1
|
Zhang W, Wang Y, Yu H, Jin Z, Yuan Y, Liu L, Zhou J. Exploring the mechanism of Erteng-Sanjie capsule in treating gastric and colorectal cancers via network pharmacology and in-vivo validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:117945. [PMID: 38428659 DOI: 10.1016/j.jep.2024.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Erteng-Sanjie capsule (ETSJC) has therapeutic effects against gastric cancer (GC) and colorectal cancer (CRC). However, its underlying pharmacological mechanism remains unclear. AIM OF THE STUDY To explore the pharmacological mechanism of ETSJC against GC and CRC via network pharmacology and in-vivo validation. MATERIALS AND METHODS Data on the ingredients of ETSJC were obtained from the TCMSP and HERB databases. Further, details on the related targets of the active ingredients were collected from the HERB and SwissTargetPrediction databases. The targets in GC and CRC, which were screened from the OMIM, GeneCards, and TTD databases, were uploaded to STRING for a separate protein-protein interaction network analysis. The common targets shared by ETSJC, GC, and CRC were then screened. Cytoscape and STRING were used to construct the networks of herbs-compounds-targets and PPI. Metascape was utilized to analyze the enrichment of the GO and KEGG pathways. Molecular docking was used to validate the potential binding mode between the core ingredients and targets. Finally, the predicted results were verified with animal experiment. RESULTS Eight core ingredients (resveratrol, quercetin, luteolin, baicalein, delphinidin, kaempferol, pinocembrin, and naringenin) and six core targets (TP53, SRC, PIK3R1, AKT1, MAPK3, and STAT3) were filtered via network analysis. The molecular mechanism mainly involved the positive regulation of various processes such as cell migration, protein phosphorylation, and the PI3K-Akt signaling pathway. Molecular docking revealed that the core ingredients could be significantly combined with all core targets. The animal experiment revealed that ETSJC could suppress proliferation and promote apoptosis of both GC and CRC tumor cells by regulating the PI3K/Akt signaling pathway. CONCLUSIONS Multiple targets (TP53, SRC, AKT1, and STAT3) were important in GC and CRC. ETSJC could act on these targets and engage in different pathways against GC and CRC. Simultaneously, inhibiting the PI3K/Akt signaling pathway was a promising therapeutic mechanism for treating GC and CRC.
Collapse
Affiliation(s)
- Wencui Zhang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Ying Wang
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Han Yu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Zengcai Jin
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Yuyao Yuan
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Likun Liu
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| | - Jing Zhou
- Department of Oncology, Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China.
| |
Collapse
|
2
|
Yao Q, Xu J, Tang N, Chen W, Gu Q, Li H. Screening, cloning, immobilization and application prospects of a novel β-glucosidase from the soil metagenome. ENVIRONMENTAL RESEARCH 2024; 244:117676. [PMID: 37996002 DOI: 10.1016/j.envres.2023.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
The soil environment for straw return is a rich and valuable library containing many microorganisms and proteins. In this study, we aimed to screen a high-quality β-glucosidase (BGL) from the soil metagenomic library and to overcome the limitation of the low extraction rate of resveratrol in Polygonum cuspidatum. This includes the construction of a soil metagenomic library, screening of BGL, bioinformatics analysis, cloning, expression, immobilization, enzymatic property analysis, and application for the transformation of polydatin. The results showed that the soil metagenomic library of straw return was successfully constructed, and a novel BGL was screened. The identified 1356 bp long BGL belonged to the glycoside hydrolase 1 (GH1) family and was named Bgl1356. After successful cloning and expression of Bgl1356, it was immobilized using chitosan. The optimum temperature of immobilized Bgl1356 was 50 °C, and the pH was 5. It exhibited good tolerance for various metal ions (CO2+, Ni2+, Cu2+, Mn2+, Na2+, Ca2+, and Ag+) and organic solvents (DMSO, Triton-X-10, and ethanol). Enzymatic kinetics assays showed that Bgl1356 had good affinity for the substrate, and the specific enzyme activity was 234.03 U/mg. The conversion rate of polydatin by immobilized Bgl1356 was 95.70 ± 1.08%, facilitating the production of high amounts of resveratrol. Thus, this paper reports a novel temperature-, organic solvent-, and metal ion-tolerant BGL that has good application prospects in the pharmaceutical industry.
Collapse
Affiliation(s)
- Qian Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Jin Xu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| | - Nan Tang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Weiji Chen
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Quliang Gu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - He Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Chen Y, Gao X, Li B, Tian J. Konjac glucomannan-dihydromyricetin complex improves viscosity and hydration capacity of konjac glucomannan as well as the thermal stability of dihydromyricetin. Int J Biol Macromol 2023; 242:124666. [PMID: 37121418 DOI: 10.1016/j.ijbiomac.2023.124666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
The nutritional benefits of soluble dietary fiber were mainly attributed to its viscosity and hydration capacity. This study was aimed to investigate the effects of the interaction between konjac glucomannan (KGM) and dihydromyricetin (DMY) on the viscosity and hydration capacity of KGM and the thermal stability of DMY. In contrary to most reports, the addition of DMY to KGM resulted in an increase of viscosity and hydration capacity determined via rheology and nuclear magnetic resonance spectroscopy characterization. Meanwhile the prototype retention of DMY in the presence of heating condition at 60 °C and 100 °C were improved. The radical scavenging capacity of DMY under heating condition was improved at 100 °C via the quantification of ABTS+ and DPPH. KGM-DMY complex was a non-covalent compound connected by hydrogen bonds which was characterized with particle size analyses, zeta potential analyses, transmission electron microscopy, infrared spectroscopy, X-ray diffraction, and isothermal titration calorimetry. This study was beneficial to the development of polyphenol-enriched nutrition based on KGM, especially in the aspects of satiety, appetite regulation and glucose regulation.
Collapse
Affiliation(s)
- Yan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China
| | - Xuefeng Gao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China; Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430070, PR China
| | - Jing Tian
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, PR China; Functional Food Engineering & Technology Research Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Optimization of the ultrasonic-assisted extraction of trans-resveratrol and its glucoside from grapes followed by UPLC-MS/MS using the response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01236-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Hu J, Zhou R, Lin H, Wei Q, Hu F, Yang X. Novel plant flavonoid electrochemical sensor based on in-situ and controllable double-layered membranes modified electrode. PLoS One 2020; 15:e0237583. [PMID: 32804936 PMCID: PMC7431104 DOI: 10.1371/journal.pone.0237583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/29/2020] [Indexed: 11/25/2022] Open
Abstract
Identification and quantification of plant flavonoids are critical to pharmacokinetic study and pharmaceutical quality control due to their distinct pharmacological functions. Here we report on a novel plant flavonoid electrochemical sensor for sensitive and selective detection of dihydromyricetin (DMY) based on double- layered membranes consisting of gold nanoparticles (Au) anchored on reduced graphene oxide (rGO) and molecularly imprinted polymers (MIPs) modified glassy carbon electrode (GCE). Both rGO-Au and MIPs membranes were directly formed on GCE via in-situ electrochemical reduction and polymerization processes step by step. The compositions, morphologies, and electrochemical properties of membranes were investigated with X-ray powder diffractometry (XRD), Fourier transform infrared spectrum (FTIR), Field emission scanning electron microscopy (FESEM) combined with various electrochemical methods. The fabricated electrochemical sensor labeled as GCE│rGO-Au/MIPs exhibited excellent performance in determining of DMY under optimal experimental conditions. A wide linear detection range (LDR) ranges from 2.0×10−8 to 1.0×10−4 M together with a low limit of detection (LOD) of 1.2×10−8 M (S/N = 3) were achieved. Moreover, the electrochemical sensor was employed to determine DMY in real samples with satisfactory results.
Collapse
Affiliation(s)
- Jing Hu
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
| | - Renjie Zhou
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
| | - Hongwei Lin
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
| | - Qiuyuan Wei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, PR China
| | - Feilong Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning, PR China
- * E-mail: (FH); (XY)
| | - Xin Yang
- Huaihua Key Laboratory for Preparation of Ceramics Materials and Devices, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua, PR China
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Key Laboratory of Hunan Higher Education for Western Hunan Medicinal Plant and Ethnobotany, Huaihua University, Huaihua, PR China
- * E-mail: (FH); (XY)
| |
Collapse
|
6
|
Fetni S, Bertella N, Ouahab A. LC-DAD/ESI-MS/MS characterization of phenolic constituents in Rosa canina L. and its protective effect in cells. Biomed Chromatogr 2020; 34:e4961. [PMID: 32737906 DOI: 10.1002/bmc.4961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 11/05/2022]
Abstract
In an aim to prove the efficiency of polyphenols of Rosa canina fruits in promoting human health. A methanolic extract of R. canina fruits was prepared by successive maceration with solvents of increasing polarity. The polyphenol composition was analyzed by HPLC-DAD-ESI-MS. The biological activity of this extract on SH-SY5Y cells and HepG2 cells was then studied. The antioxidant activity was tested by various in vitro tests such as DPPH-radical-scavenging activity, FRAP assay, hydroxyl radical scavenging assay and total antioxidant capacity. The subacute toxicity of R. canina was tested on female rats by repeated intraperitoneal administration of various doses. The phenolic profiles showed 25 antioxidants distributed into three classes of phenolic compounds: glycosylated and agglomerated flavonoids/isoflavonoids, tannins and phenanthrenes. Qualitative phytochemical analyses showed that this extract lacks alkaloids. The methanolic extract of R. canina fruits has a total antioxidant capacity of 82.69 ± 1.18 μg EAA/mg of methanol extract and the IC50 of the methods used is in the following increasing order: FRAP assay (61.88 μg/ml), then hydroxyl radical scavenging assay (67.45 μg/ml) and then DPPH radical-scavenging activity (129.81 μg/ml). The extract of R. canina did not cause any phenotypic signs of toxicity or mortality during and after treatment. The LD50 was >5,000 mg/kg, hence, R. canina was considered nontoxic. An in vivo study proved the protective effect of R. canina against cardiac and hepato-renal toxicities. These results drew the importance of a healthy diet, where diets rich in R. canina fruits can be used as a rich natural source of antioxidants and anticarcinogenic phenolic compounds.
Collapse
Affiliation(s)
- Samira Fetni
- Department of Pharmacy, Faculty of Medical Sciences, University of Batna 2, Algeria
| | - Nabil Bertella
- Department of the Ecology and Environment, Faculty of Science of Nature and Life, University of Batna 2, Algeria
| | - Ammar Ouahab
- Department of Pharmacy, Faculty of Medical Sciences, University of Batna 2, Algeria
| |
Collapse
|
7
|
Chen L, Yao M, Fan X, Lin X, Arroo R, Silva A, Sungthong B, Dragan S, Paoli P, Wang S, Teng H, Xiao J. Dihydromyricetin Attenuates Streptozotocin-induced Liver Injury and Inflammation in Rats via Regulation of NF-κB and AMPK Signaling Pathway. EFOOD 2020. [DOI: 10.2991/efood.k.200207.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
8
|
Liu D, Mao Y, Ding L, Zeng XA. Dihydromyricetin: A review on identification and quantification methods, biological activities, chemical stability, metabolism and approaches to enhance its bioavailability. Trends Food Sci Technol 2019; 91:586-597. [PMID: 32288229 PMCID: PMC7127391 DOI: 10.1016/j.tifs.2019.07.038] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/21/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dihydromyricetin (DMY) is an important plant flavonoid, which has received great attention due to its health-benefiting activities, including antioxidant, antimicrobial, anti-inflammatory, anticancer, antidiabetic and neuroprotective activities. DMY capsules have been sold in US as a nutraceutical supplement to prevent alcoholic hangovers. The major disadvantage associated with DMY is its chemical instability and poor bioavailability caused by the combined effects of its low solubility and poor membrane permeability. This limits its practical use in the food and pharmaceutical fields. SCOPE AND APPROACH The present paper gives an overview of the current methods for the identification and quantification of DMY. Furthermore, recent findings regarding the main biological properties and chemical stability of DMY, the metabolism of DMY as well as different approaches to increase DMY bioavailability in both aqueous and lipid phases are discussed. KEY FINDINGS AND CONCLUSIONS Current trends on identification and quantification of DMY have been focused on spectral and chromatographic techniques. Many factors such as heat, pH, metal ions, could affect the chemical stability of DMY. Despite the diverse biological effects of DMY, DMY faces with the problem of poor bioavailability. Utilization of different delivery systems including solid dispersion, nanocapsule, microemuslion, cyclodextrin inclusion complexes, co-crystallization, phospholipid complexes, and chemical or enzymatic acylation has the potential to improve both the solubility and bioavailability. DMY digested in laboratory animals undergoes reduction, dehydroxylation, methylation, glucuronidation, and sulfation. Novel DMY delivery systems and basic pharmacokinetic studies of encapsulated DMY on higher animals and humans might be required in the future.
Collapse
Affiliation(s)
- Dan Liu
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yiqin Mao
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Lijun Ding
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xin-An Zeng
- South China University of Technology, School of Food Science & Engineering, Guangzhou, 510640, Guangdong, PR China
| |
Collapse
|
9
|
Chen Y, Luo HQ, Sun LL, Xu MT, Yu J, Liu LL, Zhang JY, Wang YQ, Wang HX, Bao XF, Meng GL. Dihydromyricetin Attenuates Myocardial Hypertrophy Induced by Transverse Aortic Constriction via Oxidative Stress Inhibition and SIRT3 Pathway Enhancement. Int J Mol Sci 2018; 19:E2592. [PMID: 30200365 PMCID: PMC6164359 DOI: 10.3390/ijms19092592] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022] Open
Abstract
Dihydromyricetin (DMY), one of the flavonoids in vine tea, exerts several pharmacological actions. However, it is not clear whether DMY has a protective effect on pressure overload-induced myocardial hypertrophy. In the present study, male C57BL/6 mice aging 8⁻10 weeks were subjected to transverse aortic constriction (TAC) surgery after 2 weeks of DMY (250 mg/kg/day) intragastric administration. DMY was given for another 2 weeks after surgery. Blood pressure, myocardial structure, cardiomyocyte cross-sectional area, cardiac function, and cardiac index were observed. The level of oxidative stress in the myocardium was assessed with dihydroethidium staining. Our results showed that DMY had no significant effect on the blood pressure. DMY decreased inter ventricular septum and left ventricular posterior wall thickness, relative wall thickness, cardiomyocyte cross-sectional areas, as well as cardiac index after TAC. DMY pretreatment also significantly reduced arterial natriuretic peptide (ANP), brain natriuretic peptide (BNP) mRNA and protein expressions, decreased reactive oxygen species production and malondialdehyde (MDA) level, while increased total antioxidant capacity (T-AOC), activity of superoxide dismutase (SOD), expression of sirtuin 3 (SIRT3), forkhead-box-protein 3a (FOXO3a) and SOD2, and SIRT3 activity in the myocardium of mice after TAC. Taken together, DMY ameliorated TAC induced myocardial hypertrophy in mice related to oxidative stress inhibition and SIRT3 pathway enhancement.
Collapse
Affiliation(s)
- Yun Chen
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
- School of Medicine, Nantong University, Nantong 226001, China.
| | - Hui-Qin Luo
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Lin-Lin Sun
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Meng-Ting Xu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jin Yu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Lu-Lu Liu
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Jing-Yao Zhang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Yu-Qin Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Hong-Xia Wang
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Xiao-Feng Bao
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
| | - Guo-Liang Meng
- Department of Pharmacology, School of Pharmacy and Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong 226001, China.
- School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
10
|
Liu S, Ai Q, Feng K, Li Y, Liu X. The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1α signaling pathways. Apoptosis 2018; 21:1366-1385. [PMID: 27738772 DOI: 10.1007/s10495-016-1306-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Reperfusion therapy is widely used to treat acute myocardial infarction (AMI). However, further injury to the heart induced by rapidly initiating reperfusion is often encountered in clinical practice. A lack of pharmacological strategies in clinics limits the prognosis of patients with myocardial ischemia-reperfusion injury (MIRI). Dihydromyricetin (DMY) is one of the most abundant components in vine tea, commonly known as the tender stems and leaves of Ampelopsis grossedentata. The aim of this study was to evaluate the cardioprotection of DMY against myocardial ischemia-reperfusion (I/R) injury and to further investigate the underlying mechanism. An I/R injury was induced by left anterior descending coronary artery occlusion in adult male rats in vivo and a hypoxia-reoxygenation (H/R) injury in H9c2 cardiomyocytes in vitro. We found that DMY pretreatment provided significant protection against I/R-induced injury, including enhanced antioxidant capacity and inhibited apoptosis in vivo and in vitro. This effect correlated with the activation of the PI3K/Akt and HIF-1α signaling pathways. Conversely, blocking Akt activation with the PI3K inhibitor LY294002 effectively suppressed the protective effects of DMY against I/R-induced injury. In addition, the PI3K inhibitor partially blocked the effects of DMY on the upregulation of Bcl-2, Bcl-xl, procaspase-3, -8, and -9 protein expression and the downregulation of HIF-1α, Bnip3, Bax, Cyt-c, cleaved caspase-3, -8, and -9 protein expression. Collectively, these results showed that DMY decreased the apoptosis and necrosis by I/R treatment, and PI3K/Akt and HIF-1α plays a crucial role in protection during this process. These observations indicate that DMY has the potential to exert cardioprotective effects against I/R injury and the results might be important for the clinical efficacy of AMI treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Pharmacy Department, Xiangtan Central Hospital, No. 120, Heping Road, Yuhu District, Xiangtan, 411100, People's Republic of China
| | - Qidi Ai
- School of Pharmaceutical Science, Hunan University of Chinese Medicine, Changsha, 410208, People's Republic of China
| | - Kai Feng
- Oral Surgery, Dalian Stomatological Hospital, Dalian, 116021, People's Republic of China
| | - Yubing Li
- Pharmacy Department, Dalian (Municipal) Friendship Hospital, Dalian, 116001, People's Republic of China
| | - Xiang Liu
- Pharmacy Department, Xiangtan Central Hospital, No. 120, Heping Road, Yuhu District, Xiangtan, 411100, People's Republic of China.
| |
Collapse
|
11
|
Park JS, Kim IS, Shaheed Ur Rehman, Na CS, Yoo HH. HPLC Determination of Bioactive Flavonoids in Hovenia dulcis Fruit Extracts. J Chromatogr Sci 2015; 54:130-5. [PMID: 26240190 DOI: 10.1093/chromsci/bmv114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Indexed: 12/18/2022]
Abstract
A simple, accurate and reproducible reversed-phase liquid chromatographic method was developed for qualitative and quantitative determination of four bioactive flavonoids (ampelopsin, taxifolin, myricetin and quercetin) from the fruit-stalk extract of Hovenia dulcis Thunb. Chromatographic separation was performed on a C18 column (4.6 × 150 mm, 3.5 µm) with mobile phase consisting of 0.1% acetic acid and 100% acetonitrile at a flow rate of 1.0 mL/min. The analysis was performed using a diode array detector at 365 nm. The method was validated in terms of selectivity, linearity, accuracy, precision and recovery. Good linearity was observed over the investigated concentration range (10-500 μg/mL), with correlation coefficient values greater than 0.99. The intra- and inter-day precisions over the concentration range were <3.91% (relative standard deviation), and the accuracy was between 91.57 and 106.66%. The mean recovery for all the analytes was 100.87%. This method was successfully applied in the quality assessment of bioactive flavonoids in the fruit-stalk extract of H. dulcis.
Collapse
Affiliation(s)
- Jong Suk Park
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - In Sook Kim
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Shaheed Ur Rehman
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Chun-Soo Na
- Lifetree Biotech Co., Ltd., Suwon, Gyeonggi-do 441-350, Republic of Korea
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology and College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| |
Collapse
|
12
|
Meng G, Yang S, Chen Y, Yao W, Zhu H, Zhang W. Attenuating effects of dihydromyricetin on angiotensin II-induced rat cardiomyocyte hypertrophy related to antioxidative activity in a NO-dependent manner. PHARMACEUTICAL BIOLOGY 2015; 53:904-912. [PMID: 25471017 DOI: 10.3109/13880209.2014.948635] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Dihydromyricetin (DMY) displays a range of biological properties. However, whether DMY attenuates cardiomyocyte hypertrophy is unknown. OBJECTIVE To investigate whether DMY had potential therapeutic value to protect against angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. MATERIALS AND METHODS Neonatal rat cardiomyocytes were pretreated with DMY (0-320 μM) followed with Ang II (100 nM) stimulation for 24 h, and then degree of hypertrophy was evaluated by cell surface analysis. Levels of reactive oxygen species (ROS) were measured with 2',7'-dichlorfluorescein-diacetate (DCFH-DA) fluorescent staining. Antioxidative activity was evaluated by malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, and total antioxidant capacity (T-AOC). Cyclic guanosine monophosphate (cGMP) was determined with a radioimmunoassay. RESULTS Pre-incubation with DMY (20, 40, 80, and 160 μM) for 8 h, 12 h, 24 h, or 48 h decreased cell surface areas. It down-regulated mRNA expression of atrial natriuretic factor (1.95- to 1.24-fold) and β-myosin heavy chains (3.51- to 2.32-fold), reduced levels of MDA as well as increased SOD activity and T-AOC. Expression of SOD and thioredoxin were enhanced by DMY, whereas p22(phox) and phosphorylation of mitogen-activated protein kinases were inhibited. Content of cGMP (0.54- to 0.80-fold) and phosphorylation of endothelial nitric oxide synthase at serine 1177 (0.70- to 1.05-fold) were augmented by DMY. Moreover, attenuating effect of DMY on hypertrophy was abolished when NO production was inhibited by l-NAME. CONCLUSION Attenuating effects of DMY on Ang II-induced cardiomyocyte hypertrophy related to antioxidative activity in a NO-dependent manner.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University , Nantong, Jiangsu , China and
| | | | | | | | | | | |
Collapse
|