1
|
El Gaaloul M, Tchouatieu AM, Kayentao K, Campo B, Buffet B, Ramachandruni H, Ndiaye JL, Wells TNC, Audibert C, Achan J, Donini C, Barsosio HC, Tinto H. Chemoprevention of malaria with long-acting oral and injectable drugs: an updated target product profile. Malar J 2024; 23:315. [PMID: 39425110 PMCID: PMC11490162 DOI: 10.1186/s12936-024-05128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Malaria is preventable, but the burden of disease remains high with over 249 million cases and 608,000 deaths reported in 2022. Historically, the most important protective interventions have been vector control and chemopreventive medicines with over 50 million children receiving seasonal malaria chemoprevention in the year 2023. Two vaccines are approved and starting to be deployed, bringing additional protection for children up to 36 months. However, the impact of these currently available tools is somewhat limited on various fronts. Vaccines exhibit partial efficacy, are relatively costly, and not accessible in all settings. The challenges encountered with chemoprevention are barriers to acceptability and feasibility, including frequency of dosing, and the lack of options in the first trimester of pregnancy and for women living with HIV. Also, the emergence of resistance against chemopreventive medicines is concerning. To address these limitations, a target product profile (TPP) is proposed as a road map to guide innovation and to boost the quest for novel chemopreventive alternatives. This TPP describes the ideal product attributes, while acknowledging potential trade-offs that may be needed. Critically, it considers the target populations most at risk; primarily infants, children, and pregnant women. Malaria control and elimination requires appropriate chemoprevention, not only in areas of high endemicity and transmission, but also in lower transmission areas where immunity is declining, as well as for travellers from areas where malaria has been eliminated. New medicines should show acceptable safety and tolerability, with high and long protective efficacy. Formulations and costs need to support operational adherence, access, and effectiveness. Next generation long-acting oral and injectable drugs are likely to constitute the backbone of malaria prevention. Therefore, the perspectives of front-line experts in malaria prevention, researchers, and those involved in drug development are captured in the TPP. This inclusive approach aims at concentrating efforts and aligning responses across the community to develop new and transformative medicines.
Collapse
Affiliation(s)
- Myriam El Gaaloul
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland.
| | - Andre Marie Tchouatieu
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland.
| | - Kassoum Kayentao
- Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Brice Campo
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland
| | - Benedicte Buffet
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland
| | - Hanu Ramachandruni
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland
| | | | - Timothy N C Wells
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland
| | - Celine Audibert
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland
| | | | - Cristina Donini
- MMV Medicines for Malaria Venture, Route de Pré-Bois 20, Post Box 1826, 1215, Geneva 15, Switzerland
| | - Hellen C Barsosio
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| |
Collapse
|
2
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2024:10.1038/s41579-024-01099-x. [PMID: 39367132 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Sangana R, Ogutu B, Yeka A, Kusemererwa S, Tinto H, Toure AO, Kibuuka A, Lingani M, Lourenço C, Mombo-Ngoma G, Nduba V, Landry N'Guessan T, Nassa GJW, Nyantaro M, Tina LO, Anvikar A, Sinha A, Kaguthi G, Fofana B, Grobusch MP, Gaaloul ME, Marrast AC, Pathan R, Chikoto H, Csermak K, Risterucci C, Su G, Winnips C, Zhang J, Zack J. Pharmacokinetics of Ganaplacide and Lumefantrine in Adults, Adolescents, and Children with Plasmodium falciparum Malaria Treated with Ganaplacide Plus Lumefantrine Solid Dispersion Formulation: Analysis of Data from a Multinational Phase 2 Study. J Clin Pharmacol 2024. [PMID: 39344281 DOI: 10.1002/jcph.6138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
The novel antimalarial ganaplacide combined with lumefantrine solid dispersion formulation (LUM-SDF) was effective and well tolerated in the treatment of uncomplicated falciparum malaria in adults, adolescents, and children in a multinational, prospective, randomized, active-controlled Phase II study conducted between August 2017 and June 2021 (EudraCT 2020-003284-25, Clinicaltrials.gov NCT03167242). Pharmacokinetic data from that study are reported here. The trial comprised three parts: a run-in part in 12 adult/adolescent patients treated with a single dose of ganaplacide 200 mg plus LUM-SDF 960 mg assessed potential pharmacokinetic (PK) interactions between ganaplacide and lumefantrine; in Part A, adult/adolescent patients received one of the six ganaplacide-LUM-SDF regimens or artemether-lumefantrine; and in Part B, three dose regimens identified in Part A, and artemether-lumefantrine, were assessed in children aged 2 to <12 years, with body weight ≥10 kg. A rich blood sampling schedule was used for all 12 patients in the PK run-in part and a subset of patients (N = 32) in Part A, with sparse sampling for remaining patients in Parts A (N = 275) and B (N = 159). Drug concentrations were determined by a validated protein precipitation and reverse phase liquid chromatography with tandem mass spectrometry detection method. Parameters including AUCinf, AUClast, AUC0-t, Cmax, and tmax were reported where possible, using non-compartmental analysis. In the PK run-in part, there was no notable increase in ganaplacide or lumefantrine exposure when co-administered. In Parts A and B, ganaplacide exposures increased with dose, but lumefantrine exposure was numerically under dose-proportional. Lumefantrine exposure was higher with ganaplacide-LUM-SDF than with artemether-lumefantrine, although high variability was observed. Ganaplacide and lumefantrine exposures (Cmax and AUC0-24 h) were comparable across age and body weight groups. Drug exposures needed for efficacy were achieved using the dose regimen 400 mg ganaplacide plus lumefantrine 960 mg once daily for 3 days under fasted conditions.
Collapse
Affiliation(s)
| | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya and CREATES, Strathmore University, Nairobi, Kenya
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Sylvia Kusemererwa
- Medical Research Council/Uganda Virus Resea, rch Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Halidou Tinto
- Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Andre Offianan Toure
- Department of Parasitology-Mycology, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Afizi Kibuuka
- Infectious Diseases Research Collaboration (IDRC), Kampala, Uganda
| | - Moussa Lingani
- Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Carlos Lourenço
- Chókwè Health Research and Training Center/Centro de Investigação e Treino em Saúde de Chókwè (CITSC), National Institute of Health, Mozambique
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine and Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Videlis Nduba
- Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | - Tiacoh Landry N'Guessan
- Department of Parasitology-Mycology, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Guétawendé Job Wilfried Nassa
- Institut de Recherche en Science de la Santé - Unité de Recherche Clinique de Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Mary Nyantaro
- Medical Research Council/Uganda Virus Resea, rch Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Lucas Otieno Tina
- Centre for Clinical Research, Kenya Medical Research Institute/US Army Medical Research Directorate, Kisumu, Kenya
| | - Anup Anvikar
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Abhinav Sinha
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Grace Kaguthi
- Kenya Medical Research Institute-Centre for Respiratory Diseases Research (KEMRI-CRDR), Nairobi, Kenya
| | | | - Martin Peter Grobusch
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Institute of Tropical Medicine, University of Tubingen, Tubingen, Germany
| | | | | | | | | | | | | | - Guoqin Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Jie Zhang
- PK Sciences, Biomedical Research, Novartis, East Hanover, NJ, USA
| | - Julia Zack
- PK Sciences, Biomedical Research, Novartis, East Hanover, NJ, USA
| |
Collapse
|
4
|
Winzeler E, Carolino K, De Souza ML, Chen D, Farre JC, Blauwkamp J, Absalon S, Ghidelli-Disse S, Morano A, Dvorin J, Lafuente-Monasterio MJ, Gamo FJ. Plasmodium SEY1 is a novel druggable target that contributes to imidazolopiperazine mechanism of action. RESEARCH SQUARE 2024:rs.3.rs-4892449. [PMID: 39399671 PMCID: PMC11469372 DOI: 10.21203/rs.3.rs-4892449/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The precise mode of action of ganaplacide (KAF156), a phase III antimalarial candidate, remains elusive. Here we employ omics-based methods with the closely related chemical analog, GNF179, to search for potential Plasmodium targets. Ranking potential targets derived from chemical genetics and proteomic affinity chromatography methodologies identifies SEY1, or Synthetic Enhancement of YOP1, which is predicted to encode an essential dynamin-like GTPase implicated in homotypic fusion of endoplasmic reticulum (ER) membranes. We demonstrate that GNF179 decreases Plasmodium SEY1 melting temperature. We further show that GNF179 binds to recombinant Plasmodium SEY1 and subsequently inhibits its GTPase activity, which is required for maintaining ER architecture. Using ultrastructure expansion microscopy, we find GNF179 treatment changes parasite ER and Golgi morphology. We also confirm that SEY1 is an essential gene in P. falciparum. These data suggest that SEY1 may contribute to the mechanism of action of imidazolopiperazines and is a new and attractive druggable target.
Collapse
|
5
|
Kreutzfeld O, Orena S, Okitwi M, Tumwebaze PK, Byaruhanga O, Katairo T, Conrad MD, Legac J, Garg S, Crudale R, Aydemir O, Giesbrecht D, Nsobya SL, Blasco B, Duffey M, Rouillier M, Bailey JA, Cooper RA, Rosenthal PJ. Ex vivo susceptibilities to ganaplacide and diversity in potential resistance mediators in Ugandan Plasmodium falciparum isolates. Antimicrob Agents Chemother 2024; 68:e0046624. [PMID: 39136468 PMCID: PMC11373204 DOI: 10.1128/aac.00466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/20/2024] [Indexed: 09/05/2024] Open
Abstract
Novel antimalarials are urgently needed to combat rising resistance to available drugs. The imidazolopiperazine ganaplacide is a promising drug candidate, but decreased susceptibility of laboratory strains has been linked to polymorphisms in the Plasmodium falciparum cyclic amine resistance locus (PfCARL), acetyl-CoA transporter (PfACT), and UDP-galactose transporter (PfUGT). To characterize parasites causing disease in Africa, we assessed ex vivo drug susceptibilities to ganaplacide in 750 P. falciparum isolates collected in Uganda from 2017 to 2023. Drug susceptibilities were assessed using a 72-hour SYBR Green growth inhibition assay. The median IC50 for ganaplacide was 13.8 nM, but some isolates had up to 31-fold higher IC50s (31/750 with IC50 > 100 nM). To assess genotype-phenotype associations, we sequenced genes potentially mediating altered ganaplacide susceptibility in the isolates using molecular inversion probe and dideoxy sequencing methods. PfCARL was highly polymorphic, with eight mutations present in >5% of isolates. None of these eight mutations had previously been selected in laboratory strains with in vitro drug pressure and none were found to be significantly associated with decreased ganaplacide susceptibility. Mutations in PfACT and PfUGT were found in ≤5% of isolates, except for two frequent (>20%) mutations in PfACT; one mutation in PfACT (I140V) was associated with a modest decrease in susceptibility. Overall, Ugandan P. falciparum isolates were mostly highly susceptible to ganaplacide. Known resistance mediators were polymorphic, but mutations previously selected with in vitro drug pressure were not seen, and mutations identified in the Ugandan isolates were generally not associated with decreased ganaplacide susceptibility.
Collapse
Affiliation(s)
| | - Stephen Orena
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martin Okitwi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Thomas Katairo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Jennifer Legac
- University of California, San Francisco, California, USA
| | - Shreeya Garg
- University of California, San Francisco, California, USA
| | | | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | - Roland A Cooper
- Dominican University of California, San Rafael, California, USA
| | | |
Collapse
|
6
|
Tian X, Janes HE, Kublin JG. Statistical design and analysis of controlled human malaria infection trials. Malar J 2024; 23:133. [PMID: 38702775 PMCID: PMC11068571 DOI: 10.1186/s12936-024-04959-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Malaria is a potentially life-threatening disease caused by Plasmodium protozoa transmitted by infected Anopheles mosquitoes. Controlled human malaria infection (CHMI) trials are used to assess the efficacy of interventions for malaria elimination. The operating characteristics of statistical methods for assessing the ability of interventions to protect individuals from malaria is uncertain in small CHMI studies. This paper presents simulation studies comparing the performance of a variety of statistical methods for assessing efficacy of intervention in CHMI trials. METHODS Two types of CHMI designs were investigated: the commonly used single high-dose design (SHD) and the repeated low-dose design (RLD), motivated by simian immunodeficiency virus (SIV) challenge studies. In the context of SHD, the primary efficacy endpoint is typically time to infection. Using a continuous time survival model, five statistical tests for assessing the extent to which an intervention confers partial or full protection under single dose CHMI designs were evaluated. For RLD, the primary efficacy endpoint is typically the binary infection status after a specific number of challenges. A discrete time survival model was used to study the characteristics of RLD versus SHD challenge studies. RESULTS In a SHD study with the continuous time survival model, log-rank test and t-test are the most powerful and provide more interpretable results than Wilcoxon rank-sum tests and Lachenbruch tests, while the likelihood ratio test is uniformly most powerful but requires knowledge of the underlying probability model. In the discrete time survival model setting, SHDs are more powerful for assessing the efficacy of an intervention to prevent infection than RLDs. However, additional information can be inferred from RLD challenge designs, particularly using a likelihood ratio test. CONCLUSIONS Different statistical methods can be used to analyze controlled human malaria infection (CHMI) experiments, and the choice of method depends on the specific characteristics of the experiment, such as the sample size allocation between the control and intervention groups, and the nature of the intervention. The simulation results provide guidance for the trade off in statistical power when choosing between different statistical methods and study designs.
Collapse
Affiliation(s)
- Xiaowen Tian
- Department of Biostatistics, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA.
| | - Holly E Janes
- Department of Biostatistics, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, 3980 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
7
|
Schäfer TM, Pessanha de Carvalho L, Inoue J, Kreidenweiss A, Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin Drug Discov 2024; 19:209-224. [PMID: 38108082 DOI: 10.1080/17460441.2023.2284820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Malaria remains a devastating infectious disease with hundreds of thousands of casualties each year. Antimalarial drug resistance has been a threat to malaria control and elimination for many decades and is still of concern today. Despite the continued effectiveness of current first-line treatments, namely artemisinin-based combination therapies, the emergence of drug-resistant parasites in Southeast Asia and even more alarmingly the occurrence of resistance mutations in Africa is of great concern and requires immediate attention. AREAS COVERED A comprehensive overview of the mechanisms underlying the acquisition of drug resistance in Plasmodium falciparum is given. Understanding these processes provides valuable insights that can be harnessed for the development and selection of novel antimalarials with reduced resistance potential. Additionally, strategies to mitigate resistance to antimalarial compounds on the short term by using approved drugs are discussed. EXPERT OPINION While employing strategies that utilize already approved drugs may offer a prompt and cost-effective approach to counter antimalarial drug resistance, it is crucial to recognize that only continuous efforts into the development of novel antimalarial drugs can ensure the successful treatment of malaria in the future. Incorporating resistance propensity assessment during this developmental process will increase the likelihood of effective and enduring malaria treatments.
Collapse
Affiliation(s)
| | | | - Juliana Inoue
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- German Center for Infection Research (DZIF), Tübingen, Germany
| |
Collapse
|
8
|
Tatsinkou LLT, Fossi BT, Sotoing GT, Mambou HMAY, Ivo PEA, Achidi EA. Prophylactic effects of probiotic bacterium Latilactobacillus sakei on haematological parameters and cytokine profile of mice infected with Plasmodium berghei ANKA during early malaria infection. Life Sci 2023; 331:122056. [PMID: 37652156 DOI: 10.1016/j.lfs.2023.122056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Malaria is a deadly parasitic disease caused a by protozoan parasite of the genus plasmodium. The challenges facing by chemotherapy and vector control couple with the lack of vaccine against malaria necessitate an urgent need for the development of alternative treatment regimens to combat this disease. One possible antimalarial treatment regimen is the use of probiotic bacteria as dietary supplements. Traditionally fermented milk is a rich source of probiotic bacteria that up to date, very few studies have been carried out on their immunoprotective effects against early malaria infection in mice. This study sought to assess the prophylactic activities of a probiotic bacterium Latilactobacillus sakei on malaria and inflammation in Plasmodium berghei infected mice. The probiotic bacterium was isolated from the Fulani's traditionally fermented milk and identified using the sequencing of the 16S r RNA gene. The repository activity of L. sakei on malaria was assessed using the method described by Peters with slight modification. Eighty-four BALB/c mice were randomly divided into two sets of seven groups of six mice each. One set received orally different doses of L. sakei Chloroquine and Sulfadoxine/Pyrimethamine for seven days before infection while the other set received for fourteen days before infection with 0.1 mL of 107Plasmodium berghei. Parasitaemia density, haematological parameters and inflammatory cytokines profile were evaluated. Data were presented as Mean ± SEM and analysed using SPSS version 20.0. The results of this study revealed that L. sakei significantly (p < 0.05) reduced in dose dependent manner parasite load, body weight loss and reduction of body temperature in all the treated mice when compare to untreated mice. Leukocytopenia, thrombocytosis and inflammation were also found to be significantly (p < 0.05) prevented in treated mice as compared to untreated mice. This study suggested that L sakei possesses immunomodulation and protective effects on early malaria infection in Plasmodium berghei mice.
Collapse
Affiliation(s)
| | - Bertrand Tatsinkou Fossi
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Germain Taiwe Sotoing
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon
| | | | | | - Eric Akum Achidi
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon
| |
Collapse
|
9
|
Olotu A, Möhrle JJ. Moving seasonal malaria chemoprevention out of its geographical isolation. THE LANCET. INFECTIOUS DISEASES 2023; 23:1102-1103. [PMID: 37414067 DOI: 10.1016/s1473-3099(23)00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 07/08/2023]
Affiliation(s)
- Ally Olotu
- Ifakara Health Institute, Bagamoyo, Tanzania
| | - Jörg J Möhrle
- Medicines for Malaria Venture, 1215 Geneva 15, Switzerland.
| |
Collapse
|
10
|
van der Plas JL, Kuiper VP, Bagchus WM, Bödding M, Yalkinoglu Ö, Tappert A, Seitzinger A, Spangenberg T, Bezuidenhout D, Wilkins J, Oeuvray C, Dhingra SK, Thathy V, Fidock DA, Smidt LCA, Roozen GVT, Koopman JPR, Lamers OAC, Sijtsma J, van Schuijlenburg R, Wessels E, Meij P, Kamerling IMC, Roestenberg M, Khandelwal A. Causal chemoprophylactic activity of cabamiquine against Plasmodium falciparum in a controlled human malaria infection: a randomised, double-blind, placebo-controlled study in the Netherlands. THE LANCET. INFECTIOUS DISEASES 2023; 23:1164-1174. [PMID: 37414066 DOI: 10.1016/s1473-3099(23)00212-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Cabamiquine is a novel antimalarial that inhibits Plasmodium falciparum translation elongation factor 2. We investigated the causal chemoprophylactic activity and dose-exposure-response relationship of single oral doses of cabamiquine following the direct venous inoculation (DVI) of P falciparum sporozoites in malaria-naive, healthy volunteers. METHODS This was a phase 1b, randomised, double-blind, placebo-controlled, adaptive, dose-finding, single-centre study performed in Leiden, Netherlands. Malaria-naive, healthy adults aged 18-45 years were divided into five cohorts and randomly assigned (3:1) to receive cabamiquine or placebo. Randomisation was done by an independent statistician using codes in a permuted block schedule with a block size of four. Participants, investigators, and study personnel were masked to treatment allocation. A single, oral dose regimen of cabamiquine (200, 100, 80, 60, or 30 mg) or matching placebo was administered either at 2 h (early liver-stage) or 96 h (late liver-stage) after DVI. The primary endpoints based on a per-protocol analysis set were the number of participants who developed parasitaemia within 28 days of DVI, time to parasitaemia, number of participants with documented parasite blood-stage growth, clinical symptoms of malaria, and exposure-efficacy modelling. The impact of cabamiquine on liver stages was evaluated indirectly by the appearance of parasitaemia in the blood. The Clopper-Pearson CI (nominal 95%) was used to express the protection rate. The secondary outcomes were safety and tolerability, assessed in those who had received DVI and were administered one dose of the study intervention. The trial was prospectively registered on ClinicalTrials.gov (NCT04250363). FINDINGS Between Feb 17, 2020 and April 29, 2021, 39 healthy participants were enrolled (early liver-stage: 30 mg [n=3], 60 mg [n=6], 80 mg [n=6], 100 mg [n=3], 200 mg [n=3], pooled placebo [n=6]; late liver-stage: 60 mg [n=3], 100 mg [n=3], 200 mg [n=3], pooled placebo [n=3]). A dose-dependent causal chemoprophylactic effect was observed, with four (67%) of six participants in the 60 mg, five (83%) of six participants in the 80 mg, and all three participants in the 100 and 200 mg cabamiquine dose groups protected from parasitaemia up to study day 28, whereas all participants in the pooled placebo and 30 mg cabamiquine dose group developed parasitaemia. A single, oral dose of 100 mg cabamiquine or higher provided 100% protection against parasitaemia when administered during early or late liver-stage malaria. The median time to parasitaemia in those with early liver-stage malaria was prolonged to 15, 22, and 24 days for the 30, 60, and 80 mg dose of cabamiquine, respectively, compared with 10 days for the pooled placebo. All participants with positive parasitaemia showed documented blood-stage parasite growth, apart from one participant in the pooled placebo group and one participant in the 30 mg cabamiquine group. Most participants did not exhibit any malaria symptoms in both the early and late liver-stage groups, and those reported were mild in severity. A positive dose-exposure-efficacy relationship was established across exposure metrics. The median maximum concentration time was 1-6 h, with a secondary peak observed between 6 h and 12 h in all cabamiquine dose groups (early liver-stage). All cabamiquine doses were safe and well tolerated. Overall, 26 (96%) of 27 participants in the early liver-stage group and ten (83·3%) of 12 participants in the late liver-stage group reported at least one treatment-emergent adverse event (TEAE) with cabamiquine or placebo. Most TEAEs were of mild severity, transient, and resolved without sequelae. The most frequently reported cabamiquine-related TEAE was headache. No dose-related trends were observed in the incidence, severity, or causality of TEAEs. INTERPRETATION The results from this study show that cabamiquine has a dose-dependent causal chemoprophylactic activity. Together with previously demonstrated activity against the blood stages combined with a half-life of more than 150 h, these results indicate that cabamiquine could be developed as a single-dose monthly regimen for malaria prevention. FUNDING The healthcare business of Merck KGaA, Darmstadt, Germany.
Collapse
Affiliation(s)
- Johan L van der Plas
- Centre for Human Drug Research, Leiden, Netherlands; Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent P Kuiper
- Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Wilhelmina M Bagchus
- Merck Institute for Pharmacometrics, Merck Serono (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | | | | - Aliona Tappert
- The healthcare business of Merck KGaA, Darmstadt, Germany
| | | | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading (a subsidiary of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Deon Bezuidenhout
- Merck (Pty) (an affiliate of Merck KGaA, Darmstadt, Germany), Modderfontein, South Africa
| | | | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading (a subsidiary of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | | | - Vandana Thathy
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA; Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Geert V T Roozen
- Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Pieter R Koopman
- Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Olivia A C Lamers
- Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen Sijtsma
- Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Roos van Schuijlenburg
- Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Els Wessels
- Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline Meij
- Center for Cell and Gene Therapy, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Ingrid M C Kamerling
- Centre for Human Drug Research, Leiden, Netherlands; Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Meta Roestenberg
- Department of Infectious Diseases and Parasitology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands.
| | | |
Collapse
|
11
|
Siqueira-Neto JL, Wicht KJ, Chibale K, Burrows JN, Fidock DA, Winzeler EA. Antimalarial drug discovery: progress and approaches. Nat Rev Drug Discov 2023; 22:807-826. [PMID: 37652975 PMCID: PMC10543600 DOI: 10.1038/s41573-023-00772-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2023] [Indexed: 09/02/2023]
Abstract
Recent antimalarial drug discovery has been a race to produce new medicines that overcome emerging drug resistance, whilst considering safety and improving dosing convenience. Discovery efforts have yielded a variety of new molecules, many with novel modes of action, and the most advanced are in late-stage clinical development. These discoveries have led to a deeper understanding of how antimalarial drugs act, the identification of a new generation of drug targets, and multiple structure-based chemistry initiatives. The limited pool of funding means it is vital to prioritize new drug candidates. They should exhibit high potency, a low propensity for resistance, a pharmacokinetic profile that favours infrequent dosing, low cost, preclinical results that demonstrate safety and tolerability in women and infants, and preferably the ability to block Plasmodium transmission to Anopheles mosquito vectors. In this Review, we describe the approaches that have been successful, progress in preclinical and clinical development, and existing challenges. We illustrate how antimalarial drug discovery can serve as a model for drug discovery in diseases of poverty.
Collapse
Affiliation(s)
| | - Kathryn J Wicht
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | | | - David A Fidock
- Department of Microbiology and Immunology and Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
12
|
Ogutu B, Yeka A, Kusemererwa S, Thompson R, Tinto H, Toure AO, Uthaisin C, Verma A, Kibuuka A, Lingani M, Lourenço C, Mombo-Ngoma G, Nduba V, N'Guessan TL, Nassa GJW, Nyantaro M, Tina LO, Singh PK, El Gaaloul M, Marrast AC, Chikoto H, Csermak K, Demin I, Mehta D, Pathan R, Risterucci C, Su G, Winnips C, Kaguthi G, Fofana B, Grobusch MP. Ganaplacide (KAF156) plus lumefantrine solid dispersion formulation combination for uncomplicated Plasmodium falciparum malaria: an open-label, multicentre, parallel-group, randomised, controlled, phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:1051-1061. [PMID: 37327809 DOI: 10.1016/s1473-3099(23)00209-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Emergence of drug resistance demands novel antimalarial drugs with new mechanisms of action. We aimed to identify effective and well tolerated doses of ganaplacide plus lumefantrine solid dispersion formulation (SDF) in patients with uncomplicated Plasmodium falciparum malaria. METHODS This open-label, multicentre, parallel-group, randomised, controlled, phase 2 trial was conducted at 13 research clinics and general hospitals in ten African and Asian countries. Patients had microscopically-confirmed uncomplicated P falciparum malaria (>1000 and <150 000 parasites per μL). Part A identified the optimal dose regimens in adults and adolescents (aged ≥12 years) and in part B, the selected doses were assessed in children (≥2 years and <12 years). In part A, patients were randomly assigned to one of seven groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days; ganaplacide 800 mg plus lumefantrine-SDF 960 mg as a single dose; once a day ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; once a day ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; or twice a day artemether plus lumefantrine for 3 days [control]), with stratification by country (2:2:2:2:2:2:1) using randomisation blocks of 13. In part B, patients were randomly assigned to one of four groups (once a day ganaplacide 400 mg plus lumefantrine-SDF 960 mg for 1, 2, or 3 days, or twice a day artemether plus lumefantrine for 3 days) with stratification by country and age (2 to <6 years and 6 to <12 years; 2:2:2:1) using randomisation blocks of seven. The primary efficacy endpoint was PCR-corrected adequate clinical and parasitological response at day 29, analysed in the per protocol set. The null hypothesis was that the response was 80% or lower, rejected when the lower limit of two-sided 95% CI was higher than 80%. This study is registered with EudraCT (2020-003284-25) and ClinicalTrials.gov (NCT03167242). FINDINGS Between Aug 2, 2017, and May 17, 2021, 1220 patients were screened and of those, 12 were included in the run-in cohort, 337 in part A, and 175 in part B. In part A, 337 adult or adolescent patients were randomly assigned, 326 completed the study, and 305 were included in the per protocol set. The lower limit of the 95% CI for PCR-corrected adequate clinical and parasitological response on day 29 was more than 80% for all treatment regimens in part A (46 of 50 patients [92%, 95% CI 81-98] with 1 day, 47 of 48 [98%, 89-100] with 2 days, and 42 of 43 [98%, 88-100] with 3 days of ganaplacide 400 mg plus lumefantrine-SDF 960 mg; 45 of 48 [94%, 83-99] with ganaplacide 800 mg plus lumefantrine-SDF 960 mg for 1 day; 47 of 47 [100%, 93-100] with ganaplacide 200 mg plus lumefantrine-SDF 480 mg for 3 days; 44 of 44 [100%, 92-100] with ganaplacide 400 mg plus lumefantrine-SDF 480 mg for 3 days; and 25 of 25 [100%, 86-100] with artemether plus lumefantrine). In part B, 351 children were screened, 175 randomly assigned (ganaplacide 400 mg plus lumefantrine-SDF 960 mg once a day for 1, 2, or 3 days), and 171 completed the study. Only the 3-day regimen met the prespecified primary endpoint in paediatric patients (38 of 40 patients [95%, 95% CI 83-99] vs 21 of 22 [96%, 77-100] with artemether plus lumefantrine). The most common adverse events were headache (in seven [14%] of 51 to 15 [28%] of 54 in the ganaplacide plus lumefantrine-SDF groups and five [19%] of 27 in the artemether plus lumefantrine group) in part A, and malaria (in 12 [27%] of 45 to 23 [44%] of 52 in the ganaplacide plus lumefantrine-SDF groups and 12 [50%] of 24 in the artemether plus lumefantrine group) in part B. No patients died during the study. INTERPRETATION Ganaplacide plus lumefantrine-SDF was effective and well tolerated in patients, especially adults and adolescents, with uncomplicated P falciparum malaria. Ganaplacide 400 mg plus lumefantrine-SDF 960 mg once daily for 3 days was identified as the optimal treatment regimen for adults, adolescents, and children. This combination is being evaluated further in a phase 2 trial (NCT04546633). FUNDING Novartis and Medicines for Malaria Venture.
Collapse
Affiliation(s)
- Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Adoke Yeka
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Sylvia Kusemererwa
- Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Ricardo Thompson
- Chókwè Health Research and Training Center, Centro de Investigação e Treino em Saúde de Chókwè, National Institute of Health, Chókwè, Mozambique
| | - Halidou Tinto
- Institut de Recherche en Science de la Santé, Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Andre Offianan Toure
- Department of Parasitology and Mycology, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Amar Verma
- Department of Paediatrics, Rajendra Institute of Medical Sciences, Jharkhand, India
| | - Afizi Kibuuka
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moussa Lingani
- Institut de Recherche en Science de la Santé, Unité de Recherche Clinique de Nanoro, Nanoro, Burkina Faso
| | - Carlos Lourenço
- Chókwè Health Research and Training Center, Centro de Investigação e Treino em Saúde de Chókwè, National Institute of Health, Chókwè, Mozambique
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; Department of Implementation Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Videlis Nduba
- Kenya Medical Research Institute, Centre for Respiratory Diseases Research, Nairobi, Kenya
| | - Tiacoh Landry N'Guessan
- Department of Parasitology and Mycology, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Mary Nyantaro
- Medical Research Council, Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Lucas Otieno Tina
- Centre for Clinical Research, Kenya Medical Research Institute, US Army Medical Research Directorate, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | - Guoqin Su
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | | | - Grace Kaguthi
- Kenya Medical Research Institute, Centre for Respiratory Diseases Research, Nairobi, Kenya
| | | | - Martin Peter Grobusch
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; Department of Infectious Diseases, Center of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Amsterdam, Netherlands; Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Chavtur C, Staubus WJ, Ho M, Hergott DEB, Seilie AM, Healy S, Duffy P, Jackson L, Talley A, Kappe SHI, Hoffman SL, Richie TL, Kublin JG, Chang M, Murphy SC. Plasmodium 18S Ribosomal RNA Biomarker Clearance After Food and Drug Administration-Approved Antimalarial Treatment in Controlled Human Malaria Infection Trials. Open Forum Infect Dis 2023; 10:ofad202. [PMID: 37265668 PMCID: PMC10230565 DOI: 10.1093/ofid/ofad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/12/2023] [Indexed: 06/03/2023] Open
Abstract
Background Sensitive molecular assays, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of Plasmodium 18S ribosomal RNA (rRNA), are increasingly the primary method of detecting infections in controlled human malaria infection (CHMI) trials. However, thick blood smears (TBSs) remain the main method for confirming clearance of parasites after curative treatment, in part owing to uncertainty regarding biomarker clearance rates. Methods For this analysis, 18S rRNA qRT-PCR data were compiled from 127 Plasmodium falciparum-infected participants treated with chloroquine or atovaquone-proguanil in 6 CHMI studies conducted in Seattle, Washington, over the past decade. A survival analysis approach was used to compare biomarker and TBS clearance times among studies. The effect of the parasite density at which treatment was initiated on clearance time was estimated using linear regression. Results The median time to biomarker clearance was 3 days (interquartile range, 3-5 days), while the median time to TBS clearance was 1 day (1-2 days). Time to biomarker clearance increased with the parasite density at which treatment was initiated. Parasite density did not have a significant effect on TBS clearance. Conclusions The Plasmodium 18S rRNA biomarker clears quickly and can be relied on to confirm the adequacy of Food and Drug Administration-approved treatments in CHMI studies at nonendemic sites.
Collapse
Affiliation(s)
- Chris Chavtur
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Weston J Staubus
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Mabel Ho
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Dianna E B Hergott
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, USA
| | - Annette M Seilie
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sara Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Patrick Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Lisa Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington, USA
| | | | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | | | | | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Seattle Malaria Clinical Trials Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Ming Chang
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sean C Murphy
- Malaria Molecular Diagnostic Laboratory, Department of Laboratory Medicine and Pathology and Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
- Seattle Malaria Clinical Trials Center, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| |
Collapse
|
14
|
Rao SPS, Manjunatha UH, Mikolajczak S, Ashigbie PG, Diagana TT. Drug discovery for parasitic diseases: powered by technology, enabled by pharmacology, informed by clinical science. Trends Parasitol 2023; 39:260-271. [PMID: 36803572 DOI: 10.1016/j.pt.2023.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023]
Abstract
While prevention is a bedrock of public health, innovative therapeutics are needed to complement the armamentarium of interventions required to achieve disease control and elimination targets for neglected diseases. Extraordinary advances in drug discovery technologies have occurred over the past decades, along with accumulation of scientific knowledge and experience in pharmacological and clinical sciences that are transforming many aspects of drug R&D across disciplines. We reflect on how these advances have propelled drug discovery for parasitic infections, focusing on malaria, kinetoplastid diseases, and cryptosporidiosis. We also discuss challenges and research priorities to accelerate discovery and development of urgently needed novel antiparasitic drugs.
Collapse
Affiliation(s)
| | | | | | - Paul G Ashigbie
- Novartis Institute for Tropical Diseases, Emeryville, CA, USA.
| | | |
Collapse
|
15
|
Bassand C, Villois A, Gianola L, Laue G, Ramazani F, Riebesehl B, Sanchez-Felix M, Sedo K, Ullrich T, Duvnjak Romic M. Smart design of patient centric long-acting products: from preclinical to marketed pipeline trends and opportunities. Expert Opin Drug Deliv 2022; 19:1265-1283. [PMID: 35877189 DOI: 10.1080/17425247.2022.2106213] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION We see a development in the field of long-acting products to serve patients with chronic diseases by providing benefits in adherence, efficacy and safety of the treatment. This review investigates features of long-acting products on the market/pipeline to understand which drug substance (DS) and drug product (DP) characteristics likely enable a successful patient-centric, low-dosing frequency product. AREAS COVERED This review evaluates marketed/pipeline long-acting products with greater than one week release of small molecules and peptides by oral and injectable route of administration (RoA), with particular focus on patient centricity, adherence impact, health outcomes, market trends, and the match of DS/DP technologies which lead to market success. EXPERT OPINION Emerging trends are expected to change the field of long-acting products in the upcoming years by increasing capability in engineered molecules (low solubility, long half-life, high potency, etc.), directly developing DP as long-acting oral/injectable, increasing the proportion of products for local drug delivery, and a direction towards more subcutaneous, self-administered products. Among long-acting injectable products, nanosuspensions show a superiority in dose per administration and dosing interval, overwhelming the field of infectious diseases with the recently marketed products.
Collapse
Affiliation(s)
- Céline Bassand
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Lucas Gianola
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Grit Laue
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Bernd Riebesehl
- Technical Research and Development, Novartis Pharma AG, Basel 4002, Switzerland
| | - Manuel Sanchez-Felix
- Novartis Institutes for BioMedical Research, 700 Main Street, Cambridge, MA 02139, USA
| | - Kurt Sedo
- PharmaCircle LLC, Sunny Isles Beach, FL, USA
| | - Thomas Ullrich
- Novartis Institute for Biomedical Research, Novartis Pharma AG, Basel 4002, Switzerland
| | | |
Collapse
|
16
|
Assessment
in vitro
of the antimalarial and transmission blocking activities of Cipargamin and Ganaplacide in artemisinin resistant
Plasmodium falciparum. Antimicrob Agents Chemother 2022; 66:e0148121. [DOI: 10.1128/aac.01481-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemisinin resistance in
Plasmodium falciparum
has emerged and spread widely in the Greater Mekong Subregion threatening current first line artemisinin combination treatments. New antimalarial drugs are needed urgently. Cipargamin (KAE609) and ganaplacide (KAF156) are promising novel antimalarial compounds in advanced stages of development. Both compounds have potent asexual blood stage activities, inhibit
P. falciparum
gametocytogenesis and reduce oocyst development in anopheline mosquitoes. In this study, we compared the asexual and sexual stage activities of cipargamin, ganaplacide and artesunate in artemisinin resistant
P. falciparum
isolates (N=7, K13 mutation; C580Y, G449A and R539T) from Thailand and Cambodia. Asexual blood stage antimalarial activity was evaluated in a SYBR-green I based 72h
in vitro
assay, and the effects on male and female mature stage V gametocytes were assessed in the
P. falciparum
dual gamete formation assay. Ganaplacide had higher activities when compared to cipargamin and artesunate, with a mean (SD) IC50 against asexual stages of 5.5 (1.1) nM, 7.8 (3.9) nM for male gametocytes and 57.9 (59.6) nM for female gametocytes. Cipargamin had a similar potency against male and female gametocytes, with a mean (SD) IC50 of 123.1 (80.2) nM for male gametocytes, 88.5 (52.7) nM for female gametocytes and 2.4 (0.6) nM for asexual stages. Both cipargamin and ganaplacide showed significant transmission-blocking activities against artemisinin resistant
P. falciparum
in vitro
.
Collapse
|
17
|
Pernaute-Lau L, Camara M, Nóbrega de Sousa T, Morris U, Ferreira MU, Gil JP. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin Drug Metab Toxicol 2022; 18:39-59. [PMID: 35285373 DOI: 10.1080/17425255.2022.2049235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.
Collapse
Affiliation(s)
- Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal
| | - Mahamadou Camara
- Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brasil
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Marcelo Urbano Ferreira
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
18
|
Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021; 13:pharmaceutics13122189. [PMID: 34959470 PMCID: PMC8706932 DOI: 10.3390/pharmaceutics13122189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Malaria eradication has for decades been on the global health agenda, but the causative agents of the disease, several species of the protist parasite Plasmodium, have evolved mechanisms to evade vaccine-induced immunity and to rapidly acquire resistance against all drugs entering clinical use. Because classical antimalarial approaches have consistently failed, new strategies must be explored. One of these is nanomedicine, the application of manipulation and fabrication technology in the range of molecular dimensions between 1 and 100 nm, to the development of new medical solutions. Here we review the current state of the art in malaria diagnosis, prevention, and therapy and how nanotechnology is already having an incipient impact in improving them. In the second half of this review, the next generation of antimalarial drugs currently in the clinical pipeline is presented, with a definition of these drugs' target product profiles and an assessment of the potential role of nanotechnology in their development. Opinions extracted from interviews with experts in the fields of nanomedicine, clinical malaria, and the economic landscape of the disease are included to offer a wider scope of the current requirements to win the fight against malaria and of how nanoscience can contribute to achieve them.
Collapse
|
19
|
Koehne E, Adegnika AA, Held J, Kreidenweiss A. Pharmacotherapy for artemisinin-resistant malaria. Expert Opin Pharmacother 2021; 22:2483-2493. [PMID: 34311639 DOI: 10.1080/14656566.2021.1959913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Malaria, the most devastating parasitic disease, is currently treated with artemisinin-based combination therapies (ACTs). Unfortunately, some ACTs are unable to rapidly clear Plasmodium falciparum parasites from the blood stream and are failing to cure malaria patients; a problem, so far, largely confined to Southeast Asia. There is a fear of resistant Plasmodium falciparum emerging in other parts of the world including Sub-Saharan Africa. Strategies for alternative treatments, ideally non-artemisinin based, are needed. AREAS COVERED This narrative review gives an overview of approved antimalarials and of some compounds in advanced drug development that could be used when an ACT is failing. The selection was based on a literature search in PubMed and WHO notes for malaria treatment. EXPERT OPINION The ACT drug class can still cure malaria in malaria endemic regions. However, the appropriate ACT drug should be chosen considering the background resistance of the partner drug of the local parasite population. Artesunate-pyronaridine, the 'newest' recommended ACT, and atovaquone-proguanil are, so far, effective, and safe treatments for uncomplicated falciparum malaria. Therefore, all available ACTs should be safeguarded from parasite resistance and the development of new antimalarial drug classes needs to be accelerated.
Collapse
Affiliation(s)
- Erik Koehne
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Ayola Akim Adegnika
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Andrea Kreidenweiss
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
20
|
Yuan B, Liu HQ, Yang ZR, Chen YX, Liu ZY, Zhang K, Wang C, Li WX, An YW, Wang JC, Song S. Recurrence of positive SARS-CoV-2 viral RNA in recovered COVID-19 patients during medical isolation observation. Sci Rep 2020; 10:11887. [PMID: 32681141 PMCID: PMC7368008 DOI: 10.1038/s41598-020-68782-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, the recurrence of positive SARS-CoV-2 viral RNA in recovered COVID-19 patients is receiving more attention. Herein we report a cohort study on the follow-up of 182 recovered patients under medical isolation observation. Twenty (10.99%) patients out of the 182 were detected to be SARS-CoV-2 RNA positive (re-positives), although none showed any clinical symptomatic recurrence, indicating that COVID-19 responds well to treatment. Patients aged under 18 years had higher re-positive rates than average, and none of the severely ill patients re-tested positive. There were no significant differences in sex between re-positives and non-re-positives. Notably, most of the re-positives turned negative in the following tests, and all of them carried antibodies against SARS-CoV-2. This indicates that they might not be infectious, although it is still important to perform regular SARS-CoV-2 RNA testing and follow-up for assessment of infectivity. The findings of this study provide information for improving the management of recovered patients, and for differentiating the follow-up of recovered patients with different risk levels.
Collapse
Affiliation(s)
- Bo Yuan
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Han-Qing Liu
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Zheng-Rong Yang
- HIV/AIDS Control and Prevention Division, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yong-Xin Chen
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Zhi-Yong Liu
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Kai Zhang
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Cheng Wang
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Wei-Xin Li
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Ya-Wen An
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China
| | - Jian-Chun Wang
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China.
| | - Shuo Song
- Science and Education Department, Shenzhen Samii Medical Center, 1 Jinniu West Road, Pingshan District, Shenzhen, Guangdong Province, China.
| |
Collapse
|