Affiliation(s)
- Ya-An Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shiuh-Jen Jiang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - A C Sahayam
- National Centre for Compositional Characterisation of Materials (NCCCM), Hyderabad, India
| |
Collapse
|
13
|
Xiao E, Krumins V, Xiao T, Dong Y, Tang S, Ning Z, Huang Z, Sun W. Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:244-255. [PMID: 27979681 DOI: 10.1016/j.envpol.2016.11.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/24/2016] [Accepted: 11/26/2016] [Indexed: 06/06/2023]
Abstract
Investigation of microbial communities of soils contaminated by antimony (Sb) and arsenic (As) is necessary to obtain knowledge for their bioremediation. However, little is known about the depth profiles of microbial community composition and structure in Sb and As contaminated soils. Our previous studies have suggested that historical factors (i.e., soil and sediment) play important roles in governing microbial community structure and composition. Here, we selected two different types of soil (flooded paddy soil versus dry corn field soil) with co-contamination of Sb and As to study interactions between these metalloids, geochemical parameters and the soil microbiota as well as microbial metabolism in response to Sb and As contamination. Comprehensive geochemical analyses and 16S rRNA amplicon sequencing were used to shed light on the interactions of the microbial communities with their environments. A wide diversity of taxonomical groups was present in both soil cores, and many were significantly correlated with geochemical parameters. Canonical correspondence analysis (CCA) and co-occurrence networks further elucidated the impact of geochemical parameters (including Sb and As contamination fractions and sulfate, TOC, Eh, and pH) on vertical distribution of soil microbial communities. Metagenomes predicted from the 16S data using PICRUSt included arsenic metabolism genes such as arsenate reductase (ArsC), arsenite oxidase small subunit (AoxA and AoxB), and arsenite transporter (ArsA and ACR3). In addition, predicted abundances of arsenate reductase (ArsC) and arsenite oxidase (AoxA and AoxB) genes were significantly correlated with Sb contamination fractions, These results suggest potential As biogeochemical cycling in both soil cores and potentially dynamic Sb biogeochemical cycling as well.
Collapse
Affiliation(s)
- Enzong Xiao
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Valdis Krumins
- Department of Environmental Sciences, Rutgers University, New Brunswick, 08901, USA
| | - Tangfu Xiao
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Innovation Center and Key Laboratory of Waters Safety & Protection in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yiran Dong
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, 61801, USA
| | - Song Tang
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, S7N 5B3, Canada
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhengyu Huang
- State Key Laboratory of Environmental Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weimin Sun
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, PR China.
| |
Collapse
|
14
|
AlSioufi L, Sánchez de la Campa AM, Sánchez-Rodas D. Microwave extraction as an alternative to ultrasound probe for antimony speciation in airborne particulate matter. Microchem J 2016. [DOI: 10.1016/j.microc.2015.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
dos Santos VCG, Grassi MT, Abate G. Speciation of Antimony(III) and Antimony(V) in Bottled Water by Hydride Generation-Inductively Coupled Plasma Optical Emission Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1052971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Yang H, He M. Speciation of Antimony in Soils and Sediments by Liquid Chromatography–Hydride Generation–Atomic Fluorescence Spectrometry. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1004077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|