1
|
Shi Y, Chen Z, Huang L, Gong Y, Shi L. A network pharmacology approach to reveal the key ingredients in Scrophulariae Radix (SR) and their effects against Alzheimer's disease. Heliyon 2024; 10:e24785. [PMID: 38322920 PMCID: PMC10844110 DOI: 10.1016/j.heliyon.2024.e24785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/20/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Background Scrophulariae Radix (SR) is a commonly used medicinal plant. Alzheimer's disease (AD) is a neurodegenerative disease for which there is no effective treatment. This study aims to initially clarify the potential mechanism of SR in the treatment of AD based on network pharmacology and molecular docking techniques. Methods The principal components and corresponding protein targets of SR were conducted by HPLC analysis and searched on TCMSP. AD targets were searched on DrugBank, Chemogenomics, TTD, OMIM and GeneCards databases. The compound-target network was constructed by Cytoscape3.8.2. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a PPI network. We further performed GO and KEGG enrichment analysis on the targets. Meanwhile, molecular docking study and cell experiments were approved for the core target and the active compound. Results Through multidatabase retrieval and integration, it was found that 17 components of SR could exert anti-AD effects against 40 targets. KEGG enrichment analysis indicated that Alzheimer's disease (hsa05010) was one of the most significant AD enrichment signalling pathways. Combined with the gene expression profile information in the AlzData database, 15 targets were found to be associated with tau or beta-amyloid protein (Aβ). GO analysis indicated that the primary molecular functions of SR in the treatment of AD were neurotransmitter receptor activity (GO:0007268), postsynaptic neurotransmitter receptor activity (GO:0070997), and acetylcholine receptor activity (GO:0050435). Moreover, we explored the anti-AD effects of SR extract and ursolic acid (UA) using SH-SY5Y cells. Treatment of SH-SY5Y cells with 20 μM UA significantly reduced the oxidative damage to these neuronal cells. Conclusion This study reveals the active ingredients and potential molecular mechanism of SR in the treatment of AD, and provides a theoretical basis for further basic research and clinical application.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhongqiang Chen
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Lixia Huang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Yeli Gong
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| | - Lu Shi
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, China
| |
Collapse
|
2
|
Sun J, Li X, Qu Z, Wang H, Cheng Y, Dong S, Zhao H. Comparative proteomic analysis reveals novel insights into the continuous cropping induced response in Scrophularia ningpoensis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1832-1845. [PMID: 36271763 DOI: 10.1002/jsfa.12284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Scrophularia ningpoensis is a well-known medicinal crop. Continuous cropping seriously affects the yield and quality, but little is known about the influence of continuous cropping on metabolic pathways. In this study, the difference in protein abundance between continuous cropping and non-continuous cropping of S. ningpoensis roots was studied by proteomics, and the molecular mechanism that protects S. ningpoensis against continuous cropping was explored. RESULTS The results suggested that continuous cropping in S, ningpoensis altered the expression of proteins related to starch and sucrose metabolism, glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle, phenylalanine, tyrosine and tryptophan biosynthesis, phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, monoterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, and steroid biosynthesis. Among these processes, the most affected were phenylpropanoid biosynthesis and starch and sucrose metabolism, which may be important for continuous cropping resistance. CONCLUSION The effect of continuous cropping on S. ningpoensis was demonstrated at the proteome level in this work, and identified candidate proteins that may cause continuous cropping reactions. The paper provides the theoretical foundation and scientific reference for enhancing the continuous cropping resistance of S. ningpoensis. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiachen Sun
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Xuejiao Li
- Endocrine and Metabolic Disease Center, Medical Key Laboratory of Hereditary Rare Diseases of Henan, Luoyang Sub-Center of National Clinical Research Center for Metabolic Diseases, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zhuo Qu
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Huairui Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yao Cheng
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Shengjie Dong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Faculty of Education and Sports, Guangdong Baiyun University, Guangzhou, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food and Biotechnology, State Experimental and Training Centre of Food and Drug, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
3
|
Effect of Different Processing Methods on the Chemical Constituents of Scrophulariae Radix as Revealed by 2D NMR-Based Metabolomics. Molecules 2022; 27:molecules27154687. [PMID: 35897871 PMCID: PMC9331298 DOI: 10.3390/molecules27154687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Scrophulariae Radix (SR) is one of the oldest and most frequently used Chinese herbs for oriental medicine in China. Before clinical use, the SR should be processed using different methods after harvest, such as steaming, “sweating”, and traditional fire-drying. In order to investigate the difference in chemical constituents using different processing methods, the two-dimensional (2D) 1H-13C heteronuclear single quantum correlation (1H-13C HSQC)-based metabolomics approach was applied to extensively characterize the difference in the chemical components in the extracts of SR processed using different processing methods. In total, 20 compounds were identified as potential chemical markers that changed significantly with different steaming durations. Seven compounds can be used as potential chemical markers to differentiate processing by sweating, hot-air drying, and steaming for 4 h. These findings could elucidate the change of chemical constituents of the processed SR and provide a guide for the processing. In addition, our protocol may represent a general approach to characterizing chemical compounds of traditional Chinese medicine (TCM) and therefore might be considered as a promising approach to exploring the scientific basis of traditional processing of TCM.
Collapse
|
4
|
Scrophulariae Radix: An Overview of Its Biological Activities and Nutraceutical and Pharmaceutical Applications. Molecules 2021; 26:molecules26175250. [PMID: 34500684 PMCID: PMC8434300 DOI: 10.3390/molecules26175250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Scrophulariae Radix (SR) has an important role as a medicinal plant, the roots of which are recorded used to cure fever, swelling, constipation, pharyngitis, laryngitis, neuritis, sore throat, rheumatism, and arthritis in Asia for more than two thousand years. In this paper, the studies published on Scrophularia buergeriana (SB) and Scrophularia ningpoensis (SN) in the latest 20 years were reviewed, and the biological activities of SB and SN were evaluated based on in vitro and in vivo studies. SB presented anti-inflammatory activities, immune-enhancing effects, bone disorder prevention activity, neuroprotective effect, anti-amnesic effect, and anti-allergic effect; SN showed a neuroprotective effect, anti-apoptotic effect, anti-amnesic effect, and anti-depressant effect; and SR exhibited an immune-enhancing effect and cardioprotective effects through in vitro and in vivo experiments. SB and SN are both known to exert neuroprotective and anti-amensice effects. This review investigated their applicability in the nutraceutical, functional foods, and pharmaceutical industries. Further studies, such as toxicological studies and clinical trials, on the efficacy and safety of SR, including SB and SN, need to be conducted.
Collapse
|
5
|
Wang S, Xue Z, Huang X, Ma W, Yang D, Zhao L, Ouyang H, Chang Y, He J. Comparison of the chemical profile differences of Aster tataricus between raw and processed products by metabolomics coupled with chemometrics methods. J Sep Sci 2021; 44:3883-3897. [PMID: 34405960 DOI: 10.1002/jssc.202100315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/25/2021] [Accepted: 08/16/2021] [Indexed: 11/08/2022]
Abstract
Aster tataricus, a traditional Chinese herb, has been used to treat cough and asthma for many years. Its raw and processed products have different pharmacological effects in clinical applications. To explore the chemical profile differences of components in A. tataricus processed with different methods, metabolomics methods based on ultra-high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry and gas chromatography-mass spectrometry were developed. Chemometrics strategy was applied to filter and screen the candidate compounds. The accuracy of differential markers was validated by back propagation neural network. The established methods showed that raw A. tataricus, honey-processed A. tataricus, vinegar-processed A. tataricus, and steamed A. tataricus were clearly divided into four groups, suggesting that the components were closely related to the processing methods. A total of 64 nonvolatile and 43 volatile compounds were identified in A. tataricus, and 22 nonvolatile and 12 volatile differential constituents were selected to distinguish the raw and processed A. tataricus. This study demonstrated that the metabolomics methods coupled with chemometrics were a comprehensive strategy to analyze the chemical profile differences and provided a reliable reference for quality evaluation of A. tataricus.
Collapse
Affiliation(s)
- Songrui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Zixiang Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xuhua Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Wenjuan Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Dongyue Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Lulu Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, P. R. China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
6
|
Wang S, Wang Q, Yin X, Chen B, Liu X. Simultaneous Determination of Iridoid Glycosides, Phenylpropanoid Glycosides, Organic Acids, Nucleosides and Amino Acids in Scrophulariae Radix Processed by Different Processing Methods by HPLC-QTRAP-MS/MS. J Chromatogr Sci 2021; 60:232-242. [PMID: 34100538 DOI: 10.1093/chromsci/bmab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 11/14/2022]
Abstract
Scrophulariae Radix is one of the widely used traditional Chinese medicines. In this study, a high-performance liquid chromatography coupled with triple quadrupole-linear ion trap mass spectrometry method was established for the simultaneous determination of multiple bioactive constituents including four iridoid glycosides, two phenylpropanoid glycosides, six organic acids, 11 nucleosides and 16 amino acids in Scrophulariae Radix. The validated method was used to analyze nine Scrophulariae Radix samples processed by different processing methods. In addition, Grey relational analysis and DTOPSIS were used to evaluate the samples according to the content of 39 ayalytes. The results showed that the quality of Scrophulariae Radix processed by cutting into slices, sun drying and "sweating" methods were better. All the results proved that the developed method was available and could be used to evaluate the quality of Scrophulariae Radix.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Qin Wang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoqin Yin
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Bohua Chen
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
7
|
Ren D, Shen ZY, Qin LP, Zhu B. Pharmacology, phytochemistry, and traditional uses of Scrophularia ningpoensis Hemsl. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113688. [PMID: 33338592 DOI: 10.1016/j.jep.2020.113688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scrophularia ningpoensis Hemsl. (known as Xuanshen) has been used in China for centuries as a traditional medicinal plant to treat numerous diseases including inflammation, hypertension, cancer, and diabetes. AIM OF REVIEW In this review, we provide an update on the botany, pharmacology, phytochemistry, pharmacokinetics, traditional uses, and safety of S. ningpoensis to highlight future research needs and potential uses of this plant. MATERIALS AND METHODS All information on S. ningpoensis was obtained from scientific databases including ScienceDirect, Springer, PubMed, Sci Finder, China Knowledge Resource Integrated Database from the China National Knowledge Infrastructure (CNKI), Google Scholar, and Baidu Scholar. Additional information was collected from Chinese herbal medicine books, Ph.D. dissertations, and M.Sc. Theses. Plant taxonomy was verified by "The Plant List" database (http://www.theplantlist.org). RESULTS S. ningpoensis displays fever reducing, detoxifying, and nourishing 'Yin' effects in traditional Chinese medicine (TCM). More than 162 compounds have been identified and isolated from S. ningpoensis, including iridoids and iridoid glycosides, phenylpropanoid glycosides, organic acids, volatile oils, terpenoids, saccharides, flavonoids, sterols, and saponins. These compounds possess a diverse variety of pharmacological properties that affect the cardiovascular, hepatic, and nervous systems, and protect the body against inflammation, oxidation, and carcinogenesis. CONCLUSIONS Modern pharmacological studies have confirmed that S. ningpoensis is a valuable Chinese medicinal herb with many pharmacological uses in the treatment of cardiovascular, diabetic, and liver diseases. Most of the S. ningpoensis activity may be attributed to iridoid glycosides and phenylpropanoid glycosides; however, detailed information on the molecular mechanisms, metabolic activity, toxicology, and structure-function relationships of active components is limited. Further comprehensive research to evaluate the medicinal properties of S. ningpoensis is needed.
Collapse
Affiliation(s)
- Dan Ren
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhan-Yun Shen
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu-Ping Qin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bo Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
8
|
Nam HH, Lee AY, Seo YS, Park I, Yang S, Chun JM, Moon BC, Song JH, Kim JS. Three Scrophularia Species ( Scrophularia buergeriana, S. koraiensis, and S. takesimensis) Inhibit RANKL-Induced Osteoclast Differentiation in Bone Marrow-Derived Macrophages. PLANTS 2020; 9:plants9121656. [PMID: 33256150 PMCID: PMC7760964 DOI: 10.3390/plants9121656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022]
Abstract
Scrophulariae Radix, derived from the dried roots of Scrophularia ningpoensis Hemsl. or S. buergeriana Miq, is a traditional herbal medicine used in Asia to treat rheumatism, arthritis, and pharyngalgia. However, the effects of Scrophularia buergeriana, S. koraeinsis, and S. takesimensis on osteoclast formation and bone resorption remain unclear. In this study, we investigated the morphological characteristics and harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis, and compared the effects of ethanol extracts of these species using nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation. The harpagoside content of the three Scrophularia species was analyzed by high-performance liquid chromatography–mass spectrometry (HPLC/MS). Their therapeutic effects were evaluated by tartrate-resistant acid phosphatase (TRAP)-positive cell formation and bone resorption in bone marrow-derived macrophages (BMMs) harvested from ICR mice. We confirmed the presence of harpagoside in the Scrophularia species. The harpagoside content of S. buergeriana, S. koraiensis, and S. takesimensis was 1.94 ± 0.24 mg/g, 6.47 ± 0.02 mg/g, and 5.50 ± 0.02 mg/g, respectively. Treatment of BMMs with extracts of the three Scrophularia species inhibited TRAP-positive cell formation in a dose-dependent manner. The area of hydroxyapatite-absorbed osteoclasts was markedly decreased after treatment with the three Scrophularia species extracts. Our results indicated that the three species of the genus Scrophularia might exert preventive effects on bone disorders by inhibiting osteoclast differentiation and bone resorption, suggesting that these species may have medicinal and functional value.
Collapse
|
9
|
UPLC/MS-based untargeted metabolomics reveals the changes of metabolites profile of Salvia miltiorrhiza bunge during Sweating processing. Sci Rep 2020; 10:19524. [PMID: 33177654 PMCID: PMC7658355 DOI: 10.1038/s41598-020-76650-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Salvia miltiorrhiza has numerous compounds with extensive clinical application. "Sweating", a processing method of Traditional Chinese Medicine (TCM), results in great changes in pharmacology and pharmacodynamics. Previously, chromatogram of 10 characteristic metabolites in S. miltiorrhiza showed a significant difference after "Sweating". Due to the complexity of TCM, changes in metabolites should be investigated metabolome-wide after "Sweating". An untargeted UPLC/MS-based metabolomics was performed to discover metabolites profile variation of S. miltiorrhiza after "Sweating". Multivariate analysis was conducted to screen differential metabolites. Analysis indicated distinct differences between sweated and non-sweated samples. 10,108 substance peaks had been detected altogether, and 4759 metabolites had been identified from negative and positive ion model. 287 differential metabolites were screened including 112 up-regulated and 175 down-regulated and they belong to lipids and lipid-like molecules, and phenylpropanoid and polyketides. KEGG analysis showed the pathway of linoleic acid metabolism, and glyoxylate and dicarboxylate metabolism were mainly enriched. 31 and 49 identified metabolites were exclusively detected in SSM and NSSM, respectively, which mainly belong to carboxylic acids and derivatives, polyketides and fatty acyls. By mapping tanshinones and salvianolic acids to 4759 identified metabolites library, 23 characteristic metabolites had been identified, among which 11 metabolites changed most. We conclude that "Sweating'' has significant effect on metabolites content and composition of S. miltiorrhiza.
Collapse
|
10
|
Cai Z, Liao H, Wang C, Chen J, Tan M, Mei Y, Wei L, Chen H, Yang R, Liu X. A comprehensive study of the aerial parts of Lonicera japonica Thunb. based on metabolite profiling coupled with PLS-DA. PHYTOCHEMICAL ANALYSIS : PCA 2020; 31:786-800. [PMID: 32342594 DOI: 10.1002/pca.2943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Lonicera japonica Thunb. is an economically important species of honeysuckle belonging to the Caprifoliaceae family. All aerial parts of L. japonica (leaf, flower bud, flower, and caulis) are used as herbal remedies in traditional Chinese medicine. The application of plant metabolomics to the study of L. japonica provides the potential for identifying the phytochemical composition and useful chemical markers of the plant. OBJECTIVE To develop a strategy integrating metabolic profiling and partial least squares discriminant analysis (PLS-DA) to separate the aerial parts of L. japonica based on the occurrence of chemical markers. METHODOLOGY The two-part strategy consisted of (1) ultra-fast liquid chromatography coupled with triple quadrupole-time of flight tandem mass spectrometry (UFLC-triple TOF-MS/MS), (2) PLS-DA, which was applied to distinguish between the different aerial parts and reveal their differential characteristic metabolites. RESULTS A total of 71 metabolites were identified from samples, and eight candidate compounds were identified (lonicerin, kaempferol-3-O-rutinoside, loganin, isochlorogenic acid B, isochlorogenic acid C, secologanic acid, luteoloside, astragalin) as optimal chemical markers based on variable importance in projection (VIP) and p-value. The relative contents of eight candidate compounds were compared based on their peak intensities. CONCLUSION This study established an efficient strategy for exploring metabolite profiling and defining chemical markers among the different aerial parts of L. japonica, and laid the foundation for elucidating the phytochemical differences in efficacy between Lonicerae Japonicae Flos (LJF) and Lonicerae Japonicae Caulis (LJC). Our findings also indicate that the leaves of L. japonica leaf could be used as an alternative medicinal resource for LJF and provide a reference for comprehensive exploitation and utilisation of L. japonica resources.
Collapse
Affiliation(s)
- Zhichen Cai
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haiying Liao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengcheng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiali Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengxia Tan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqi Mei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lifang Wei
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huan Chen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rong Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunhong Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Xie G, Jiang Y, Huang M, Zhu Y, Wu G, Qin M. Dynamic analysis of secondary metabolites in various parts of Scrophularia ningpoensis by liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2020; 186:113307. [PMID: 32375107 DOI: 10.1016/j.jpba.2020.113307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/07/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
Abstract
The roots of Scrophularia ningpoensis are used as traditional medicines for thousands of years in China, nevertheless the stems and leaves were discarded as non-medicinal parts. Modern research have indicated the chemical constituents in the stems and leaves are similar to the identified in the roots, and the therapeutic effects of stems and leaves are superior to roots for some disease. In the study, the chemical constituents in roots, stems and leaves of S. ningpoensis were analyzed qualitatively by HPLC-Q-TOF-MS/MS. 40 compounds including 17 iridoid glycosides, 15 phenylpropanoids and 8 flavonoids were identified. Meantime, the dynamic accumulations of six index constituents in various parts were measured by HPLC-DAD. The results indicated the S. ningpoensis stems contained high content of aucubin (30.09 mg/g) and harpagide (28.4 mg/g) in August, and the leaves contained high content of harpagoside (12.02 mg/g) in July. The study provides the basis for the full development and utilization of the resource of stems and leaves from S. ningpoensis.
Collapse
Affiliation(s)
- Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuxuan Jiang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Mengmeng Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, PR China
| | - Yan Zhu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Gang Wu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
12
|
Quantitative analysis, pharmacokinetics and metabolomics study for the comprehensive characterization of the salt-processing mechanism of Psoraleae Fructus. Sci Rep 2019; 9:661. [PMID: 30679561 PMCID: PMC6345873 DOI: 10.1038/s41598-018-36908-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/27/2018] [Indexed: 01/11/2023] Open
Abstract
Research based on quantitative analysis, pharmacokinetics and metabolomics was conducted to explore the effects of salt-processing on Psoraleae Fructus (PF). Quantitative analysis showed that the contents of bioactive components were higher in salt-processed Psoraleae Fructus (SPF) extract than in PF extract. Pharmacokinetics indicated that the overall AUC and tmax levels was higher, while Cmax was lower in the SPF group. In the metabolomics study, the differential influences of PF and SPF on 22 common biomarkers and associated metabolic pathways showed that salt-processing could enhance the effect of PF and reduce toxicity in the cardiovascular and renal systems. The internal correlations among these results, together with the influence of salt-processing, suggested that the effects of heating and newly generated surfactants during the salt-processing procedure were the primary causes of the changes in chemical composition and absorption characteristics, as well as the subsequent enhanced efficacy and minor toxicity.
Collapse
|